JPH107413A - Production of highly pure carbon monoxide - Google Patents

Production of highly pure carbon monoxide

Info

Publication number
JPH107413A
JPH107413A JP8178544A JP17854496A JPH107413A JP H107413 A JPH107413 A JP H107413A JP 8178544 A JP8178544 A JP 8178544A JP 17854496 A JP17854496 A JP 17854496A JP H107413 A JPH107413 A JP H107413A
Authority
JP
Japan
Prior art keywords
carbon monoxide
reaction
formic acid
acid
mineral acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8178544A
Other languages
Japanese (ja)
Other versions
JP3856872B2 (en
Inventor
Masayoshi Kiso
雅嘉 木曽
Masataka Tsuchiya
正孝 土屋
Kenji Hamada
健児 濱田
Manabu Enomoto
学 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP17854496A priority Critical patent/JP3856872B2/en
Publication of JPH107413A publication Critical patent/JPH107413A/en
Application granted granted Critical
Publication of JP3856872B2 publication Critical patent/JP3856872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for pyrolyzing formic acid to produce carbon monoxide, capable of producing the highly pure carbon monoxide by using a zeolite catalyst preliminarily modified with a mineral acid and pyrolyzing the formic acid at 110-150 deg.C. SOLUTION: This method for producing carbon monoxide comprises catalytically pyrolyzing formic acid in the presence of a zeolite catalyst. Therein, a zeolite preliminarily modified with a mineral acid is used. Since the reaction proceeds at a low reaction temperature in high selectivity, highly pure carbon monoxide low in the contents of hydrogen and methane can profitably be obtained. When H-mordenite and H-ZSM-5 are used as catalysts in the method of the invention, the reaction can be continued in high conversion and in high selectivity over two months or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高純度一酸化炭素の
製造方法に関する。さらに詳しくは、集積回路等の半導
体製造分野で用いられる99.99%以上の純度を有す
る高純度一酸化炭素の製造方法に関する。
The present invention relates to a method for producing high-purity carbon monoxide. More specifically, the present invention relates to a method for producing high-purity carbon monoxide having a purity of 99.99% or more used in the field of producing semiconductors such as integrated circuits.

【0002】[0002]

【従来の技術】従来、高純度一酸化炭素の製造方法とし
ては天然ガスを水蒸気改質して高濃度の一酸化炭素を発
生させ、それをさらに分離精製する方法、又は蟻酸を硫
酸あるいは固体触媒を用いて分解、脱水し精製する方法
等が知られている。精製工程を考慮すると蟻酸分解法の
方が一酸化炭素を高い選択率で得られるために有利であ
るが、硫酸を用いて脱水反応を行った場合、反応で生成
した水が硫酸濃度を下げるので、反応速度を維持するに
は多量の硫酸が必要となり、また硫酸を含む廃水の処理
の面からも工業的には好ましい方法とはいえない。一
方、固体触媒を用いて蟻酸を分解する方法は、前記の問
題点は生じないものの、一酸化炭素の生成反応以外に水
素と二酸化炭素を生成する副反応が起こる。
2. Description of the Related Art Conventionally, as a method for producing high-purity carbon monoxide, natural gas is subjected to steam reforming to generate high-concentration carbon monoxide, which is further separated and purified, or formic acid is converted to sulfuric acid or a solid catalyst. There is known a method of decomposing, dehydrating and purifying by using a method. Considering the purification process, the formic acid decomposition method is advantageous because carbon monoxide can be obtained with a high selectivity, but when dehydration reaction is performed using sulfuric acid, the water generated in the reaction reduces the sulfuric acid concentration. In addition, a large amount of sulfuric acid is required to maintain the reaction rate, and it is not industrially preferable from the viewpoint of treating wastewater containing sulfuric acid. On the other hand, the method of decomposing formic acid using a solid catalyst does not have the above-mentioned problem, but causes a side reaction of producing hydrogen and carbon dioxide in addition to the reaction of producing carbon monoxide.

【0003】固体触媒を用いる方法において用いること
ができる触媒としては、一般にイオン交換樹脂、アルミ
ナ、アルミナ/五酸化燐、燐酸カルシウム、硼燐酸カル
シウム、クリノプチロライト、H−ZSM−5/アルミ
ナ等が知られている。
[0003] Catalysts which can be used in the method using a solid catalyst include ion exchange resins, alumina, alumina / phosphor pentoxide, calcium phosphate, calcium borophosphate, clinoptilolite, H-ZSM-5 / alumina and the like. It has been known.

【0004】しかしながら、イオン交換樹脂は使用でき
る温度が100〜130℃程度に制限され、この温度で
の蟻酸の転化率は高くない。アルミナは300℃以上で
高い転化率が得られるが、一酸化炭素の選択率は99.
7%以下でありかなりの量の水素が不純物として含まれ
てくる。アルミナ/五酸化燐、燐酸カルシウム、硼燐酸
カルシウム、クリノプチロライトもアルミナの場合と同
様の傾向を示す。一方、H−ZSM−5/アルミナは反
応温度250℃の反応で転化率99.5%、選択率10
0%で一酸化炭素を与え、水素を一切発生しないとされ
ている(Bull.Soc.Belg., 92,225(1983)) 。しかし、本
発明者らの追試によると、H−ZSM−5/アルミナ触
媒のロングラン・テストでは反応温度250℃で反応初
期より0.5vol%の水素が発生する。従って、H−
ZSM−5/アルミナも高純度一酸化炭素の製造のため
には優れた触媒とはいい難い。
However, the usable temperature of the ion exchange resin is limited to about 100 to 130 ° C., and the conversion of formic acid at this temperature is not high. Alumina has a high conversion at 300 ° C. or higher, but the selectivity of carbon monoxide is 99.
Since it is less than 7%, a considerable amount of hydrogen is contained as an impurity. Alumina / phosphorus pentoxide, calcium phosphate, calcium borophosphate and clinoptilolite show the same tendency as in the case of alumina. On the other hand, H-ZSM-5 / alumina has a conversion of 99.5% and a selectivity of 10 at a reaction temperature of 250 ° C.
It is reported that carbon monoxide is given at 0% and no hydrogen is generated (Bull. Soc. Belg., 92, 225 (1983)). However, according to the additional test by the present inventors, in the long-run test of the H-ZSM-5 / alumina catalyst, 0.5 vol% of hydrogen is generated at the reaction temperature of 250 ° C. from the beginning of the reaction. Therefore, H-
ZSM-5 / alumina is also not a good catalyst for producing high-purity carbon monoxide.

【0005】上述のように、いずれの触媒においても高
転化率、高選択率を同時に達成することは困難であり、
さらに触媒の単位体積あたりの一酸化炭素の生産能力が
低いことが問題点である。また、H−ZSM−5/アル
ミナ触媒は、転化率の点ではほぼ満足できるものの経時
的に選択率が低下するので工業的には決して好ましい触
媒とはいい難い。そこで、本発明者らは高純度の一酸化
炭素を効率よく工業的に有利に得る方法を開発すべく、
蟻酸を高転化率、高選択率で一酸化炭素と水に分解する
方法を探索した。その結果、ゼオライト系触媒を用い蟻
酸と一緒に鉱酸を加えて反応を行う方法を見出した(特
開平7−33421号公報)。しかしながら、この方法
では蟻酸の分解活性が十分に発揮される温度は200℃
以上であり、この温度においては水素、二酸化炭素の他
にメタンが生成することが認められた。メタンは通常の
精製方法では除きにくいため、反応温度を下げてメタン
などの副生成物の生成を抑えることが望まれている。
As described above, it is difficult to simultaneously achieve high conversion and high selectivity with any of the catalysts.
Another problem is that the production capacity of carbon monoxide per unit volume of the catalyst is low. Further, the H-ZSM-5 / alumina catalyst is almost satisfactory in terms of the conversion, but the selectivity decreases over time, so that it is difficult to say that it is an industrially preferable catalyst. Therefore, the present inventors, in order to develop a method for efficiently and industrially obtaining high-purity carbon monoxide,
We searched for a method to decompose formic acid into carbon monoxide and water with high conversion and high selectivity. As a result, they have found a method of reacting by adding a mineral acid together with formic acid using a zeolite-based catalyst (JP-A-7-33421). However, in this method, the temperature at which the decomposition activity of formic acid is sufficiently exhibited is 200 ° C.
As described above, it was confirmed that methane was generated at this temperature in addition to hydrogen and carbon dioxide. Since methane is difficult to remove by an ordinary purification method, it is desired to lower the reaction temperature to suppress the generation of by-products such as methane.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、低温度でも反応速度と反応の選択率の両面において
十分な成績が得られ、水素やメタン等の副生成物の生成
も抑えることのできる高純度一酸化炭素の製造方法を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide satisfactory results in both the reaction rate and the selectivity of the reaction even at a low temperature and to suppress the generation of by-products such as hydrogen and methane. It is an object of the present invention to provide a method for producing high-purity carbon monoxide which can be performed.

【0007】[0007]

【課題を解決するための手段】本発明者らはかかる問題
を解決すべく鋭意検討した結果、予め鉱酸で修飾したゼ
オライト系触媒を用いて蟻酸の加熱分解反応を行うと、
比較的低い温度でも反応速度と反応の選択率の両面にお
いて十分な成績が得られ、さらに水素やメタンの生成も
抑えられることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve such a problem, and as a result, when a thermal decomposition reaction of formic acid is carried out using a zeolite catalyst previously modified with a mineral acid,
The present inventors have found that sufficient results can be obtained in both the reaction rate and the selectivity of the reaction even at a relatively low temperature, and that the production of hydrogen and methane can be suppressed, thus completing the present invention.

【0008】即ち、本発明の要旨は、(1) 蟻酸を加
熱分解して一酸化炭素を製造する方法において、予め鉱
酸で修飾したゼオライト系触媒を用い、110〜150
℃において蟻酸の加熱分解反応を行うことを特徴とする
高純度一酸化炭素の製造方法、(2) ゼオライト系触
媒がH−モルデナイト又はH−ZSM−5である前記
(1)記載の製造方法、(3) 鉱酸が硫酸である前記
(1)又は(2)記載の製造方法、(4) 鉱酸の濃度
が30〜98重量%である前記(1)〜(3)いずれか
記載の製造方法、(5) ゼオライト系触媒の鉱酸によ
る修飾が20〜50℃で30〜98重量%の鉱酸水溶液
中に0.5〜24時間浸漬する方法により行われるもの
である前記(1)〜(4)いずれか記載の製造方法、並
びに(6) ゼオライト系触媒の鉱酸による修飾がゼオ
ライト系触媒を充填したカラムに30〜98重量%の鉱
酸水溶液を満たし、20〜50℃で0.5〜24時間放
置した後鉱酸水溶液を流出させる方法により行われるも
のである前記(1)〜(4)いずれか記載の製造方法、
に関する。
That is, the gist of the present invention is to provide (1) a method for producing carbon monoxide by thermally decomposing formic acid by using a zeolite-based catalyst which has been modified with a mineral acid in advance;
A method for producing high-purity carbon monoxide, wherein a thermal decomposition reaction of formic acid is carried out at 0 ° C .; (2) the production method according to (1), wherein the zeolite-based catalyst is H-mordenite or H-ZSM-5; (3) The method according to (1) or (2), wherein the mineral acid is sulfuric acid, (4) The method according to any one of (1) to (3), wherein the concentration of the mineral acid is 30 to 98% by weight. The method (5) wherein the zeolite-based catalyst is modified with a mineral acid by immersing it in a 30-98% by weight aqueous solution of a mineral acid at 20-50 ° C for 0.5-24 hours. (4) The production method according to any of (1) to (6), wherein the modification of the zeolite-based catalyst with a mineral acid fills a column filled with the zeolite-based catalyst with a 30 to 98% by weight aqueous solution of a mineral acid, and sets the column at 0.2 to 50 ° C. After leaving for 5 to 24 hours, the mineral acid aqueous solution flows out The method of manufacturing a is (1) to (4) according to any one performed by a method in which,
About.

【0009】[0009]

【発明の実施の形態】以下、本発明を具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below.

【0010】本発明において用いられるゼオライト系触
媒としてはH−モルデナイト、H−ZSM−5、クリノ
プチロライト等を挙げることができ、なかでもH−モル
デナイトおよびH−ZSM−5は耐酸性に優れているの
で本発明の目的に適した触媒である。これらのゼオライ
ト系触媒は、市販品をそのまま使用することができる。
本発明で用いるH−モルデナイト触媒としては、Si/Al
原子比が約5〜約30であれば特に限定されず、天然モ
ルデナイト、合成モルデナイトのいずれもが使用可能で
ある。例えば、Si/Al 原子比は天然物で約5、合成品で
約5 〜約30程度であり、いずれの比率でも触媒として用
いることができる。Si/Al 原子比が約5より小さいと、
触媒活性が低下する傾向が生ずるため好ましくなく、約
30より大きいと触媒調製が繁雑となり経済的に不利と
なる傾向がある。
The zeolite-based catalyst used in the present invention includes H-mordenite, H-ZSM-5, clinoptilolite, etc. Among them, H-mordenite and H-ZSM-5 are excellent in acid resistance. Therefore, the catalyst is suitable for the purpose of the present invention. As these zeolite-based catalysts, commercially available products can be used as they are.
As the H-mordenite catalyst used in the present invention, Si / Al
There is no particular limitation as long as the atomic ratio is about 5 to about 30, and both natural mordenite and synthetic mordenite can be used. For example, the atomic ratio of Si / Al is about 5 for natural products and about 5 to about 30 for synthetic products, and any ratio can be used as a catalyst. If the Si / Al atomic ratio is less than about 5,
Since the catalyst activity tends to decrease, it is not preferable. If it is larger than about 30, catalyst preparation tends to be complicated and economically disadvantageous.

【0011】H−モルデナイトは通常モルデナイトを1
規定程度の塩酸で処理して得られる。H−モルデナイト
自体も蟻酸の分解活性を有しているがその活性が十分に
発揮されるには200℃以上の高温が必要である。本発
明では、H−モルデナイトを高濃度の鉱酸で修飾するこ
とにより、比較的低い温度でも反応速度と反応の選択率
の両面において十分な成績が得られ、水素やメタンの生
成も抑えられるという本発明の効果が達成されることを
初めて見出した。その機構は明らかではないが、高濃度
の鉱酸で修飾されたゼオライトの触媒作用と、触媒表面
での鉱酸による脱水反応とが相乗的に作用して本発明の
効果が発揮されるものと思われる。
[0011] H-mordenite is usually 1 part of mordenite.
It is obtained by treating with a specified amount of hydrochloric acid. H-mordenite itself has the activity of decomposing formic acid, but a high temperature of 200 ° C. or higher is required for the activity to be sufficiently exhibited. In the present invention, by modifying H-mordenite with a high concentration of a mineral acid, sufficient results are obtained in both the reaction rate and the selectivity of the reaction even at a relatively low temperature, and the production of hydrogen and methane is suppressed. It has been found for the first time that the effects of the present invention are achieved. Although the mechanism is not clear, it is assumed that the catalytic action of zeolite modified with a high concentration of mineral acid and the dehydration reaction by mineral acid on the catalyst surface act synergistically to exert the effect of the present invention. Seem.

【0012】本発明で用いることのできる鉱酸として
は、硫酸、塩酸、燐酸等を挙げることができ、なかでも
価格と廃水処理の容易さの点から硫酸を好適に用いるこ
とができる。鉱酸の濃度は特に限定されるものではない
が、通常30〜98重量%、好ましくは50〜80重量
%で処理すればよい。鉱酸の濃度が30重量%より低い
と一酸化炭素の生成活性が低くなり本発明の目的の達成
が困難となる。
As the mineral acid which can be used in the present invention, sulfuric acid, hydrochloric acid, phosphoric acid and the like can be mentioned. Among them, sulfuric acid can be preferably used from the viewpoint of cost and ease of wastewater treatment. The concentration of the mineral acid is not particularly limited, but the treatment may be usually performed at 30 to 98% by weight, preferably 50 to 80% by weight. If the concentration of the mineral acid is lower than 30% by weight, the activity of forming carbon monoxide is low, and it is difficult to achieve the object of the present invention.

【0013】本発明において、ゼオライト系触媒を予め
鉱酸で修飾する方法としては、例えば、ゼオライト系触
媒をその使用に先立って30〜98重量%の硫酸ないし
硫酸水溶液中に20〜50℃で0.5〜24時間浸漬す
る方法、又はゼオライト系触媒を充填したカラムに30
〜98重量%の硫酸水溶液を満たし、20〜50℃で
0.5〜24時間放置した後硫酸水溶液を流出させる方
法等が挙げられる。鉱酸として塩酸又は燐酸を使用する
場合は、上記の硫酸の代わりに10〜37重量%の塩酸
又は30〜98重量%の燐酸を使用することができる。
In the present invention, as a method of modifying the zeolite-based catalyst with a mineral acid in advance, for example, prior to using the zeolite-based catalyst, 30-98% by weight sulfuric acid or an aqueous sulfuric acid solution at 20-50 ° C. Immersion method for 5 to 24 hours, or 30 to a column filled with a zeolite catalyst.
A method of filling with an aqueous solution of sulfuric acid of about 98% by weight, leaving the mixture at 20 to 50 ° C. for 0.5 to 24 hours, and then flowing out the aqueous solution of sulfuric acid. When hydrochloric acid or phosphoric acid is used as the mineral acid, 10 to 37% by weight of hydrochloric acid or 30 to 98% by weight of phosphoric acid can be used instead of the above sulfuric acid.

【0014】本発明において用いられる蟻酸は市販品
(例えば、広栄株式会社製)をそのまま使用することが
できる。使用時の蟻酸の濃度は特に限定されるものでは
ないが、40〜100重量%の蟻酸ないし蟻酸水溶液を
用いると効率的に反応を行うことができる。濃度が40
重量%未満となると、蟻酸以外の残りの部分は水である
ため、加熱に多量のエネルギーを要するので得策ではな
い。
As the formic acid used in the present invention, a commercial product (for example, manufactured by Koei Co., Ltd.) can be used as it is. The concentration of formic acid at the time of use is not particularly limited, but if 40 to 100% by weight of formic acid or an aqueous solution of formic acid is used, the reaction can be carried out efficiently. Concentration 40
When the amount is less than% by weight, the remaining portion other than formic acid is water, so that a large amount of energy is required for heating.

【0015】本発明における反応は気化した蟻酸を前記
のように予め鉱酸で修飾した触媒と接触させ、加熱分解
することにより行う。反応器としては反応釜や触媒を充
填した塔が用いられる。触媒と蟻酸を反応釜に仕込み、
加熱することにより一酸化炭素を発生させてもよいが、
反応効率を考慮すると触媒を充填した塔に蟻酸の蒸気を
通気する方が好ましい。この場合、1塔式の反応器に蟻
酸を通してもよいし、多管式の反応器を用いてもよい。
特に、多管式の反応器ではガス通の片流れが防止でき、
さらに加熱のための伝熱面積を確保できるので好まし
い。
The reaction in the present invention is carried out by bringing vaporized formic acid into contact with a catalyst previously modified with a mineral acid as described above, followed by thermal decomposition. As the reactor, a reaction vessel or a tower filled with a catalyst is used. Charge the catalyst and formic acid into the reactor,
Although carbon monoxide may be generated by heating,
In consideration of reaction efficiency, it is preferable to pass formic acid vapor through the column packed with the catalyst. In this case, formic acid may be passed through a single-column reactor, or a multitubular reactor may be used.
In particular, in a multi-tube reactor, one-sided flow of gas can be prevented,
Further, a heat transfer area for heating can be secured, which is preferable.

【0016】本触媒を用いる反応は比較的低温で進み、
反応温度は通常、110〜150℃、好ましくは120
〜150℃である。反応温度が110℃未満になると反
応が進み難くなり、転化率が低くなるので好ましくな
く、150℃を越えると副反応が生じ、一酸化炭素中の
水素及びメタン濃度が高くなる傾向が現れるので好まし
くない。
The reaction using the present catalyst proceeds at a relatively low temperature,
The reaction temperature is usually 110-150 ° C., preferably 120
150150 ° C. When the reaction temperature is lower than 110 ° C., the reaction becomes difficult to proceed, and the conversion becomes low, which is not preferable. When it exceeds 150 ° C., a side reaction occurs, and the hydrogen and methane concentrations in carbon monoxide tend to increase. Absent.

【0017】本発明で用いる反応器の材質としては、蟻
酸および一酸化炭素で腐食を受けず、かつ、反応に影響
を及ぼさないものが求められるが、その要件を満たすも
のとして炭素等の非金属材料を好適に用いることができ
る。また、110〜150℃の比較的低温で反応が進行
するため、グラスライニングによる機器の使用が可能で
ある。
The material of the reactor used in the present invention is required to be one which is not corroded by formic acid and carbon monoxide and does not affect the reaction. Materials can be suitably used. In addition, since the reaction proceeds at a relatively low temperature of 110 to 150 ° C., it is possible to use equipment using glass lining.

【0018】本反応で得られた一酸化炭素中には不純物
として水および極微量の水素、二酸化炭素およびメタン
が含まれている。このガスにさらに精製工程を加えて高
純度の一酸化炭素を得る方法としては、公知の方法の組
み合わせを用いることが可能である。その一例として、
薄い苛性ソーダで洗浄して、微量に残存する未反応の蟻
酸と二酸化炭素を取り除いた後、乾燥して水を取り除
き、高純度の一酸化炭素を得る方法が挙げられる。この
ようにして得られる一酸化炭素の純度は99.99%以
上であり、半導体製造分野のみならず種々の用途に利用
可能である。
The carbon monoxide obtained by this reaction contains water and trace amounts of hydrogen, carbon dioxide and methane as impurities. As a method for obtaining high-purity carbon monoxide by further adding a purification step to this gas, a combination of known methods can be used. As an example,
After removing trace amounts of unreacted formic acid and carbon dioxide by washing with a thin sodium hydroxide solution, drying and removing water to obtain high-purity carbon monoxide. The purity of carbon monoxide obtained in this way is 99.99% or more, and it can be used not only in the semiconductor manufacturing field but also for various uses.

【0019】[0019]

【実施例】以下に実施例および比較例を挙げて本発明を
さらに詳しく説明するが、本発明はここに示す実施例等
によりなんら制限をうけるものではない。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited by the examples and the like shown here.

【0020】実施例1 内径2.5cm、長さ60cmのカラムにH−モルデナ
イト(Si/Al 原子比7.6 )を11cmの長さに充填し
た。用いた触媒は50mlである。このカラムに予め7
0重量%の硫酸溶液を満たし、40℃で約2時間触媒と
接触させた。硫酸をカラムより流出させた後、次いで、
88重量%の蟻酸水溶液を前記カラムの前段に設けた気
化器を通して、130℃の蒸気として45g/hの速度
で反応器上部に送り込んだ。反応は外部を加熱して13
0℃にて行った。
Example 1 A column having an inner diameter of 2.5 cm and a length of 60 cm was filled with H-mordenite (Si / Al atomic ratio: 7.6) to a length of 11 cm. The catalyst used is 50 ml. 7
A 0% by weight sulfuric acid solution was filled and contacted with the catalyst at 40 ° C. for about 2 hours. After allowing sulfuric acid to flow out of the column,
An 88% by weight aqueous solution of formic acid was fed into the upper part of the reactor at a rate of 45 g / h as a vapor at 130 ° C. through a vaporizer provided in the preceding stage of the column. The reaction is carried out by heating the outside 13
Performed at 0 ° C.

【0021】反応器下部より反応ガスを取り出して分析
を行い、反応の転化率、選択率を決定した。蟻酸の転化
率は未反応の蟻酸を定量することにより求め、一酸化炭
素への選択率は生成する水素の量をガスクロマトグラフ
質量分析計(GC−MS)で定量することにより求め
た。その結果、蟻酸の転化率99.9%、一酸化炭素へ
の選択率99.99%以上で反応が進んでいた。
The reaction gas was taken out from the lower part of the reactor and analyzed, and the conversion and selectivity of the reaction were determined. The conversion of formic acid was determined by quantifying unreacted formic acid, and the selectivity to carbon monoxide was determined by quantifying the amount of generated hydrogen with a gas chromatograph mass spectrometer (GC-MS). As a result, the reaction proceeded with a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more.

【0022】得られた反応ガスを10%苛性ソーダ水溶
液で洗浄して微量に含まれる二酸化炭素を除去し、さら
に水で洗浄した。このガスをゼオライトに通して乾燥し
た。この結果99.99%以上の高純度の一酸化炭素が
得られた。このガス中には不純物として水素が0.2p
pm、メタンが0.4ppm含まれていた。
The obtained reaction gas was washed with a 10% aqueous sodium hydroxide solution to remove a trace amount of carbon dioxide, and further washed with water. The gas was dried over zeolite. As a result, high purity carbon monoxide of 99.99% or more was obtained. This gas contains 0.2p of hydrogen as an impurity.
pm and 0.4 ppm of methane.

【0023】実施例2 88重量%の蟻酸水溶液に替えて70重量%の蟻酸水溶
液を原料として用いた以外は、実施例1と同様に反応を
行った。その結果、蟻酸の転化率99.9%、一酸化炭
素への選択率99.99%以上で反応が進んでいた。実
施例1と同様に精製の処理を行った結果、99.99%
以上の高純度の一酸化炭素が得られ、その中には水素が
0.2ppm、メタンが0.4ppm含まれていた。
Example 2 A reaction was conducted in the same manner as in Example 1 except that an aqueous solution of 70% by weight of formic acid was used as a raw material instead of the aqueous solution of formic acid of 88% by weight. As a result, the reaction proceeded with a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing purification treatment in the same manner as in Example 1, 99.99%
The above high-purity carbon monoxide was obtained, and contained 0.2 ppm of hydrogen and 0.4 ppm of methane.

【0024】実施例3 反応温度を150℃とした以外は、実施例2と同様に反
応を行った。その結果、蟻酸の転化率99.9%、一酸
化炭素への選択率99.99%以上で反応が進んでい
た。実施例1と同様に精製の処理を行った結果、99.
99%以上の高純度の一酸化炭素が得られ、その中には
水素が0.2ppm、メタンが0.4ppm含まれてい
た。
Example 3 A reaction was carried out in the same manner as in Example 2 except that the reaction temperature was changed to 150 ° C. As a result, the reaction proceeded with a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing purification treatment in the same manner as in Example 1, 99.
High-purity carbon monoxide of 99% or more was obtained, and contained 0.2 ppm of hydrogen and 0.4 ppm of methane.

【0025】実施例4 触媒としてH−ZSM−5を用いた以外は、実施例1と
同様に行った。その結果、蟻酸の転化率99.9%、一
酸化炭素への選択率99.99%以上で反応が進んでい
た。実施例1と同様に精製の処理を行った結果、99.
99%以上の高純度の一酸化炭素が得られ、その中には
水素が0.3ppm、メタンが0.5ppm含まれてい
た。
Example 4 The same procedure as in Example 1 was carried out except that H-ZSM-5 was used as a catalyst. As a result, the reaction proceeded with a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. As a result of performing purification treatment in the same manner as in Example 1, 99.
High-purity carbon monoxide of 99% or more was obtained, and contained 0.3 ppm of hydrogen and 0.5 ppm of methane.

【0026】実施例5 実施例1に引き続き同条件で反応を70日間(1680時
間)継続した。70日後の蟻酸の転化率は99.9%、
一酸化炭素への選択率は99.99%であり、触媒の経
時的な劣化は特に認められなかった。実施例1と同様に
精製の処理を行った結果、99.99%以上の高純度の
一酸化炭素が連続して得られ、その中には水素が0.2
ppm、メタンが0.4ppm含まれていた。
Example 5 Following Example 1, the reaction was continued under the same conditions for 70 days (1680 hours). After 70 days, the conversion of formic acid is 99.9%,
The selectivity to carbon monoxide was 99.99%, and no particular deterioration of the catalyst over time was observed. As a result of performing the purification treatment in the same manner as in Example 1, 99.99% or more of high-purity carbon monoxide was continuously obtained, in which hydrogen contained 0.2%.
ppm and methane were contained in 0.4 ppm.

【0027】比較例1 内径2.5cm、長さ60cmのカラムにH−モルデナ
イト(Si/Al 原子比7.6 )を11cmの長さに充填し
た。用いた触媒は50mlである。次いで、88重量%
の蟻酸水溶液を前記カラムの前段に設けた気化器を通し
て130℃の蒸気として45g/hの速度で反応器上部
に送り込んだ。反応は外部を加熱して130℃にて行っ
た。反応器下部より反応ガスを取り出して分析を行い、
反応の転化率、選択率を決定した。蟻酸の転化率は未反
応の蟻酸を定量することにより求め、一酸化炭素への選
択率は生成する水素の量をガスクロマトグラフ質量分析
計(GC−MS)で定量することにより求めた。その結
果、蟻酸の転化率10%、一酸化炭素への選択率99.
99%以上で反応が進んでいた。得られた反応ガスを1
0%苛性ソーダ水溶液で洗浄して微量に含まれる二酸化
炭素を除去し、さらに水で洗浄した。このガスをゼオラ
イトに通して乾燥した。この結果99.99%以上の高
純度の一酸化炭素が得られた。このガス中には不純物と
して水素が5ppm、メタンが2ppm含まれていた。
Comparative Example 1 A column having an inner diameter of 2.5 cm and a length of 60 cm was filled with H-mordenite (Si / Al atomic ratio: 7.6) to a length of 11 cm. The catalyst used is 50 ml. Then, 88% by weight
Of formic acid aqueous solution was fed into the upper part of the reactor at a rate of 45 g / h as a vapor at 130 ° C. through a vaporizer provided in the preceding stage of the column. The reaction was performed at 130 ° C. by heating the outside. Take out the reaction gas from the lower part of the reactor and analyze it,
The conversion and selectivity of the reaction were determined. The conversion of formic acid was determined by quantifying unreacted formic acid, and the selectivity to carbon monoxide was determined by quantifying the amount of generated hydrogen with a gas chromatograph mass spectrometer (GC-MS). As a result, the conversion of formic acid was 10% and the selectivity to carbon monoxide was 99.99%.
The reaction proceeded at 99% or more. The obtained reaction gas is 1
The resultant was washed with a 0% aqueous sodium hydroxide solution to remove trace amounts of carbon dioxide, and further washed with water. The gas was dried over zeolite. As a result, high purity carbon monoxide of 99.99% or more was obtained. This gas contained 5 ppm of hydrogen and 2 ppm of methane as impurities.

【0028】比較例2 内径2.5cm、長さ60cmのカラムにH−モルデナ
イト(Si/Al 原子比7.6 )を11cmの長さに充填し
た。用いた触媒は50mlである。次いで、96重量%
の硫酸を88重量%の蟻酸水溶液に対して0.5重量%
加えたものを、前記カラムの前段に設けた気化器を通し
て130℃の蒸気として45g/hの速度で反応器上部
に送り込んだ。反応は外部を加熱して250℃にて行っ
た。反応器下部より反応ガスを取り出して分析を行った
結果、蟻酸の転化率99.9%、一酸化炭素への選択率
99.99%以上で反応が進んでいた。得られた反応ガ
スを10%苛性ソーダ水溶液で洗浄して微量に含まれる
二酸化炭素を除去し、さらに水で洗浄した。このガスを
ゼオライトに通して乾燥した。この結果99.99%以
上の高純度の一酸化炭素が得られた。このガス中には不
純物として水素が1.6ppm、メタンが1.2ppm
含まれていた。
Comparative Example 2 A column having an inner diameter of 2.5 cm and a length of 60 cm was filled with H-mordenite (Si / Al atomic ratio: 7.6) to a length of 11 cm. The catalyst used is 50 ml. Then, 96% by weight
0.5% by weight of sulfuric acid in 88% by weight of formic acid aqueous solution
The added product was sent to the upper part of the reactor at a rate of 45 g / h as vapor at 130 ° C. through a vaporizer provided in the preceding stage of the column. The reaction was carried out at 250 ° C. by heating the outside. The reaction gas was taken out from the lower part of the reactor and analyzed, and as a result, the reaction was proceeding at a conversion of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more. The obtained reaction gas was washed with a 10% aqueous solution of caustic soda to remove a trace amount of carbon dioxide, and further washed with water. The gas was dried over zeolite. As a result, high purity carbon monoxide of 99.99% or more was obtained. This gas contains 1.6 ppm of hydrogen and 1.2 ppm of methane as impurities.
Was included.

【0029】比較例3 反応温度を225℃とした以外は、実施例1と同様に行
った。その結果、蟻酸の転化率99%、一酸化炭素への
選択率99.99%以上で反応が進んでいた。実施例1
と同様に精製の処理を行った結果、99.99%以上の
高純度の一酸化炭素が得られ、その中には水素が15p
pm、メタンが5ppm含まれていた。
Comparative Example 3 The procedure was as in Example 1, except that the reaction temperature was 225 ° C. As a result, the reaction proceeded at a conversion of formic acid of 99% and a selectivity to carbon monoxide of 99.99% or more. Example 1
As a result of performing the purification treatment in the same manner as described above, high-purity carbon monoxide having a purity of 99.99% or more was obtained.
pm and 5 ppm of methane.

【0030】[0030]

【発明の効果】蟻酸をゼオライト系触媒で触媒的に分解
して一酸化炭素を得るに際し、予め鉱酸で修飾したゼオ
ライト系触媒を用いて反応を行うことにより、低い反応
温度でしかも高い選択率で反応が進むため、水素やメタ
ンの含量が低い高純度の一酸化炭素を工業的に有利に得
ることができる。また、本発明の方法においてH−モル
デナイトおよびH−ZSM−5を触媒として用いた場
合、2ヶ月以上の期間にわたって高転化率、高選択率を
保持して反応を継続することができる。
According to the present invention, when formic acid is catalytically decomposed with a zeolite-based catalyst to obtain carbon monoxide, the reaction is carried out using a zeolite-based catalyst which has been modified with a mineral acid in advance, thereby achieving a low reaction temperature and a high selectivity. Therefore, high-purity carbon monoxide having a low content of hydrogen or methane can be industrially advantageously obtained. When H-mordenite and H-ZSM-5 are used as catalysts in the method of the present invention, the reaction can be continued while maintaining high conversion and high selectivity over a period of two months or more.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎本 学 兵庫県加古郡播磨町宮西346番地の1 住 友精化株式会社別府工場内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Manabu Enomoto 346-1 Miyanishi, Harima-cho, Kako-gun, Hyogo Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蟻酸を加熱分解して一酸化炭素を製造す
る方法において、予め鉱酸で修飾したゼオライト系触媒
を用い、110〜150℃において蟻酸の加熱分解反応
を行うことを特徴とする高純度一酸化炭素の製造方法。
1. A method for producing carbon monoxide by thermally decomposing formic acid, wherein a thermal decomposition reaction of formic acid is carried out at 110 to 150 ° C. using a zeolite catalyst modified in advance with a mineral acid. A method for producing pure carbon monoxide.
【請求項2】 ゼオライト系触媒がH−モルデナイト又
はH−ZSM−5である請求項1記載の製造方法。
2. The method according to claim 1, wherein the zeolite catalyst is H-mordenite or H-ZSM-5.
【請求項3】 鉱酸が硫酸である請求項1又は請求項2
記載の製造方法。
3. The method according to claim 1, wherein the mineral acid is sulfuric acid.
The manufacturing method as described.
【請求項4】 鉱酸の濃度が30〜98重量%である請
求項1〜請求項3いずれか1項に記載の製造方法。
4. The production method according to claim 1, wherein the concentration of the mineral acid is 30 to 98% by weight.
【請求項5】 ゼオライト系触媒の鉱酸による修飾が2
0〜50℃で30〜98重量%の鉱酸水溶液中に0.5
〜24時間浸漬する方法により行われるものである請求
項1〜請求項4いずれか1項に記載の製造方法。
5. The method for modifying a zeolite-based catalyst with a mineral acid is as follows:
0.5 to 0.5% in a 30 to 98% by weight aqueous solution of mineral acid at 0 to 50 ° C.
The method according to any one of claims 1 to 4, which is performed by a method of immersion for up to 24 hours.
【請求項6】 ゼオライト系触媒の鉱酸による修飾がゼ
オライト系触媒を充填したカラムに30〜98重量%の
鉱酸水溶液を満たし、20〜50℃で0.5〜24時間
放置した後鉱酸水溶液を流出させる方法により行われる
ものである請求項1〜請求項4いずれか1項に記載の製
造方法。
6. A method of modifying a zeolite-based catalyst with a mineral acid, filling a column filled with the zeolite-based catalyst with a 30 to 98% by weight aqueous solution of a mineral acid, leaving the column at 20 to 50 ° C. for 0.5 to 24 hours, and then adding the mineral acid to the column. The method according to any one of claims 1 to 4, wherein the method is carried out by flowing out an aqueous solution.
JP17854496A 1996-06-18 1996-06-18 Method for producing high purity carbon monoxide Expired - Lifetime JP3856872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17854496A JP3856872B2 (en) 1996-06-18 1996-06-18 Method for producing high purity carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17854496A JP3856872B2 (en) 1996-06-18 1996-06-18 Method for producing high purity carbon monoxide

Publications (2)

Publication Number Publication Date
JPH107413A true JPH107413A (en) 1998-01-13
JP3856872B2 JP3856872B2 (en) 2006-12-13

Family

ID=16050344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17854496A Expired - Lifetime JP3856872B2 (en) 1996-06-18 1996-06-18 Method for producing high purity carbon monoxide

Country Status (1)

Country Link
JP (1) JP3856872B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813470A1 (en) * 2013-06-14 2014-12-17 Bayer Technology Services GmbH Method for decomposition of formic acid using zeolite catalysts
JP2016185891A (en) * 2015-03-27 2016-10-27 住友精化株式会社 Production method of carbon monoxide
KR20200127225A (en) 2018-03-06 2020-11-10 스미토모 세이카 가부시키가이샤 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
WO2022209360A1 (en) * 2021-03-31 2022-10-06 住友精化株式会社 Method for producing carbon monoxide and carbon monoxide production device
CN116273143A (en) * 2023-02-22 2023-06-23 中船(邯郸)派瑞特种气体股份有限公司 Catalyst for preparing high-purity carbon monoxide by formic acid dehydration and synthetic method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813470A1 (en) * 2013-06-14 2014-12-17 Bayer Technology Services GmbH Method for decomposition of formic acid using zeolite catalysts
WO2014198859A1 (en) 2013-06-14 2014-12-18 Bayer Technology Services Gmbh Method for decomposition of formic acid using zeolite catalysts
JP2016185891A (en) * 2015-03-27 2016-10-27 住友精化株式会社 Production method of carbon monoxide
KR20200127225A (en) 2018-03-06 2020-11-10 스미토모 세이카 가부시키가이샤 Method for removing oxygen from crude carbon monoxide gas and method for purifying carbon monoxide gas
WO2022209360A1 (en) * 2021-03-31 2022-10-06 住友精化株式会社 Method for producing carbon monoxide and carbon monoxide production device
KR20230162680A (en) 2021-03-31 2023-11-28 스미토모 세이카 가부시키가이샤 Method for producing carbon monoxide, and apparatus for producing carbon monoxide
CN116273143A (en) * 2023-02-22 2023-06-23 中船(邯郸)派瑞特种气体股份有限公司 Catalyst for preparing high-purity carbon monoxide by formic acid dehydration and synthetic method and application thereof

Also Published As

Publication number Publication date
JP3856872B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CN1895776B (en) Catalyst for producing dimethyl ether by methanol liquid-phase or mixed-phase dewatering method
JP4018175B2 (en) Method for producing hydrogen rich gas
BRPI0721008A2 (en) METHOD FOR PREPARING ACRYLIC ACID FROM GLYCEROL
TW200524821A (en) Process for the purification of NF3
CN111233653A (en) Economical and efficient perfluoronitrile and perfluoroketone co-production process and device
RU99126656A (en) METHOD FOR Phenol and Acetone Production Using Acid Catalytic Decomposition of Cumene Hydroperoxide
JPH107413A (en) Production of highly pure carbon monoxide
JP6396246B2 (en) Carbon monoxide production method
CN102153439A (en) Process for producing high-purity methane chloride
JP3041445B2 (en) Method for producing high-purity carbon monoxide
JP3397370B2 (en) Method for producing high-purity carbon monoxide
US4582645A (en) Carbonate production
FR2470092A1 (en) PROCESS FOR THE PRODUCTION OF CYANHYDRIC ACID
JP3822981B2 (en) Method for producing high purity carbon monoxide
CN1384049A (en) Preparation of nitrogen trifluoride
JPH0285223A (en) Production of halogenophenol
US3409399A (en) Process for the preparation of carbonyl sulfide
US4625061A (en) Process for preparing cyanamide
JPH0859566A (en) Production of methylamines
JPS63248701A (en) Thermochemical production of hydrogen utilizing high yield decomposition of hydrogen iodide
JP2855914B2 (en) Method for producing dialkylnaphthalene
WO2023022032A1 (en) Method and apparatus for producing carbon monoxide
US5693306A (en) Production process for refined hydrogen iodide
JP2002053524A (en) Method for producing methyl methacrylate
JPH0597757A (en) Production of trifluoroacetaldehyde

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term