JP6396246B2 - Carbon monoxide production method - Google Patents

Carbon monoxide production method Download PDF

Info

Publication number
JP6396246B2
JP6396246B2 JP2015067021A JP2015067021A JP6396246B2 JP 6396246 B2 JP6396246 B2 JP 6396246B2 JP 2015067021 A JP2015067021 A JP 2015067021A JP 2015067021 A JP2015067021 A JP 2015067021A JP 6396246 B2 JP6396246 B2 JP 6396246B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
temperature
carbon monoxide
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015067021A
Other languages
Japanese (ja)
Other versions
JP2016185891A (en
Inventor
啓之 畑
啓之 畑
慎一 田井
慎一 田井
孝爾 横野
孝爾 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2015067021A priority Critical patent/JP6396246B2/en
Publication of JP2016185891A publication Critical patent/JP2016185891A/en
Application granted granted Critical
Publication of JP6396246B2 publication Critical patent/JP6396246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

本発明は一酸化炭素の製造方法に関する。さらに詳しくは、集積回路等の半導体製造分野で用いられる99.99%以上の純度を有する高純度一酸化炭素の製造方法に関する。   The present invention relates to a method for producing carbon monoxide. More particularly, the present invention relates to a method for producing high-purity carbon monoxide having a purity of 99.99% or more used in the field of semiconductor production such as integrated circuits.

高純度一酸化炭素の製造方法としては天然ガスを水蒸気改質して高濃度の一酸化炭素を発生させ、それらをさらに分離精製する方法、又は蟻酸を硫酸あるいは固体触媒を用いて分解、脱水し精製する方法等が知られている。精製工程を考慮すると蟻酸分解法の方が一酸化炭素を高い選択率で得られるために有利であるが、硫酸を用いて脱水反応を行った場合、反応で生成した水が硫酸濃度を下げるので、反応速度を維持するには多量の硫酸が必要となり、また硫酸を含む廃水の処理の面からも工業的には好ましい方法とはいえない。   As a method for producing high-purity carbon monoxide, natural gas is steam-reformed to generate high-concentration carbon monoxide, which is further separated and purified, or formic acid is decomposed and dehydrated using sulfuric acid or a solid catalyst. Methods for purification and the like are known. Considering the purification process, the formic acid decomposition method is more advantageous because carbon monoxide can be obtained with high selectivity. However, when dehydration is performed using sulfuric acid, the water produced by the reaction lowers the sulfuric acid concentration. In order to maintain the reaction rate, a large amount of sulfuric acid is required, and it is not an industrially preferable method from the viewpoint of treatment of waste water containing sulfuric acid.

一方、固定触媒を用いて蟻酸を分解する方法は、前記の問題点は生じないものの、一酸化炭素の生成反応以外に水素と二酸化炭素を生成する副反応が起こる。すなわち、蟻酸の分解反応としては、生成物として一酸化炭素と水を与える反応(主反応)と、二酸化炭素と水素を与える反応(副反応)が知られている。高純度一酸化炭素を得る目的のためには、主反応のみが選択的に進むことが望まれる。この主反応のみを選択的に進行させる手段としては、例えば、特許文献1に開示されている。この方法によると、鉱酸で修飾したゼオライトを触媒とすると、反応温度110〜150℃で選択率よく主反応が進み、高純度の一酸化炭素を得ることができる。   On the other hand, the method for decomposing formic acid using a fixed catalyst does not cause the above-mentioned problem, but a side reaction for generating hydrogen and carbon dioxide occurs in addition to the carbon monoxide production reaction. That is, as the decomposition reaction of formic acid, a reaction that gives carbon monoxide and water as products (main reaction) and a reaction that gives carbon dioxide and hydrogen (side reactions) are known. For the purpose of obtaining high purity carbon monoxide, it is desired that only the main reaction proceeds selectively. For example, Patent Document 1 discloses a means for selectively allowing only the main reaction to proceed. According to this method, when a zeolite modified with a mineral acid is used as a catalyst, the main reaction proceeds with high selectivity at a reaction temperature of 110 to 150 ° C., and high-purity carbon monoxide can be obtained.

しかしながら、本反応に用いる鉱酸修飾ゼオライトは、反応を一定温度で行う場合には長時間安定であるが、触媒温度が変化する場合には触媒に物理的な破壊、すなわち粉化、が起こり、その結果触媒寿命が短くなる。この粉化は、たとえば反応器を昼間運転・夜間休止の条件とすると、その昼夜の温度差により触媒が急激に粉化していく。   However, the mineral acid-modified zeolite used in this reaction is stable for a long time when the reaction is performed at a constant temperature, but when the catalyst temperature changes, the catalyst is physically destroyed, that is, pulverized, As a result, the catalyst life is shortened. In this pulverization, for example, when the reactor is operated under the condition of daytime operation and nighttime stop, the catalyst is rapidly pulverized due to the temperature difference between daytime and nighttime.

特許第3856872号公報Japanese Patent No. 3856872

本発明は、このような事情の下で考え出されたものであって、予め鉱酸で修飾したゼオライト系触媒を用いて蟻酸の加熱分解反応による一酸化炭素の製造方法において、間欠運転を行う場合でも触媒の熱的劣化を防止するのに適した製造方法を提供することを目的とする。   The present invention has been conceived under such circumstances, and performs intermittent operation in a method for producing carbon monoxide by a thermal decomposition reaction of formic acid using a zeolite-based catalyst previously modified with a mineral acid. Even in such a case, an object is to provide a production method suitable for preventing thermal deterioration of the catalyst.

本発明者らが、上記の粉化の原因を追求した結果、鉱酸修飾ゼオライトが加熱下に熱的に弱いわけではなく、鉱酸修飾ゼオライトは未修飾のゼオライトに比べて熱的な変化により壊れやすくなることが判明した。すなわち、本蟻酸分解触媒は触媒層温度の昇降により粉化が進み、触媒寿命が短くなる。   As a result of the pursuit of the cause of the above-mentioned powdering, the present inventors do not mean that the mineral acid-modified zeolite is thermally weak under heating, and the mineral acid-modified zeolite is thermally changed compared to the unmodified zeolite. It turned out to be fragile. That is, the formic acid decomposition catalyst is pulverized by raising and lowering the catalyst layer temperature, and the catalyst life is shortened.

そこで、本発明者らはこの問題を解決すべく鋭意検討した結果、触媒層を一定温度下に置いた場合、あるいは温度変化があってもその温度変化速度がある範囲よりも小さな場合には触媒が受けるダメージが低減できることを確認し、本発明を完成するに至った。   Therefore, as a result of intensive studies to solve this problem, the present inventors have found that the catalyst layer is placed when the catalyst layer is placed at a constant temperature, or when the temperature change rate is smaller than a certain range even if there is a temperature change. It has been confirmed that the damage received by can be reduced, and the present invention has been completed.

即ち、本発明の要旨は、蟻酸を加熱分解して一酸化炭素を製造する方法において、予め鉱酸で修飾したゼオライト系触媒を用いて110〜150℃の反応温度で蟻酸の加熱分解反応を間欠的に行い、かつ反応実施時および反応停止時を通して触媒の温度変化速度が1時間あたり60℃以内である、一酸化炭素の製造方法である。   That is, the gist of the present invention is that in the method for producing carbon monoxide by thermally decomposing formic acid, the formic acid is decomposed intermittently at a reaction temperature of 110 to 150 ° C. using a zeolite-based catalyst previously modified with mineral acid. And a method for producing carbon monoxide, wherein the temperature change rate of the catalyst is within 60 ° C. per hour throughout the reaction and during the reaction stop.

好ましくは、前記反応停止時の触媒温度が前記反応実施時の触媒温度より0〜60℃低い温度範囲にある。   Preferably, the catalyst temperature when the reaction is stopped is in a temperature range 0 to 60 ° C. lower than the catalyst temperature when the reaction is performed.

好ましくは、前記ゼオライト系触媒が鉱酸により修飾されたH−モルデナイト又はH−ZSM−5である。   Preferably, the zeolitic catalyst is H-mordenite or H-ZSM-5 modified with a mineral acid.

好ましくは、前記鉱酸が硫酸である。   Preferably, the mineral acid is sulfuric acid.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明において用いられるゼオライト系触媒としてはH−モルデナイト、H−ZSM−5、クリノプチロライト等を挙げることができ、なかでもH−モルデナイトおよびH−ZSM−5は耐酸性に優れているので本発明の目的に適した触媒である。これらのゼオライト系触媒は、市販品をそのまま使用することができる。本発明で用いるH−モルデナイト触媒としては、Si/Al原子比が約5〜約30であれば特に限定されず、天然モルデナイト、合成モルデナイトのいずれもが使用可能である。例えば、Si/Al原子比は天然物で約5、合成品で約5〜約30程度であり、いずれの比率でも触媒として用いることができる。Si/Al原子比が約5より小さいと、触媒活性が低下する傾向が生ずるため好ましくなく、約30より大きいと触媒調製が繁雑となり経済的に不利となる傾向がある。   Examples of the zeolitic catalyst used in the present invention include H-mordenite, H-ZSM-5, clinoptilolite, etc. Among them, H-mordenite and H-ZSM-5 are excellent in acid resistance. It is a catalyst suitable for the purposes of the present invention. As these zeolite-based catalysts, commercially available products can be used as they are. The H-mordenite catalyst used in the present invention is not particularly limited as long as the Si / Al atomic ratio is about 5 to about 30, and either natural mordenite or synthetic mordenite can be used. For example, the Si / Al atomic ratio is about 5 for natural products and about 5 to about 30 for synthetic products, and any ratio can be used as a catalyst. When the Si / Al atomic ratio is less than about 5, the catalyst activity tends to decrease, which is not preferable. When the Si / Al atomic ratio is more than about 30, the catalyst preparation becomes complicated and tends to be economically disadvantageous.

H−モルデナイトは通常モルデナイトを1規定程度の塩酸で処理して得られる。H−モルデナイト自体も蟻酸の分解活性を有しているがその活性が十分に発揮されるには200℃以上の高温が必要である。本発明では、H−モルデナイトを高濃度の鉱酸で修飾することにより、比較的低い温度でも反応速度と反応の選択率の両面において十分な成績が得られ、水素やメタンの生成も抑えられるという本発明の効果が達成される。   H-mordenite is usually obtained by treating mordenite with about 1 N hydrochloric acid. H-mordenite itself also has a formic acid decomposition activity, but a high temperature of 200 ° C. or higher is necessary for its activity to be fully exerted. In the present invention, by modifying H-mordenite with a high concentration of mineral acid, sufficient results can be obtained in both the reaction rate and the reaction selectivity even at relatively low temperatures, and the production of hydrogen and methane can also be suppressed. The effect of the present invention is achieved.

本発明で用いることのできる鉱酸としては、硫酸、塩酸、燐酸等を挙げることができ、なかでも価格と廃水処理の容易さの点から硫酸を好適に用いることができる。鉱酸の濃度は特に限定されるものではないが、通常30〜98重量%、好ましくは50〜80重量%で処理すればよい。鉱酸の濃度が30重量%より低いと一酸化炭素の生成活性が低くなり本発明の目的の達成が困難となる。   Examples of the mineral acid that can be used in the present invention include sulfuric acid, hydrochloric acid, phosphoric acid and the like. Among them, sulfuric acid can be suitably used from the viewpoint of cost and ease of wastewater treatment. The concentration of the mineral acid is not particularly limited, but is usually 30 to 98% by weight, preferably 50 to 80% by weight. When the concentration of the mineral acid is lower than 30% by weight, the carbon monoxide production activity is low, and it is difficult to achieve the object of the present invention.

本発明において、ゼオライト系触媒を予め鉱酸で修飾する方法としては、例えば、ゼオライト系触媒をその使用に先立って30〜98重量%の硫酸ないし硫酸水溶液中に20〜50℃で0.5〜24時間浸漬する方法、又はゼオライト系触媒を充填したカラムに30〜98重量%の硫酸水溶液を満たし、20〜50℃で0.5〜24時間放置した後硫酸水溶液を流出させる方法等が挙げられる。鉱酸として塩酸又は燐酸を使用する場合は、上記の硫酸の代わりに10〜37重量%の塩酸又は30〜98重量%の燐酸を使用することができる。   In the present invention, as a method of modifying the zeolitic catalyst with a mineral acid in advance, for example, prior to its use, the zeolitic catalyst is added to a 30 to 98 wt% sulfuric acid or sulfuric acid aqueous solution at 20 to 50 ° C. for 0.5 to 0.5%. Examples include a method of immersing for 24 hours, or a method in which a column packed with a zeolite catalyst is filled with 30 to 98% by weight sulfuric acid aqueous solution and left at 20 to 50 ° C. for 0.5 to 24 hours and then the sulfuric acid aqueous solution is allowed to flow out. . When hydrochloric acid or phosphoric acid is used as the mineral acid, 10 to 37% by weight hydrochloric acid or 30 to 98% by weight phosphoric acid can be used in place of the sulfuric acid.

本発明において用いられる蟻酸は市販品(例えば、広栄株式会社製)をそのまま使用することができる。使用時の蟻酸の濃度は特に限定されるものではないが、40〜100重量%の蟻酸ないし蟻酸水溶液を用いると効率的に反応を行うことができる。濃度が40重量%未満となると、蟻酸以外の残りの部分は水であるため、加熱に多量のエネルギーを要するので得策ではない。   As the formic acid used in the present invention, a commercially available product (for example, manufactured by Guangei Co., Ltd.) can be used as it is. The concentration of formic acid at the time of use is not particularly limited, but the reaction can be efficiently carried out by using 40 to 100% by weight of formic acid or formic acid aqueous solution. When the concentration is less than 40% by weight, since the remaining part other than formic acid is water, a large amount of energy is required for heating, which is not a good idea.

本発明における反応は気化した蟻酸を前記のように予め鉱酸で修飾した触媒と接触させ、加熱分解することにより行う。反応器としては反応釜や触媒を充填した塔が用いられる。触媒と蟻酸を反応釜に仕込み、加熱することにより一酸化炭素を発生させてもよいが、反応効率を考慮すると触媒を充填した塔に蟻酸の蒸気を通気する方が好ましい。この場合、1塔式の反応器に蟻酸を通してもよいし、多管式の反応器を用いてもよい。特に、多管式の反応器ではガス通の片流れが防止でき、さらに加熱のための伝熱面積を確保できるので好ましい。   The reaction in the present invention is carried out by bringing vaporized formic acid into contact with a catalyst previously modified with a mineral acid as described above and thermally decomposing it. As the reactor, a reaction kettle or a column packed with a catalyst is used. Carbon monoxide may be generated by charging the catalyst and formic acid into a reaction kettle and heating, but considering the reaction efficiency, it is preferable to ventilate formic acid through a column packed with catalyst. In this case, formic acid may be passed through a one-column reactor, or a multitubular reactor may be used. In particular, a multi-tubular reactor is preferable because it can prevent a single flow of gas and can secure a heat transfer area for heating.

本触媒を用いる反応は比較的低温で進み、反応温度は通常、110〜150℃、好ましくは120〜150℃である。反応温度が110℃未満になると反応が進み難くなり、転化率が低くなるので好ましくなく、150℃を越えると副反応が生じ、一酸化炭素中の水素及びメタン濃度が高くなる傾向が現れるので好ましくない。   The reaction using this catalyst proceeds at a relatively low temperature, and the reaction temperature is usually 110 to 150 ° C, preferably 120 to 150 ° C. If the reaction temperature is less than 110 ° C., the reaction is difficult to proceed and the conversion rate is low, which is not preferable. If the reaction temperature exceeds 150 ° C., side reactions occur and hydrogen and methane concentrations in carbon monoxide tend to increase, which is preferable. Absent.

本発明で用いる反応器の材質としては、蟻酸および一酸化炭素で腐食を受けず、かつ、反応に影響を及ぼさないものが求められるが、その要件を満たすものとして炭素等の非金属材料を好適に用いることができる。また、110〜150℃の比較的低温で反応が進行するため、グラスライニングによる機器の使用が可能である。   As a material for the reactor used in the present invention, a material that is not corroded by formic acid and carbon monoxide and does not affect the reaction is required, but a non-metallic material such as carbon is suitable for satisfying the requirements. Can be used. In addition, since the reaction proceeds at a relatively low temperature of 110 to 150 ° C., it is possible to use the equipment by glass lining.

本反応の一例として、H−モルデナイトを硫酸処理した修飾ゼオライト触媒を用いて140℃の温度で反応を行うと、1ヶ月間の連続運転でも触媒は粉化することなく、触媒活性を保った。一方、同温度で昼間8時間運転し、その後、触媒層の温度を1時間で70℃まで低下(温度変化速度は1時間あたり70℃)させ、その後、反応器は翌朝までそのままの状態とし、次の朝、再度触媒槽の温度を1時間かけて室温付近から140℃まで約1.5時間かけて昇温(温度変化速度は1時間あたり47℃)させた後、反応を開始するという操作を2週間続けると触媒に粉化が見られた。   As an example of this reaction, when the reaction was carried out at a temperature of 140 ° C. using a modified zeolite catalyst obtained by treating H-mordenite with sulfuric acid, the catalyst was maintained without being pulverized even during continuous operation for one month. On the other hand, it was operated at the same temperature for 8 hours in the daytime, and then the temperature of the catalyst layer was decreased to 70 ° C. in 1 hour (temperature change rate was 70 ° C. per hour), and then the reactor was left as it was until the next morning, The next morning, the temperature of the catalyst tank is increased again from around room temperature to 140 ° C over 1 hour over about 1.5 hours (temperature change rate is 47 ° C per hour), and then the reaction is started. For 2 weeks, the catalyst was pulverized.

また、この知見の応用として、運転休止時においても、触媒層の温度を反応時の温度と同じままにしても、触媒は粉化することなくその活性を保った。   Further, as an application of this knowledge, even when the operation was stopped, the catalyst maintained its activity without being pulverized even if the temperature of the catalyst layer was kept the same as the temperature during the reaction.

本反応で得られた一酸化炭素中には不純物として水および極微量の水素、二酸化炭素およびメタンが含まれている。本発明の方法に従った触媒層の温度管理をすることにより微量不純物の生成量に変化は認められなかった。このガスにさらに精製工程を加えて高純度の一酸化炭素を得る方法としては、公知の方法の組み合わせを用いることが可能である。その一例として、薄い苛性ソーダで洗浄して、微量に残存する未反応の蟻酸と二酸化炭素を取り除いた後、乾燥して水を取り除き、高純度の一酸化炭素を得る方法が挙げられる。このようにして得られる一酸化炭素の純度は99.99%以上であり、半導体製造分野のみならず種々の用途に利用可能である。   Carbon monoxide obtained by this reaction contains water and trace amounts of hydrogen, carbon dioxide and methane as impurities. By controlling the temperature of the catalyst layer according to the method of the present invention, no change was observed in the amount of trace impurities generated. As a method for obtaining a high purity carbon monoxide by further adding a purification step to this gas, a combination of known methods can be used. As an example, there is a method of washing with thin caustic soda to remove trace amounts of unreacted formic acid and carbon dioxide, and then drying to remove water to obtain high purity carbon monoxide. The purity of the carbon monoxide obtained in this way is 99.99% or more and can be used not only for the semiconductor manufacturing field but also for various applications.

以下に実施例および比較例を挙げて本発明をさらに詳しく説明するが、本発明はここに示す実施例等によりなんら制限をうけるものではない。   The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to the examples and the like shown here.

〔実施例1〕
内径2.5cm、長さ60cmのカラムにH−モルデナイト(Si/Al原子比7.6 )を11cmの長さに充填した。用いた触媒は50mlである。このカラムに予め70重量%の硫酸溶液を満たし、40℃で約2時間触媒と接触させた。硫酸をカラムより流出させた後、次いで、88重量%の蟻酸水溶液を前記カラムの前段に設けた気化器を通して、130℃の蒸気として45g/hの速度で反応器上部に送り込んだ。反応は外部を加熱して130℃にて行った。この反応を8時間行い、その後、蟻酸水溶液の供給を止め、反応を停止した。反応停止時間は16時間とし、その間も触媒層の温度は130℃に保った。翌日、前日と同じ条件で反応を開始し、前日と同様8時間の反応を行った。この操作を2週間繰り返した。
[Example 1]
A column having an inner diameter of 2.5 cm and a length of 60 cm was packed with H-mordenite (Si / Al atomic ratio of 7.6) to a length of 11 cm. The catalyst used is 50 ml. The column was prefilled with 70 wt% sulfuric acid solution and contacted with the catalyst at 40 ° C for about 2 hours. After the sulfuric acid was allowed to flow out of the column, an 88% by weight aqueous formic acid solution was then sent to the top of the reactor as a steam at 130 ° C. at a rate of 45 g / h through a vaporizer provided at the front stage of the column. The reaction was performed at 130 ° C. with the outside heated. This reaction was performed for 8 hours, and then the supply of formic acid aqueous solution was stopped to stop the reaction. The reaction stop time was 16 hours, and the temperature of the catalyst layer was kept at 130 ° C. during that time. The next day, the reaction was started under the same conditions as the previous day, and the reaction was carried out for 8 hours as in the previous day. This operation was repeated for 2 weeks.

上記のように間欠的な反応を2週間続けた後、反応器下部より反応ガスを取り出して分析を行い、反応の転化率、選択率を決定した。蟻酸の転化率は未反応の蟻酸を定量することにより求め、一酸化炭素への選択率は生成する水素の量をガスクロマトグラフ質量分析計(GC−MS)で定量することにより求めた。その結果、蟻酸の転化率99.9%、一酸化炭素への選択率99.99%以上で反応が進んでいた。   After intermittent reaction as described above for 2 weeks, the reaction gas was taken out from the lower part of the reactor and analyzed, and the conversion rate and selectivity of the reaction were determined. The conversion rate of formic acid was determined by quantifying unreacted formic acid, and the selectivity to carbon monoxide was determined by quantifying the amount of hydrogen produced with a gas chromatograph mass spectrometer (GC-MS). As a result, the reaction proceeded at a conversion rate of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more.

得られた反応ガスを10%苛性ソーダ水溶液で洗浄して微量に含まれる二酸化炭素を除去し、さらに水で洗浄した。このガスをゼオライトに通して乾燥した。この結果99.99%以上の高純度の一酸化炭素が得られた。このガス中には不純物として水素が0.2ppm、メタンが0.4ppm含まれていた。また、2週間経過後の触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.02%の触媒由来の粉末を認めた。   The obtained reaction gas was washed with a 10% aqueous sodium hydroxide solution to remove carbon dioxide contained in a trace amount, and further washed with water. This gas was passed through the zeolite and dried. As a result, high purity carbon monoxide of 99.99% or more was obtained. This gas contained 0.2 ppm hydrogen and 0.4 ppm methane as impurities. Further, when the catalyst after two weeks passed was taken out and sieved with a 20 mesh sieve, 0.02% by weight of catalyst-derived powder was recognized under the sieve.

〔実施例2〕
実施例1と同じ条件での反応を8時間行い、その後、触媒層は水冷にて90分で60℃まで冷却した(温度変化速度は1時間あたり47℃)。その後、触媒層の温度を60℃に保ち、翌日、所定の反応温度130℃まで90分で昇温し(温度変化速度は1時間あたり47℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返したが、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.02%の触媒由来の粉末を認めた。
[Example 2]
The reaction was carried out for 8 hours under the same conditions as in Example 1, and then the catalyst layer was cooled to 60 ° C. in 90 minutes by water cooling (temperature change rate was 47 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 60 ° C., and the next day, the temperature was raised to a predetermined reaction temperature of 130 ° C. in 90 minutes (the temperature change rate was 47 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. This operation was repeated for 2 weeks, but no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20 mesh sieve, 0.02% by weight of the catalyst-derived powder was recognized under the sieve.

〔実施例3〕
実施例1と同じ条件での反応を8時間行い、その後、触媒層は水冷にて60分で70℃まで冷却した(温度変化速度は1時間あたり60℃)。その後、触媒層の温度を60℃に保ち、翌日、所定の反応温度130℃まで60分で昇温し(温度変化速度は1時間あたり60℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返したが、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.04%の触媒由来の粉末を認めた。
Example 3
The reaction was carried out for 8 hours under the same conditions as in Example 1, and then the catalyst layer was cooled to 70 ° C. in 60 minutes by water cooling (temperature change rate was 60 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 60 ° C., and the temperature was raised to the predetermined reaction temperature of 130 ° C. in 60 minutes on the next day (the temperature change rate was 60 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. This operation was repeated for 2 weeks, but no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20 mesh sieve, 0.04% by weight of the catalyst-derived powder was observed under the sieve.

〔実施例4〕
内径2.5cm、長さ60cmのカラムにH−モルデナイト(Si/Al原子比7.6 )を11cmの長さに充填した。用いた触媒は50mlである。このカラムに予め70重量%の硫酸溶液を満たし、40℃で約2時間触媒と接触させた。硫酸をカラムより流出させた後、次いで、88重量%の蟻酸水溶液を前記カラムの前段に設けた気化器を通して、140℃の蒸気として45g/hの速度で反応器上部に送り込んだ。反応は外部を加熱して140℃にて行った。この反応を8時間行い、その後、蟻酸水溶液の供給を止め、反応を停止した。反応停止時間は16時間とし、その間も触媒層の温度は140℃に保った。翌日、前日と同じ条件で反応を開始し、前日と同様8時間の反応を行った。この操作を2週間繰り返した。
Example 4
A column having an inner diameter of 2.5 cm and a length of 60 cm was packed with H-mordenite (Si / Al atomic ratio of 7.6) to a length of 11 cm. The catalyst used is 50 ml. The column was prefilled with 70 wt% sulfuric acid solution and contacted with the catalyst at 40 ° C for about 2 hours. After the sulfuric acid was allowed to flow out of the column, an 88 wt% formic acid aqueous solution was then sent to the top of the reactor as a steam at 140 ° C. at a rate of 45 g / h through a vaporizer provided at the front stage of the column. The reaction was carried out at 140 ° C. with the outside heated. This reaction was performed for 8 hours, and then the supply of formic acid aqueous solution was stopped to stop the reaction. The reaction stop time was 16 hours, and the temperature of the catalyst layer was kept at 140 ° C. during that time. The next day, the reaction was started under the same conditions as the previous day, and the reaction was carried out for 8 hours as in the previous day. This operation was repeated for 2 weeks.

上記のように間欠的な反応を2週間続けた後、反応器下部より反応ガスを取り出して分析を行い、反応の転化率、選択率を決定した。蟻酸の転化率は未反応の蟻酸を定量することにより求め、一酸化炭素への選択率は生成する水素の量をガスクロマトグラフ質量分析計(GC−MS)で定量することにより求めた。その結果、蟻酸の転化率99.9%、一酸化炭素への選択率99.99%以上で反応が進んでいた。   After intermittent reaction as described above for 2 weeks, the reaction gas was taken out from the lower part of the reactor and analyzed, and the conversion rate and selectivity of the reaction were determined. The conversion rate of formic acid was determined by quantifying unreacted formic acid, and the selectivity to carbon monoxide was determined by quantifying the amount of hydrogen produced with a gas chromatograph mass spectrometer (GC-MS). As a result, the reaction proceeded at a conversion rate of formic acid of 99.9% and a selectivity to carbon monoxide of 99.99% or more.

得られた反応ガスを10%苛性ソーダ水溶液で洗浄して微量に含まれる二酸化炭素を除去し、さらに水で洗浄した。このガスをゼオライトに通して乾燥した。この結果99.99%以上の高純度の一酸化炭素が得られた。このガス中には不純物として水素が0.3ppm、メタンが0.4ppm含まれていた。また、2週間経過後の触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.03%の触媒由来の粉末を認めた。   The obtained reaction gas was washed with a 10% aqueous sodium hydroxide solution to remove carbon dioxide contained in a trace amount, and further washed with water. This gas was passed through the zeolite and dried. As a result, high purity carbon monoxide of 99.99% or more was obtained. This gas contained 0.3 ppm of hydrogen and 0.4 ppm of methane as impurities. Further, when the catalyst after two weeks passed was taken out and sieved with a 20 mesh sieve, 0.03% by weight of catalyst-derived powder was recognized under the sieve.

〔実施例5〕
実施例4と同じ条件での反応を8時間行い、その後、触媒層は水冷にて90分で70℃まで冷却した(温度変化速度は1時間あたり47℃)。その後、触媒層の温度を70℃に保ち、翌日、所定の反応温度140℃まで90分で昇温し(温度変化速度は1時間あたり47℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返したが、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.03%の触媒由来の粉末を認めた。
Example 5
The reaction was carried out for 8 hours under the same conditions as in Example 4. Thereafter, the catalyst layer was cooled to 70 ° C. in 90 minutes by water cooling (temperature change rate was 47 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 70 ° C., and the temperature was raised to the predetermined reaction temperature of 140 ° C. in 90 minutes on the next day (the temperature change rate was 47 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. This operation was repeated for 2 weeks, but no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20-mesh sieve, 0.03% by weight of the catalyst-derived powder was recognized under the sieve.

〔実施例6〕
実施例4と同じ条件での反応を8時間行い、その後、触媒層は水冷にて60分で80℃まで冷却した(温度変化速度は1時間あたり60℃)。その後、触媒層の温度を80℃に保ち、翌日、所定の反応温度140℃まで60分で昇温し(温度変化速度は1時間あたり60℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返したが、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.05%の触媒由来の粉末を認めた。さらに、この操作を3ヶ月繰り返したが、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.01%の触媒由来の粉末を新たに認めた。
Example 6
The reaction was carried out for 8 hours under the same conditions as in Example 4, and then the catalyst layer was cooled to 80 ° C. in 60 minutes by water cooling (temperature change rate was 60 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 80 ° C., and the next day, the temperature was raised to a predetermined reaction temperature of 140 ° C. in 60 minutes (temperature change rate was 60 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. This operation was repeated for 2 weeks, but no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20-mesh sieve, 0.05% by weight of catalyst-derived powder was recognized under the sieve. Furthermore, this operation was repeated for 3 months, but no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20 mesh sieve, 0.01% by weight of catalyst-derived powder was newly recognized under the sieve.

〔実施例7〕
触媒のみH−ZSM−5に変更した以外は、実施例1と同様に行った。その結果、反応の転化率と選択率に変化は認められなかった。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で0.02%の触媒由来の粉末を認めた。
Example 7
The same procedure as in Example 1 was performed except that only the catalyst was changed to H-ZSM-5. As a result, no change was observed in the conversion and selectivity of the reaction. When the catalyst was taken out and sieved with a 20 mesh sieve, 0.02% by weight of the catalyst-derived powder was recognized under the sieve.

〔比較例1〕
実施例1と同じ条件での反応を8時間行い、その後、触媒層は水冷にて30分で60℃まで冷却した(温度変化速度は1時間あたり140℃)。その後、触媒層の温度を60℃に保ち、翌日、所定の反応温度130℃まで30分で昇温し(温度変化速度は1時間あたり140℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返すと、蟻酸の転化率が99.4%へと低下した。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で4%の触媒由来の粉末を認めた。
[Comparative Example 1]
The reaction was carried out for 8 hours under the same conditions as in Example 1, and then the catalyst layer was cooled to 60 ° C. in 30 minutes by water cooling (temperature change rate was 140 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 60 ° C., and the temperature was raised to the predetermined reaction temperature of 130 ° C. in 30 minutes on the next day (the temperature change rate was 140 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. When this operation was repeated for 2 weeks, the conversion rate of formic acid decreased to 99.4%. When the catalyst was taken out and sieved with a 20 mesh sieve, 4% by weight of the catalyst-derived powder was recognized under the sieve.

〔比較例2〕
実施例4と同じ条件での反応を8時間行い、その後、触媒層は水冷にて60分で70℃まで冷却した(温度変化速度は1時間あたり70℃)。その後、触媒層の温度を70℃に保ち、翌日、所定の反応温度140℃まで90分で昇温し(温度変化速度は1時間あたり47℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返すと、蟻酸の転化率が99.4%へと低下した。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で2%の触媒由来の粉末を認めた。
[Comparative Example 2]
The reaction was carried out for 8 hours under the same conditions as in Example 4, and then the catalyst layer was cooled to 70 ° C. in 60 minutes by water cooling (temperature change rate was 70 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 70 ° C., and the temperature was raised to the predetermined reaction temperature of 140 ° C. in 90 minutes on the next day (the temperature change rate was 47 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. When this operation was repeated for 2 weeks, the conversion rate of formic acid decreased to 99.4%. When the catalyst was taken out and sieved with a 20-mesh sieve, 2% by weight of the catalyst-derived powder was recognized under the sieve.

〔比較例3〕
実施例4と同じ条件での反応を8時間行い、その後、触媒層は水冷にて60分で70℃まで冷却した(温度変化速度は1時間あたり70℃)。その後、触媒層の温度を70℃に保ち、翌日、所定の反応温度140℃まで60分で昇温し(温度変化速度は1時間あたり70℃)、反応を開始した。反応を停止し、その後触媒層の冷却・一定温度維持・昇温を経て反応を再開するまでの時間(反応停止時間)は、16時間であった。この操作を2週間繰り返すと、蟻酸の転化率が99.3%へと低下した。触媒を取り出して20メッシュの篩で篩うと、篩い下に重量で3%の触媒由来の粉末を認めた。
[Comparative Example 3]
The reaction was carried out for 8 hours under the same conditions as in Example 4, and then the catalyst layer was cooled to 70 ° C. in 60 minutes by water cooling (temperature change rate was 70 ° C. per hour). Thereafter, the temperature of the catalyst layer was kept at 70 ° C., and the temperature was raised to the predetermined reaction temperature of 140 ° C. in 60 minutes on the next day (the temperature change rate was 70 ° C. per hour) to start the reaction. The time from when the reaction was stopped to when the reaction was resumed after cooling the catalyst layer, maintaining a constant temperature, and raising the temperature (reaction stop time) was 16 hours. When this operation was repeated for 2 weeks, the conversion rate of formic acid decreased to 99.3%. When the catalyst was taken out and sieved with a 20-mesh sieve, 3% by weight of catalyst-derived powder was observed under the sieve.

上記の結果より、触媒に急激な温度変化を与えることは得策ではなく、触媒温度の変化速度を1時間あたり60℃以内に留めることにより、触媒の粉化は実用上問題にならない範囲に抑えられることが明らかとなった。   From the above results, it is not a good idea to give a rapid temperature change to the catalyst. By keeping the rate of change of the catalyst temperature within 60 ° C. per hour, catalyst pulverization can be suppressed within a range that does not cause a problem in practice. It became clear.

蟻酸を予め鉱酸で修飾したゼオライト系触媒で分解して一酸化炭素を得るに際し、間欠運転を行う場合でも触媒の温度変化を1時間あたり60℃以内に管理することにより、触媒の熱的劣化を防止することに成功した。本発明の温度条件下で間欠運転を繰り返した場合、2週間の期間にわたって高転化率、高選択率を保持して反応を継続することができる。   When carbon monoxide is obtained by decomposing formic acid with a zeolite catalyst that has been modified with mineral acid in advance, even if intermittent operation is performed, the temperature change of the catalyst is controlled within 60 ° C. per hour, thereby causing thermal degradation of the catalyst. Succeeded in preventing. When intermittent operation is repeated under the temperature conditions of the present invention, the reaction can be continued while maintaining a high conversion and high selectivity over a period of 2 weeks.

Claims (4)

蟻酸を加熱分解して一酸化炭素を製造する方法において、予め鉱酸で修飾したゼオライト系触媒を用いて110〜150℃の反応温度で蟻酸の加熱分解反応を間欠的に行い、かつ反応実施時および反応停止時を通して触媒の温度変化速度が1時間あたり60℃以内である、一酸化炭素の製造方法。   In the method for producing carbon monoxide by thermally decomposing formic acid, the formic acid is thermally decomposed intermittently at a reaction temperature of 110 to 150 ° C. using a zeolite catalyst previously modified with mineral acid, and the reaction is carried out. And a method for producing carbon monoxide, wherein the temperature change rate of the catalyst is within 60 ° C. per hour throughout the reaction stop. 前記反応停止時の触媒温度が前記反応実施時の触媒温度より0〜60℃低い温度範囲にある、請求項1に記載の一酸化炭素の製造方法。   The method for producing carbon monoxide according to claim 1, wherein the catalyst temperature when the reaction is stopped is in a temperature range lower by 0 to 60 ° C than the catalyst temperature when the reaction is performed. 前記ゼオライト系触媒が鉱酸により修飾されたH−モルデナイト又はH−ZSM−5である、請求項1または2に記載の一酸化炭素の製造方法。   The method for producing carbon monoxide according to claim 1 or 2, wherein the zeolitic catalyst is H-mordenite or H-ZSM-5 modified with a mineral acid. 前記鉱酸が硫酸である、請求項1ないし3のいずれかに記載の一酸化炭素の製造方法。   The method for producing carbon monoxide according to any one of claims 1 to 3, wherein the mineral acid is sulfuric acid.
JP2015067021A 2015-03-27 2015-03-27 Carbon monoxide production method Active JP6396246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067021A JP6396246B2 (en) 2015-03-27 2015-03-27 Carbon monoxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067021A JP6396246B2 (en) 2015-03-27 2015-03-27 Carbon monoxide production method

Publications (2)

Publication Number Publication Date
JP2016185891A JP2016185891A (en) 2016-10-27
JP6396246B2 true JP6396246B2 (en) 2018-09-26

Family

ID=57203336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067021A Active JP6396246B2 (en) 2015-03-27 2015-03-27 Carbon monoxide production method

Country Status (1)

Country Link
JP (1) JP6396246B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509938B (en) * 2020-04-10 2022-07-08 绿菱电子材料(天津)有限公司 Catalyst for preparing carbon monoxide and method for preparing carbon monoxide by using catalyst
WO2022270409A1 (en) * 2021-06-23 2022-12-29 住友精化株式会社 Method and device for manufacturing carbon monoxide
CN116273143A (en) * 2023-02-22 2023-06-23 中船(邯郸)派瑞特种气体股份有限公司 Catalyst for preparing high-purity carbon monoxide by formic acid dehydration and synthetic method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856872B2 (en) * 1996-06-18 2006-12-13 住友精化株式会社 Method for producing high purity carbon monoxide
JP3822981B2 (en) * 1998-07-21 2006-09-20 住友精化株式会社 Method for producing high purity carbon monoxide

Also Published As

Publication number Publication date
JP2016185891A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
KR20180030771A (en) A process for preparing a silicoaluminate form of AEI zeolite structure at high yield, and its application in catalysis
JP6396246B2 (en) Carbon monoxide production method
US10239755B2 (en) Method for preparing chlorine gas through catalytic oxidation of hydrogen chloride
CZ287493B6 (en) Regeneration and stabilization method of dehydrogenation catalyst activity and apparatus for making the same
JP2016515039A5 (en)
WO2015016217A1 (en) Method for producing acrylic acid
CA2823676A1 (en) Hydrogenation catalyst comprising nickel on carbon
TW201503956A (en) Method for regenerating catalyst for hydrogenation reaction, and method for producing hydride of polyhydric alcohol
KR101102597B1 (en) Method for regenerating heteropolyacid catalyst used in the direct preparation process of dichloropropanol from glycerol and chlorinating agent, methods for preparing dichloropropanol and epichlorohydrin comprising the method
EP2813470A1 (en) Method for decomposition of formic acid using zeolite catalysts
JP3856872B2 (en) Method for producing high purity carbon monoxide
JP2007008850A (en) Method for producing monohydroxyacetone
JP5071175B2 (en) Ethylene production method
JP4695069B2 (en) Production of 3,6-dichloro-2-trichloromethylpyridine by gas phase chlorination of 6-chloro-2-trichloromethylpyridine
RU2003130259A (en) METHOD FOR PRODUCING PHENOL BY HYDROXIDATION OF BENZENEDIOLS
WO2014002884A1 (en) Method for producing isopropanol
US2753346A (en) Huemer
JP3041445B2 (en) Method for producing high-purity carbon monoxide
CN107108475A (en) The manufacture method of acetonitrile
JP2008162908A (en) Method for producing acrolein from glycerol
JP3822981B2 (en) Method for producing high purity carbon monoxide
JP3397370B2 (en) Method for producing high-purity carbon monoxide
WO2022270409A1 (en) Method and device for manufacturing carbon monoxide
JP5069900B2 (en) Pretreatment method for acrolein production catalyst
WO2022209360A1 (en) Method for producing carbon monoxide and carbon monoxide production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250