WO2014002884A1 - Method for producing isopropanol - Google Patents

Method for producing isopropanol Download PDF

Info

Publication number
WO2014002884A1
WO2014002884A1 PCT/JP2013/067057 JP2013067057W WO2014002884A1 WO 2014002884 A1 WO2014002884 A1 WO 2014002884A1 JP 2013067057 W JP2013067057 W JP 2013067057W WO 2014002884 A1 WO2014002884 A1 WO 2014002884A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acetone
copper
isopropanol
reactor
Prior art date
Application number
PCT/JP2013/067057
Other languages
French (fr)
Japanese (ja)
Inventor
英主 大久保
正安 石橋
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2014002884A1 publication Critical patent/WO2014002884A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases

Definitions

  • the present invention relates to a method for producing isopropanol by reaction of acetone and hydrogen.
  • a method for producing isopropanol by hydrogenating acetone by catalytic reduction using hydrogen gas has been known for a long time (for example, see Patent Document 1).
  • the hydrogenation reaction of acetone is an exothermic reaction of 16.7 kcal / mol
  • the reactor is usually cooled after a part of the liquid reaction mixture discharged from the reactor is cooled.
  • Patent Document 6 a copper oxide-chromium oxide catalyst (Patent Document 6) and a copper oxide-zinc oxide-aluminum oxide catalyst (Patent Document 7) are disclosed. Since the body was by-produced, the selectivity of isopropanol was low, and there was a problem of chromium toxicity, so it was not a practical production method.
  • JP 62-12729 A Japanese Patent Laid-Open No. 2-270829 JP-A-3-133941 JP-A-3-141235 JP 2000-103751 A Japanese Patent Laid-Open No. 3-41038 JP 2010-077055 A
  • the present invention relates to a method for producing isopropanol with high selectivity by directly reacting acetone and hydrogen.
  • a preferred embodiment of the present invention aims to provide a method capable of producing isopropanol with high selectivity even at a high reaction temperature at which heat recovery is possible.
  • the present inventors filled a reactor with a solid catalyst containing at least one of copper and copper oxide and silica, and supplied a raw material containing acetone and hydrogen to the reactor.
  • isopropanol can be produced with high selectivity by carrying out a hydrogenation reaction.
  • this high selectivity enables heat recovery of the heat of reaction at a high reaction temperature of 135 ° C. or higher, preferably 140 ° C. or higher. It was found that it was maintained even if it was, and the present invention was reached.
  • 4-methyl-2-pentanol, 2-methyl-2 is obtained by performing a hydrogenation reaction using acetone and hydrogen as starting materials (raw materials) in the presence of a specific catalyst.
  • 4-pentanediol can be produced in which the production of by-products by dimerizing acetone is suppressed.
  • high selectivity is maintained even at a high reaction temperature, it is possible to efficiently recover the heat of reaction, and isopropanol can be obtained by an industrially economically advantageous method.
  • the method for producing isopropanol of the present invention is characterized in that a hydrogenation reaction of acetone is performed in the presence of a solid catalyst containing at least one of copper and copper oxide and silica using a raw material containing acetone and hydrogen.
  • the method for producing isopropanol of the present invention is a method for obtaining isopropanol by using a reactor filled with a solid catalyst containing at least one of copper and copper oxide and silica and supplying a raw material containing acetone and hydrogen to the reactor. It is. Usually, after the reaction, hydrogen gas and reaction solution are separated from the reactor through a gas-liquid separator.
  • a raw material containing acetone and hydrogen is supplied to the adiabatic reactor to obtain isopropanol.
  • hydrogen gas and a reaction liquid are passed through a gas-liquid separator. To be separated. Since the reaction is an exothermic reaction, the reaction liquid at the reactor outlet is at a temperature higher than the reactor inlet temperature.
  • the reaction heat can be recovered as water vapor. A part of the cooled reaction liquid is transferred as a circulating liquid to the reactor inlet, and the rest is sent to the purification system.
  • the reaction heat is removed by circulating a part of the reaction solution to the reactor.
  • the reaction temperature for obtaining isopropanol is usually in the range of 100 to 160 ° C. from the viewpoint of heat recovery of reaction heat described later, and the maximum temperature is 135 to 160 ° C., preferably the maximum temperature is 140 to 160 ° C. The range is maintained. More preferably, the reaction is carried out in an adiabatic reactor and the heat of reaction is removed as described above. In that case, the temperature near the reactor inlet of the adiabatic reactor has a temperature of 100 to 155 ° C., and the temperature near the reactor outlet has a higher temperature of 140 to 160 ° C. than the vicinity of the reactor inlet. Is preferred.
  • a solid catalyst containing at least one of copper and copper oxide and silica, which will be described later, is used as a catalyst that satisfies such temperature requirements. In the present invention, when an adiabatic reactor is used, the reactor has a temperature gradient.
  • a conventional solid catalyst is known to have high isopropanol selectivity at a low temperature of 130 ° C. or lower.
  • the Raney nickel catalyst disclosed in the examples of JP-A-3-133941 Patent Document 3
  • the isopropanol selectivity is close to 99.9% at a reaction temperature of 130 ° C. or lower.
  • the production method of the present invention naturally requires an isopropanol selectivity of about 99.9%, but the present invention sufficiently fulfills this requirement as disclosed in Examples of the present invention described later. It can be said that it is a manufacturing method.
  • the synthesis reaction of isopropanol by reduction of acetone is an equilibrium reaction, and the equilibrium is inclined toward the isopropanol side at the low temperature side, but the equilibrium is inclined toward the acetone side at the high temperature side. Therefore, it is known that acetone will remain in equilibrium above about 100 ° C, and the concentration of acetone increases with increasing temperature (HarryHJ. Kolb et al., J. Am. Chem. Soc., 67). , 1084 (1945)). Accordingly, the higher the reaction temperature is, the more acetone needs to be recovered by distillation or the like after the outlet of the reactor.
  • the solid catalyst used in the production method of the present invention is a catalyst containing at least one of copper and copper oxide and silica (in the following description, it may be abbreviated as “copper-silica catalyst”).
  • copper-silica catalyst As a general method for producing a copper-silica catalyst, a method of impregnating or immersing a solution containing various oxides, hydroxides, carbonates and the like containing a copper element in silica, followed by firing (impregnation method), Examples thereof include a method (coprecipitation method) in which a mixed aqueous solution of each metal salt is precipitated with a base such as ammonia or sodium carbonate and then dried and fired. After firing, copper is usually in the form of copper oxide, but it is considered that part or all of the copper oxide is in the form of copper in the hydrogenation reaction or the pre-reduction treatment step before the hydrogenation reaction.
  • the weight ratio of at least one of copper and copper oxide to silica (at least one of copper and copper oxide: silica) in the solid catalyst is usually 0.01: 1 to 10: from the viewpoint of the selectivity of the hydrogenation reaction. 1, preferably 0.1: 1 to 5: 1, more preferably 0.1: 1 to 3: 1.
  • this range is the range which calculated
  • the total amount of at least one of copper and copper oxide and silica in the solid catalyst is usually 90% by mass to 100% by mass, preferably 92% by mass to 100% by mass, particularly preferably from the viewpoint of the selectivity of the hydrogenation reaction. Is 95 to 100% by mass.
  • this range is the range which calculated
  • the solid catalyst contains at least one of copper and copper oxide and other components other than silica
  • examples of the other components include alkali metal oxides, alkaline earth metal oxides, Group 13 metal oxides of the periodic table, and the like.
  • the compound is not limited to these exemplary compounds as long as the total content of other components in the solid catalyst is less than 10% by mass.
  • the silica used as the carrier in the impregnation method can basically be any carrier obtained from silicon containing gel.
  • silica is a solid, amorphous form of hydrous silicon that is distinguished from other hydrous silicon oxides by its microporous and hydroxylated surfaces.
  • Silica usually contains a three-dimensional network of colloidal silica particles. These are generally made by acidifying an aqueous sodium silicate solution with a strong inorganic acid to a pH of less than 11. The resulting hydrogel is generally washed away from the electrolyte and dried.
  • the silica support used in the impregnation method according to the present invention preferably has a surface area of 1000 m 2 / g or less, more preferably 800 m 2 / g or less, and most preferably 500 m 2 / g or less.
  • a catalyst preparation by the coprecipitation method for example, an aqueous solution obtained by mixing an acidic salt aqueous solution of each metal element of copper and silicon is brought into contact with an aqueous solution of a basic compound, and the deposited precipitate is washed and collected, and the collected precipitation The method of baking after drying a thing is mentioned.
  • the acid salt of each metal element is not particularly limited as long as the precipitate obtained by reacting with a basic compound is dried and fired to give an oxide of each metal element. Examples of such acidic salts include nitrates, sulfates, and hydrochlorides.
  • Examples of the basic compound to be contacted with the acid salt of each metal element include carbonates and bicarbonates of alkali metals or alkaline earth metals.
  • the basic compound A method of simultaneously mixing an aqueous solution of each metal element and an aqueous solution of an acid salt of each metal element, a method of adding an aqueous solution of an acidic salt solution of each metal element to an aqueous solution of a basic compound, an aqueous solution of an acidic salt solution of each metal element
  • the method of adding the aqueous solution of a basic compound is mentioned.
  • the shape of the solid catalyst is not particularly limited and may be spherical, cylindrical, extruded, or crushed.
  • the particle size is in the range of 0.01 mm to 100 mm, and is selected according to the reactor size. do it.
  • Hydrogen may be stoichiometrically equimolar or more with acetone, and from the viewpoint of separation and recovery, a preferable range is 1 to 10 times mol, preferably 1 to 5 times mol with respect to acetone. It is. When it is desired to suppress the conversion rate of acetone to less than 100%, it can be coped with by reducing the amount of hydrogen used from 1-fold mole. In addition, when hydrogen is used in an amount exceeding 1-fold mol with respect to acetone in the reaction of the present invention, an equivalent amount or more of hydrogen is essentially not consumed unless an undesirable side reaction proceeds.
  • the supply method is not particularly limited, and after adding hydrogen gas at the start of the reaction, the supply during the reaction is stopped, and a certain amount An intermittent supply method of supplying again after time may be used, or in the case of a liquid phase reaction, a method of supplying hydrogen gas dissolved in a solvent may be used.
  • hydrogen gas recovered from the top of the tower may be supplied together with the light boiling fraction.
  • the pressure of hydrogen to be added is generally equal to the pressure in the reactor, but may be appropriately changed according to the hydrogen supply method.
  • liquid and gas directions may be liquid descending-gas rising, liquid rising-gas falling, liquid Either gas rise or liquid gas fall may be used.
  • the preferred operating pressure range is 0.1 to 100 atm, and more preferably 0.5 to 50 atm.
  • the amount of the solid catalyst to be used is not particularly limited.
  • the supply amount (weight) per hour of the raw material is divided by the weight of the catalyst. value, i.e. indicated by WHSV, preferably in the range of 0.1 ⁇ 200h -1, more preferably preferably in the range of 0.2 ⁇ 100h -1.
  • a reactor packed with a solid catalyst preferably an adiabatic reactor, is used, and a continuous flow method is more preferably used.
  • a catalyst filling method a fixed bed method, a shelf fixed bed method, or the like is adopted, and any method may be used.
  • regeneration can be performed by a known method to recover the catalyst activity.
  • two or more reactors are arranged in parallel, and one or more reactors remaining while one reactor is being regenerated
  • the merry-go-round method for carrying out the reaction may be used. Further, when there are three reactors, another two reactors may be connected in series to reduce production fluctuation.
  • a certain level of activity is maintained by continuously or intermittently withdrawing some or all of the catalyst from the reactor and replenishing the corresponding amount. Is possible.
  • isopropanol is obtained by reacting a raw material containing acetone and hydrogen in a reactor, and the resulting reaction solution containing isopropanol is separated into a separated gas and a separated liquid by a gas-liquid separator. After being obtained, a part of the separation gas and the separation liquid is removed by a heat exchanger, and the reaction heat is removed by circulating to the reactor as a circulation gas and a circulation liquid.
  • the hydrogenation reaction is carried out so that the maximum temperature of the reaction solution in the reactor is usually maintained in the range of 135 to 160 ° C, preferably in the range of 140 to 160 ° C.
  • the temperature of the reaction liquid at the outlet of the adiabatic reactor is set in the range of 135 to 160 ° C, preferably in the range of 140 to 160 ° C.
  • the reaction heat energy removed by heat is recovered as effective water vapor.
  • a reaction liquid containing isopropanol is taken out and separated into a gas and a liquid, it is usually carried out by a gas-liquid separator.
  • the gas-liquid separator is not particularly limited, and examples thereof include a vertical drum.
  • the reaction solution is cooled using a heat exchanger.
  • the heat exchanger used for heat exchange is not particularly limited, and any type can be used as long as heat exchange is possible.
  • spiral heat exchanger, plate heat exchanger, double tube heat exchanger, multi-tube cylindrical heat exchanger, multiple tube heat exchanger, spiral tube heat exchanger, spiral plate heat exchanger, A tank coil type heat exchanger, a tank jacket type heat exchanger, a direct contact liquid-liquid type heat exchanger, etc. are used.
  • reaction heat is recovered as steam by passing the reaction gas and reaction solution through a normal heat exchanger.
  • a part of the separated liquid is circulated as a circulating liquid to a reactor, preferably an adiabatic reactor, and usually 1 to 99% by mass per 100% by mass of the separated liquid.
  • a reactor preferably an adiabatic reactor
  • 3 to 95% by mass is circulated as a circulating liquid to a reactor, preferably an adiabatic reactor.
  • the separated liquid that is not circulated to the reactor is usually purified to obtain isopropanol.
  • Purification is performed by a known method such as distillation.
  • the separation liquid which is not circulated to the reactor preferably an adiabatic reactor
  • it can be purified using a distillation column generally used in chemical plants. In this case, acetone is removed in the first distillation column, and purified isopropanol can be obtained.
  • a copper-silica catalyst was prepared by an impregnation method with reference to the contents described in the literature (A. J. Marchi et al., Industrial & Engineering Chemistry Research, 46, 7657-7666, 2007).
  • Example 1 Using a fixed bed reactor equipped with a high-pressure feed pump, a high-pressure hydrogen mass flow, an electric furnace, a reactor having a catalyst-filled portion, and a back pressure valve, a pressurized liquid phase flow reaction was performed by downflow.
  • Acetone which is a raw material, uses a reagent (made by Wako Pure Chemical Industries, special grade reagent), and the reaction is a one-pass reaction. ) was used. Specifically, 1.50 g of the above catalyst A (classified to 250 to 500 ⁇ m) was charged into a SUS316 reactor having an inner diameter of 1 cm. After pressurizing to 2 MPa with hydrogen, reduction treatment was performed at 200 ° C. for 3 hours in a hydrogen stream of 10 ml / min from the reactor inlet side.
  • a reagent made by Wako Pure Chemical Industries, special grade reagent
  • Example 1 The reaction was carried out under the same conditions as in Example 1 except that the catalyst was changed to Raney nickel (manufactured by JGC Chemical Co., N154). The reaction results are shown in Table 1. Raney nickel catalyst was found to produce a lot of by-products.
  • Example 2 Example 1 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42 mass%, zinc oxide: 48 mass%, aluminum oxide: 10 mass%) The reaction was performed under the same conditions. The reaction results are shown in Table 1. It was found that a large amount of by-products were produced with the copper oxide-zinc oxide-aluminum oxide catalyst.
  • Example 2 The reaction was performed under the same conditions as in Example 1 except that the reaction temperature was changed to 160 ° C. The reaction results are shown in Table 1. In the case of the copper-silica catalyst, high isopropanol selectivity was exhibited even at a reaction temperature of 160 ° C.
  • Example 2 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42% by mass, zinc oxide: 48% by mass, aluminum oxide: 10% by mass)
  • the reaction was performed under the same conditions.
  • the reaction results are shown in Table 1. It was found that a large amount of acetone dimer by-product was produced with the copper oxide-zinc oxide-aluminum oxide catalyst.
  • the catalyst is copper oxide-chromium oxide (manufactured by SudChemie, product name G-22 / 2, copper oxide: 45-50% by mass, chromium (III) oxide: 30-35% by mass, barium chromite: 10-15% by mass, silica : The reaction was carried out under the same conditions as in Example 2 except that the amount was changed to 5 to 10% by mass). The reaction results are shown in Table 1. It was found that a large amount of acetone dimer by-product was produced with the copper oxide-chromium oxide catalyst.
  • Example 3 The reaction was carried out under the same conditions as in Example 2 except that the catalyst was changed to copper-silica (manufactured by JGC Chemicals, product name E35S, copper oxide: 68% by mass, silicon dioxide: 28% by mass, sodium oxide: 2% by mass). went. The reaction results are shown in Table 1. The copper-silica catalyst showed high isopropanol selectivity.
  • Example 4 The reaction was performed under the same conditions as in Example 1 except that the reaction temperature was changed to 135 ° C. The reaction results are shown in Table 1. [Comparative Example 5] The reaction was performed under the same conditions as in Example 4 except that the catalyst was changed to Raney nickel (NGC, N154).
  • Example 4 Example 4 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42 mass%, zinc oxide: 48 mass%, aluminum oxide: 10 mass%). The reaction was performed under the same conditions. The reaction results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a method for producing isopropanol in a highly selective manner by reacting acetone with hydrogen directly. The purpose of a preferred embodiment of the present invention is to provide a method which enables the production of isopropanol in a highly selective manner even when the reaction temperature is such a high temperature that the thermal collection of isopropanol can be achieved at the temperature. The method for producing isopropanol according to the present invention is characterized in that a hydrogenation reaction of acetone is carried out in the presence of a solid catalyst comprising copper and/or copper oxide and silica using a raw material containing acetone and hydrogen, wherein it is preferred that the highest temperature for the hydrogenation reaction ranges from 140 to 160˚C.

Description

イソプロパノールの製造方法Method for producing isopropanol
 本発明は、アセトンと水素の反応によりイソプロパノールを製造する方法に関する。 The present invention relates to a method for producing isopropanol by reaction of acetone and hydrogen.
 水素ガスを用いた接触還元によりアセトンを水素化してイソプロパノールを製造する方法は古くから知られた技術である(例えば、特許文献1参照)。工業的には断熱型固定床反応器を用い、水素ガス及びアセトンを反応器上部から供給して液ガス共に下降流とし、かつ触媒層をトリクルベッドの状態にして反応を行うことが好ましいとされている(例えば、特許文献2参照)。また、アセトンの水添反応は16.7kcal/molの発熱反応であるため、断熱型反応器を用いる場合は通常、反応器から排出される液状の反応混合物の一部を冷却した後、反応器内へ循環し、反応熱の除熱が行われる(例えば、特許文献3参照)。この除熱の際に反応熱を熱回収しユーティリティー(用役)として使用できれば、経済的に有利なプロセスとなるが、熱交換器により水蒸気として熱回収する場合、反応液の温度が135℃以上、望ましくは140℃以上ないと効率よく熱回収が行えないことが知られている。従来のラネーニッケル(例えば特許文献4)、ルテニウム担持触媒(例えば特許文献5)といった固体触媒では高選択性を確保するためには最適反応温度を低く設定せざるを得ず、水蒸気による熱回収は不可能であった。また、反応温度が140℃以上である反応例として酸化銅-酸化クロム触媒(特許文献6)、酸化銅-酸化亜鉛-酸化アルミニウム触媒(特許文献7)が開示されているが、アセトンの2量体が副生するためイソプロパノールの選択性が低く、またクロム毒性の問題もあり実用的な製造方法とはいえなかった。 A method for producing isopropanol by hydrogenating acetone by catalytic reduction using hydrogen gas has been known for a long time (for example, see Patent Document 1). Industrially, it is considered preferable to use an adiabatic fixed bed reactor, supply hydrogen gas and acetone from the top of the reactor to make both the liquid and gas flow downward, and carry out the reaction with the catalyst layer in a trickle bed state. (For example, refer to Patent Document 2). In addition, since the hydrogenation reaction of acetone is an exothermic reaction of 16.7 kcal / mol, when using an adiabatic reactor, the reactor is usually cooled after a part of the liquid reaction mixture discharged from the reactor is cooled. It circulates in and heat removal of reaction heat is performed (for example, refer patent document 3). If the heat of reaction can be recovered and used as a utility (utility) during this heat removal, it will be an economically advantageous process. However, when heat is recovered as water vapor using a heat exchanger, the temperature of the reaction solution is 135 ° C or higher. It is known that heat recovery cannot be performed efficiently unless it is 140 ° C. or higher. In conventional solid catalysts such as Raney nickel (for example, Patent Document 4) and ruthenium-supported catalyst (for example, Patent Document 5), the optimum reaction temperature must be set low in order to ensure high selectivity, and heat recovery by steam is not possible. It was possible. Further, as reaction examples in which the reaction temperature is 140 ° C. or higher, a copper oxide-chromium oxide catalyst (Patent Document 6) and a copper oxide-zinc oxide-aluminum oxide catalyst (Patent Document 7) are disclosed. Since the body was by-produced, the selectivity of isopropanol was low, and there was a problem of chromium toxicity, so it was not a practical production method.
特開昭62-12729号公報JP 62-12729 A 特開平2-270829号公報Japanese Patent Laid-Open No. 2-270829 特開平3-133941号公報JP-A-3-133941 特開平3-141235号公報JP-A-3-141235 特開2000-103751号公報JP 2000-103751 A 特開平3-41038号公報Japanese Patent Laid-Open No. 3-41038 特開2010-077055号公報JP 2010-077055 A
 本発明は、アセトンと水素とを直接反応させ、高選択的にイソプロパノールを製造する方法に係わる。本発明の好ましい態様は、熱回収が可能となる高い反応温度であっても高選択的にイソプロパノールを製造できる方法を提供することを目的とする。 The present invention relates to a method for producing isopropanol with high selectivity by directly reacting acetone and hydrogen. A preferred embodiment of the present invention aims to provide a method capable of producing isopropanol with high selectivity even at a high reaction temperature at which heat recovery is possible.
 本発明者らは、上記課題を解決するため鋭意検討した結果、銅および酸化銅の少なくとも一方、およびシリカを含む固体触媒を反応器に充填し、アセトンと水素とを含む原料を反応器に供給して水添反応を行うことによって高選択的にイソプロパノールを製造できることを見出し、更にはこの高選択性は反応熱の熱回収が可能な、135℃以上、望ましくは140℃以上の高い反応温度であっても維持されることを見出し、本発明に到達した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors filled a reactor with a solid catalyst containing at least one of copper and copper oxide and silica, and supplied a raw material containing acetone and hydrogen to the reactor. In addition, it has been found that isopropanol can be produced with high selectivity by carrying out a hydrogenation reaction. Furthermore, this high selectivity enables heat recovery of the heat of reaction at a high reaction temperature of 135 ° C. or higher, preferably 140 ° C. or higher. It was found that it was maintained even if it was, and the present invention was reached.
 本発明のイソプロパノールの製造方法によれば、特定の触媒存在下でアセトンと、水素を出発物質(原料)として水添反応を行うことによって、4-メチル-2-ペンタノール、2-メチル-2,4-ペンタンジオールといったアセトンが2量化した副生物の生成が抑制されたイソプロパノールを製造できる。また、高い反応温度であっても高選択性が維持されるので、反応熱を効率よく熱回収することが可能となり、工業上、経済的に有利な方法でイソプロパノールを得ることができる。 According to the method for producing isopropanol of the present invention, 4-methyl-2-pentanol, 2-methyl-2 is obtained by performing a hydrogenation reaction using acetone and hydrogen as starting materials (raw materials) in the presence of a specific catalyst. , 4-pentanediol can be produced in which the production of by-products by dimerizing acetone is suppressed. In addition, since high selectivity is maintained even at a high reaction temperature, it is possible to efficiently recover the heat of reaction, and isopropanol can be obtained by an industrially economically advantageous method.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明のイソプロパノールの製造方法は、アセトンと水素とを含む原料を用い、銅および酸化銅の少なくとも一方、およびシリカを含む固体触媒の存在下でアセトンの水添反応を行うことを特徴とする。本発明のイソプロパノールの製造方法は、銅および酸化銅の少なくとも一方、およびシリカを含む固体触媒を充填した反応器を用い、アセトンと水素とを含む原料を反応器に供給して、イソプロパノールを得る方法である。通常は、反応後に前記反応器から気液分離器を通して水素ガスと反応液が分離される。特に断熱型反応器を用いた場合は前記断熱型反応器にアセトンと水素とを含む原料を供給し、イソプロパノールを得て、前記断熱型反応器から、気液分離器を通して水素ガスと反応液が分離される。反応は発熱反応であるため、反応器出口の反応液は反応器入口温度よりも高い温度となる。この反応液を熱交換器に通すことで、反応熱を水蒸気として熱回収できる。また冷却された反応液の一部は、循環液として、反応器入口へ移送され、残りは精製系へ送られる。 The method for producing isopropanol of the present invention is characterized in that a hydrogenation reaction of acetone is performed in the presence of a solid catalyst containing at least one of copper and copper oxide and silica using a raw material containing acetone and hydrogen. The method for producing isopropanol of the present invention is a method for obtaining isopropanol by using a reactor filled with a solid catalyst containing at least one of copper and copper oxide and silica and supplying a raw material containing acetone and hydrogen to the reactor. It is. Usually, after the reaction, hydrogen gas and reaction solution are separated from the reactor through a gas-liquid separator. In particular, when an adiabatic reactor is used, a raw material containing acetone and hydrogen is supplied to the adiabatic reactor to obtain isopropanol. From the adiabatic reactor, hydrogen gas and a reaction liquid are passed through a gas-liquid separator. To be separated. Since the reaction is an exothermic reaction, the reaction liquid at the reactor outlet is at a temperature higher than the reactor inlet temperature. By passing this reaction solution through a heat exchanger, the reaction heat can be recovered as water vapor. A part of the cooled reaction liquid is transferred as a circulating liquid to the reactor inlet, and the rest is sent to the purification system.
 すなわち本発明においては、反応液の一部を反応器に循環することにより反応熱の除熱が行われる。イソプロパノールを得る際の反応温度は、後述する反応熱の熱回収の視点から通常は、100~160℃の範囲で実施され、かつ最高温度が135~160℃、好ましくは最高温度が140~160℃の範囲を維持されることを特徴としている。より好ましくは反応が断熱反応器中で行われ、反応熱が上記のように除熱される。その際には断熱型反応器の反応器入口付近の温度は100~155℃の温度を有し、反応器出口付近は、反応器入り口付近に比べてより高い140~160℃の温度を有することが好ましい。このような温度要求を満たす触媒として、後述する、銅および酸化銅の少なくとも一方、およびシリカを含む固体触媒が用いられるのである。なお本発明において、断熱反応器を用いた場合は反応器内では温度勾配を有する。 That is, in the present invention, the reaction heat is removed by circulating a part of the reaction solution to the reactor. The reaction temperature for obtaining isopropanol is usually in the range of 100 to 160 ° C. from the viewpoint of heat recovery of reaction heat described later, and the maximum temperature is 135 to 160 ° C., preferably the maximum temperature is 140 to 160 ° C. The range is maintained. More preferably, the reaction is carried out in an adiabatic reactor and the heat of reaction is removed as described above. In that case, the temperature near the reactor inlet of the adiabatic reactor has a temperature of 100 to 155 ° C., and the temperature near the reactor outlet has a higher temperature of 140 to 160 ° C. than the vicinity of the reactor inlet. Is preferred. A solid catalyst containing at least one of copper and copper oxide and silica, which will be described later, is used as a catalyst that satisfies such temperature requirements. In the present invention, when an adiabatic reactor is used, the reactor has a temperature gradient.
 従来の固体触媒であっても130℃以下といった低い温度であれば、高いイソプロパノールの選択性を有することが知られている。例えば、特開平3-133941(前記の特許文献3)の実施例に開示されたラネーニッケル触媒を用いる場合、130℃以下の反応温度でイソプロパノールの選択率は99.9%近い。イソプロパノールのような汎用の工業製品の場合、0.1%の原単位の差であっても経済的には大きな意味を持つ。従って、本発明の製造方法においても当然99.9%程度のイソプロパノール選択率が要求されることになるが、後述する本願実施例でも開示されるように、本発明は当該要求に十分に応えた製造方法であるといえる。 Even a conventional solid catalyst is known to have high isopropanol selectivity at a low temperature of 130 ° C. or lower. For example, when the Raney nickel catalyst disclosed in the examples of JP-A-3-133941 (Patent Document 3) is used, the isopropanol selectivity is close to 99.9% at a reaction temperature of 130 ° C. or lower. In the case of general-purpose industrial products such as isopropanol, even a difference of 0.1% in basic unit has a great economic significance. Accordingly, the production method of the present invention naturally requires an isopropanol selectivity of about 99.9%, but the present invention sufficiently fulfills this requirement as disclosed in Examples of the present invention described later. It can be said that it is a manufacturing method.
 またアセトンの還元によるイソプロパノールの合成反応は平衡反応であり、低温側ではイソプロパノール側に平衡が傾いているが、高温側ではアセトン側に平衡が傾く。そのため約100℃を超えると平衡上アセトンが残存することになり、温度の上昇と共にアセトンの濃度は増大することが知られている(Harry J. Kolbら, J. Am. Chem. Soc., 67, 1084(1945))。従って、反応温度が高くなればなるほど、反応器の出口以降でアセトンを蒸留等で回収する必要がある。ところが、本発明のように反応液を循環して除熱を行うプロセスの場合、循環するイソプロパノールのため、反応器出口液中のアセトン濃度は低く、またアセトンの沸点はイソプロパノールと比較してかなり低いので容易に分離可能である。すなわち、本発明の製造方法において反応温度が高くなることによって必要になるアセトン回収のためのエネルギー量は、反応熱から回収できる熱エネルギー量に比べてはるかに小さくなることを本発明者らは確認している。 The synthesis reaction of isopropanol by reduction of acetone is an equilibrium reaction, and the equilibrium is inclined toward the isopropanol side at the low temperature side, but the equilibrium is inclined toward the acetone side at the high temperature side. Therefore, it is known that acetone will remain in equilibrium above about 100 ° C, and the concentration of acetone increases with increasing temperature (HarryHJ. Kolb et al., J. Am. Chem. Soc., 67). , 1084 (1945)). Accordingly, the higher the reaction temperature is, the more acetone needs to be recovered by distillation or the like after the outlet of the reactor. However, in the process of removing heat by circulating the reaction liquid as in the present invention, due to the circulating isopropanol, the acetone concentration in the reactor outlet liquid is low, and the boiling point of acetone is considerably lower than that of isopropanol. So it can be easily separated. That is, the present inventors have confirmed that the amount of energy required for recovering acetone required by increasing the reaction temperature in the production method of the present invention is much smaller than the amount of heat energy recoverable from the reaction heat. is doing.
 本発明の製造方法において用いられる固体触媒は、銅および酸化銅の少なくとも一方、およびシリカを含む触媒(以下の説明では、「銅-シリカ触媒」と略称する場合がある)である。銅-シリカ触媒の一般的な製造方法としては、銅元素を含有する各種酸化物、水酸化物、炭酸塩等を含む溶液をシリカに含浸または浸漬させた後、焼成する方法(含浸法)、それぞれの金属塩の混合水溶液をアンモニアや炭酸ナトリウム等の塩基で沈殿させた後に乾燥、焼成する方法(共沈法)が挙げられる。焼成後においては、銅は通常酸化銅の形態であるが水添反応または水添反応前の事前還元処理工程において該酸化銅の一部又は全部は銅の形態になると考えられる。 The solid catalyst used in the production method of the present invention is a catalyst containing at least one of copper and copper oxide and silica (in the following description, it may be abbreviated as “copper-silica catalyst”). As a general method for producing a copper-silica catalyst, a method of impregnating or immersing a solution containing various oxides, hydroxides, carbonates and the like containing a copper element in silica, followed by firing (impregnation method), Examples thereof include a method (coprecipitation method) in which a mixed aqueous solution of each metal salt is precipitated with a base such as ammonia or sodium carbonate and then dried and fired. After firing, copper is usually in the form of copper oxide, but it is considered that part or all of the copper oxide is in the form of copper in the hydrogenation reaction or the pre-reduction treatment step before the hydrogenation reaction.
 固体触媒に占める、銅および酸化銅の少なくても一方とシリカとの重量比(銅および酸化銅の少なくとも一方:シリカ)は水添反応の選択率の視点から通常0.01:1~10:1の範囲にあり、好ましくは0.1:1~5:1、より好ましくは0.1:1~3:1である。なお、該範囲は、銅および酸化銅の少なくとも一方として、銅が含まれる場合には、該銅の重量を酸化銅に換算し求めた範囲である。さらに、固体触媒に占める銅および酸化銅の少なくとも一方とシリカの合計量は、水添反応の選択率の視点から通常90質量%~100質量%、好ましくは92質量%~100質量%、特に好ましくは95~100質量%である。なお、該範囲は、銅および酸化銅の少なくとも一方として、銅が含まれる場合には、該銅の重量を酸化銅に換算し求めた範囲である。固体触媒が、銅および酸化銅の少なくとも一方とシリカ以外のその他成分を含む場合、その他成分としてはアルカリ金属酸化物、アルカリ土類金属酸化物、周期律表第13族金属酸化物などを例示することができるが、固体触媒に占めるその他成分の合計含量が10質量%未満である限り、これら例示化合物に限定されない。 The weight ratio of at least one of copper and copper oxide to silica (at least one of copper and copper oxide: silica) in the solid catalyst is usually 0.01: 1 to 10: from the viewpoint of the selectivity of the hydrogenation reaction. 1, preferably 0.1: 1 to 5: 1, more preferably 0.1: 1 to 3: 1. In addition, this range is the range which calculated | required converting the weight of this copper into copper oxide, when copper is contained as at least one of copper and copper oxide. Further, the total amount of at least one of copper and copper oxide and silica in the solid catalyst is usually 90% by mass to 100% by mass, preferably 92% by mass to 100% by mass, particularly preferably from the viewpoint of the selectivity of the hydrogenation reaction. Is 95 to 100% by mass. In addition, this range is the range which calculated | required converting the weight of this copper into copper oxide, when copper is contained as at least one of copper and copper oxide. When the solid catalyst contains at least one of copper and copper oxide and other components other than silica, examples of the other components include alkali metal oxides, alkaline earth metal oxides, Group 13 metal oxides of the periodic table, and the like. However, the compound is not limited to these exemplary compounds as long as the total content of other components in the solid catalyst is less than 10% by mass.
 含浸法の場合に担体として使用するシリカは、ゲルを含むケイ素から得られたどのような担体でも基本的に使用可能である。一般にシリカは、その微孔性とヒドロキシル化された表面によってその他の含水酸化ケイ素と区別される固体で非晶質形態の含水酸化ケイ素である。シリカは通常、コロイダルサイズのシリカ粒子が集合した三次元網状組織を含んでいる。これらは一般に、ケイ酸ナトリウム水溶液を無機質の強酸と合せて11未満のpHに酸性化することにより作製される。得られたヒドロゲルは一般に洗浄されて電解質が無くなり、乾燥される。本発明に係る含浸法において使用するシリカ担体は、好ましくは表面積が1000m2/g以下であり、より好ましくは800m2/g以下、最も好ましくは500m2/g以下である。 The silica used as the carrier in the impregnation method can basically be any carrier obtained from silicon containing gel. In general, silica is a solid, amorphous form of hydrous silicon that is distinguished from other hydrous silicon oxides by its microporous and hydroxylated surfaces. Silica usually contains a three-dimensional network of colloidal silica particles. These are generally made by acidifying an aqueous sodium silicate solution with a strong inorganic acid to a pH of less than 11. The resulting hydrogel is generally washed away from the electrolyte and dried. The silica support used in the impregnation method according to the present invention preferably has a surface area of 1000 m 2 / g or less, more preferably 800 m 2 / g or less, and most preferably 500 m 2 / g or less.
 また共沈法による触媒調製としては、例えば、銅、ケイ素の各金属元素の酸性塩水溶液を混合した水溶液を塩基性化合物の水溶液と接触させ、析出した析出物を洗浄・回収し、回収した析出物を乾燥した後、焼成する方法が挙げられる。各金属元素の酸性塩としては、塩基性化合物と反応させて得られる析出物を乾燥・焼成して各金属元素の酸化物を与えるものであれば特に制限はない。このような酸性塩としては、例えば、硝酸塩、硫酸塩、塩酸塩が挙げられる。各金属元素の酸性塩と接触させる塩基性化合物としては、例えば、アルカリ金属またはアルカリ土類金属の炭酸塩、重炭酸塩が挙げられる。各金属元素の酸性塩水溶液を塩基性化合物の水溶液と接触させる方法としては、接触させて得られる水溶液のpHを6~9の範囲となるように制御できれば特に制限はなく、例えば、塩基性化合物の水溶液と各金属元素の酸性塩の水溶液を同時に混合する方法、塩基性化合物の水溶液に各金属元素の酸性塩水溶液を混合した水溶液を加える方法、各金属元素の酸性塩水溶液を混合した溶液に塩基性化合物の水溶液を加える方法が挙げられる。 In addition, as a catalyst preparation by the coprecipitation method, for example, an aqueous solution obtained by mixing an acidic salt aqueous solution of each metal element of copper and silicon is brought into contact with an aqueous solution of a basic compound, and the deposited precipitate is washed and collected, and the collected precipitation The method of baking after drying a thing is mentioned. The acid salt of each metal element is not particularly limited as long as the precipitate obtained by reacting with a basic compound is dried and fired to give an oxide of each metal element. Examples of such acidic salts include nitrates, sulfates, and hydrochlorides. Examples of the basic compound to be contacted with the acid salt of each metal element include carbonates and bicarbonates of alkali metals or alkaline earth metals. There is no particular limitation on the method for bringing the aqueous solution of the acidic salt of each metal element into contact with the aqueous solution of the basic compound, as long as the pH of the aqueous solution obtained by contact can be controlled to be in the range of 6 to 9. For example, the basic compound A method of simultaneously mixing an aqueous solution of each metal element and an aqueous solution of an acid salt of each metal element, a method of adding an aqueous solution of an acidic salt solution of each metal element to an aqueous solution of a basic compound, an aqueous solution of an acidic salt solution of each metal element The method of adding the aqueous solution of a basic compound is mentioned.
 固体触媒の形状は特に制限は無く、球状・円柱状・押し出し状・破砕状のいずれでもよく、またその粒子の大きさも、0.01mm~100mmの範囲のもので反応器の大きさに応じ選定すればよい。 The shape of the solid catalyst is not particularly limited and may be spherical, cylindrical, extruded, or crushed. The particle size is in the range of 0.01 mm to 100 mm, and is selected according to the reactor size. do it.
 水素は、化学量論的には、アセトンと等モル以上あればよく、分離回収の点からは、好適な範囲は、アセトンに対して、1~10倍モル、好ましくは、1~5倍モルである。アセトンの転化率を100%未満に抑えたい場合は、用いる水素の量を1倍モルから低減させることで対応できる。また本発明の反応において水素をアセトンに対して1倍モルを超えて使用する場合、当量以上の水素は好ましからざる副反応が進行しない限りは本質的には消費されないことになる。 Hydrogen may be stoichiometrically equimolar or more with acetone, and from the viewpoint of separation and recovery, a preferable range is 1 to 10 times mol, preferably 1 to 5 times mol with respect to acetone. It is. When it is desired to suppress the conversion rate of acetone to less than 100%, it can be coped with by reducing the amount of hydrogen used from 1-fold mole. In addition, when hydrogen is used in an amount exceeding 1-fold mol with respect to acetone in the reaction of the present invention, an equivalent amount or more of hydrogen is essentially not consumed unless an undesirable side reaction proceeds.
 反応器に水素ガスを添加する場合には、通常連続的に供給するが、供給方法に特に限定されるものではなく、反応開始時に水素ガスを添加した後、反応中供給を停止し、ある一定時間後に再度供給する間欠的な供給方法でもよいし、液相反応の場合には溶媒に水素ガスを溶解させて供給する方法であってもかまわない。 When hydrogen gas is added to the reactor, it is normally continuously supplied, but the supply method is not particularly limited, and after adding hydrogen gas at the start of the reaction, the supply during the reaction is stopped, and a certain amount An intermittent supply method of supplying again after time may be used, or in the case of a liquid phase reaction, a method of supplying hydrogen gas dissolved in a solvent may be used.
 また、リサイクルプロセスでは軽沸留分とともに塔頂から回収される水素ガスを供給してもよい。添加する水素の圧力は、反応器の圧力と同等であることが一般的であるが、水素の供給方法に応じ適宜変更させればよい。 In the recycling process, hydrogen gas recovered from the top of the tower may be supplied together with the light boiling fraction. The pressure of hydrogen to be added is generally equal to the pressure in the reactor, but may be appropriately changed according to the hydrogen supply method.
 本発明において、アセトンと水素ガスとを接触させる際には、気液向流、気液並流どちらでも良く、また液、ガスの方向として、液下降-ガス上昇、液上昇-ガス下降、液ガス上昇、液ガス下降のいずれでもよい。 In the present invention, when acetone and hydrogen gas are brought into contact with each other, either gas-liquid countercurrent or gas-liquid cocurrent flow may be used, and the liquid and gas directions may be liquid descending-gas rising, liquid rising-gas falling, liquid Either gas rise or liquid gas fall may be used.
 通常好ましい実施圧力範囲は、0.1~100気圧であり、更に好ましくは0.5~50気圧である。また本発明を実施するに際し、使用する固体触媒量は特に限定されないが、例えば、反応を、固定床流通装置を用いて行う場合、原料の時間あたりの供給量(重量)を触媒の重量で割った値、即ちWHSVで示すと、0.1~200h-1の範囲であることが望ましく、より好ましくは0.2~100h-1の範囲が好適である。 Usually, the preferred operating pressure range is 0.1 to 100 atm, and more preferably 0.5 to 50 atm. In carrying out the present invention, the amount of the solid catalyst to be used is not particularly limited. For example, when the reaction is performed using a fixed bed flow apparatus, the supply amount (weight) per hour of the raw material is divided by the weight of the catalyst. value, i.e. indicated by WHSV, preferably in the range of 0.1 ~ 200h -1, more preferably preferably in the range of 0.2 ~ 100h -1.
 本発明を実施するに際しては、通常は固体触媒が充填された反応器、好ましくは断熱型反応器が用いられ、さらに好ましくは連続流通式の方法が採用される。 In carrying out the present invention, a reactor packed with a solid catalyst, preferably an adiabatic reactor, is used, and a continuous flow method is more preferably used.
 その際、液相、気相、気-液混合相の、いずれの形態においても実施することが可能である。触媒の充填方式としては、固定床、棚段固定床等の方式が採用され、いずれの方式で実施しても差し支えない。ある経過時間において触媒活性が低下する場合に、公知の方法で再生を行い触媒の活性を回復することができる。 At that time, it can be carried out in any form of a liquid phase, a gas phase, and a gas-liquid mixed phase. As a catalyst filling method, a fixed bed method, a shelf fixed bed method, or the like is adopted, and any method may be used. When the catalyst activity decreases at a certain elapsed time, regeneration can be performed by a known method to recover the catalyst activity.
 イソプロパノールの生産量を維持するために、反応器を2つまたは3つ以上の複数個を並列に並べ、1つの反応器が再生している間に、残った1つまたは2つ以上の反応器で反応を実施するメリーゴーランド方式をとっても構わない。さらに反応器が3つある場合、他の反応器2つを直列につなぎ、生産量の変動を少なくする方法をとってもよい。また流動床流通反応方式や移動床反応方式で実施する場合には、反応器から連続的または断続的に、一部またはすべての触媒を抜き出し、相当する分を補充することにより一定の活性を維持することが可能である。 In order to maintain the production of isopropanol, two or more reactors are arranged in parallel, and one or more reactors remaining while one reactor is being regenerated The merry-go-round method for carrying out the reaction may be used. Further, when there are three reactors, another two reactors may be connected in series to reduce production fluctuation. When using the fluidized bed flow reaction system or moving bed reaction system, a certain level of activity is maintained by continuously or intermittently withdrawing some or all of the catalyst from the reactor and replenishing the corresponding amount. Is possible.
 本発明のイソプロパノールの製造方法においては、反応器内でアセトンと水素とを含む原料を反応させてイソプロパノールを得るが、得られたイソプロパノールを含む反応液を気液分離器により分離ガス、分離液を得た後に、前記分離ガス、分離液の一部を熱交換器により除熱し、循環ガス、循環液として、前記反応器に循環することにより反応熱の除熱を行う。本発明のイソプロパノールの製造方法では、反応器内にある反応液の最高温度が、通常は135~160℃の範囲、好ましくは140~160℃の範囲を維持するように水添反応を進めることによって熱交換器で除熱された反応熱エネルギーを有効な水蒸気として熱回収することが可能となる。本発明の好ましい態様においては断熱型反応器を用いて該断熱型反応器の出口における反応液の温度を135~160℃の範囲、好ましくは140~160℃の範囲とすることによって、熱交換器で除熱された反応熱エネルギーを有効な水蒸気として熱回収される。本発明において、イソプロパノールを含む反応液を取り出して、ガスと液に分離する際には、通常気液分離器により行われる。気液分離器は、特に限定は無く、例えば縦型ドラム等が挙げられる。 In the method for producing isopropanol of the present invention, isopropanol is obtained by reacting a raw material containing acetone and hydrogen in a reactor, and the resulting reaction solution containing isopropanol is separated into a separated gas and a separated liquid by a gas-liquid separator. After being obtained, a part of the separation gas and the separation liquid is removed by a heat exchanger, and the reaction heat is removed by circulating to the reactor as a circulation gas and a circulation liquid. In the method for producing isopropanol of the present invention, the hydrogenation reaction is carried out so that the maximum temperature of the reaction solution in the reactor is usually maintained in the range of 135 to 160 ° C, preferably in the range of 140 to 160 ° C. It becomes possible to recover the heat of the reaction heat energy removed by the heat exchanger as effective water vapor. In a preferred embodiment of the present invention, by using an adiabatic reactor, the temperature of the reaction liquid at the outlet of the adiabatic reactor is set in the range of 135 to 160 ° C, preferably in the range of 140 to 160 ° C. The reaction heat energy removed by heat is recovered as effective water vapor. In the present invention, when a reaction liquid containing isopropanol is taken out and separated into a gas and a liquid, it is usually carried out by a gas-liquid separator. The gas-liquid separator is not particularly limited, and examples thereof include a vertical drum.
 なお、本発明においては、熱交換器を用いて反応液を冷却する。熱交換に用いる熱交換器に関しても特に限定は無く、熱交換可能であればどのようなタイプでも使用できる。例えばスパイラル式熱交換器、プレート式熱交換器、二重管式熱交換器、多管円筒式熱交換器、多重円管式熱交換器、渦巻管式熱交換器、渦巻板式熱交換器、タンクコイル式熱交換器、タンクジャケット式熱交換器、直接接触液液式熱交換器等が用いられる。 In the present invention, the reaction solution is cooled using a heat exchanger. The heat exchanger used for heat exchange is not particularly limited, and any type can be used as long as heat exchange is possible. For example, spiral heat exchanger, plate heat exchanger, double tube heat exchanger, multi-tube cylindrical heat exchanger, multiple tube heat exchanger, spiral tube heat exchanger, spiral plate heat exchanger, A tank coil type heat exchanger, a tank jacket type heat exchanger, a direct contact liquid-liquid type heat exchanger, etc. are used.
 本反応は発熱反応であり、発生した熱を有効に利用することは省エネルギーの観点からも経済的にも有用である。反応熱の回収は反応ガス、反応液を通常熱交換器に通すことによりスチームとして回収する。 This reaction is an exothermic reaction, and it is useful from the viewpoint of energy saving and economically to use the generated heat effectively. The reaction heat is recovered as steam by passing the reaction gas and reaction solution through a normal heat exchanger.
 また、本発明のイソプロパノールの製造方法において、分離液の一部を循環液として、反応器、好ましくは断熱型反応器に循環するが、分離液100質量%あたり、通常は1~99質量%、好ましくは3~95質量%を循環液として、反応器、好ましくは断熱型反応器に循環させる。 In the isopropanol production method of the present invention, a part of the separated liquid is circulated as a circulating liquid to a reactor, preferably an adiabatic reactor, and usually 1 to 99% by mass per 100% by mass of the separated liquid. Preferably, 3 to 95% by mass is circulated as a circulating liquid to a reactor, preferably an adiabatic reactor.
 本発明の製造方法において、反応器、好ましくは断熱型反応器に循環されない分離液は、通常精製され、イソプロパノールが得られる。精製は、蒸留等の公知の方法により行われる。反応器、好ましくは断熱型反応器に循環されない分離液の精製が蒸留によって行われる場合には、化学プラントで一般的に用いられている蒸留塔を用いて精製することができる。この場合には、第一の蒸留塔においてアセトンが除去され、精製されたイソプロパノールを得ることができる。 In the production method of the present invention, the separated liquid that is not circulated to the reactor, preferably the adiabatic reactor, is usually purified to obtain isopropanol. Purification is performed by a known method such as distillation. In the case where the separation liquid which is not circulated to the reactor, preferably an adiabatic reactor, is purified by distillation, it can be purified using a distillation column generally used in chemical plants. In this case, acetone is removed in the first distillation column, and purified isopropanol can be obtained.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔銅-シリカ触媒の調製〕
 文献(A. J.Marchiら, Industrial & Engineering Chemistry Research,46巻,7657-7666頁,2007年)に記載された内容を参考にして、含浸法により銅-シリカ触媒を調製した。蒸発皿に250~500μmの破砕状シリカ(富士シリシア化学製、Q-15、表面積200m2/g、細孔容積1.21ml/g)13.96gを入れ、これに硝酸銅三水和物(関東化学製、試薬特級品)10.11gを水16.9ml(シリカ細孔容積に相当)に溶解させた液を滴下して全体的に含浸させた。これを80℃で12時間乾燥し、400℃で4時間焼成することによって19質量%の酸化銅が担持された酸化銅-シリカ触媒(酸化銅:シリカ(質量比)=19:81)を得た。次に前記触媒を管状電気炉に移し、水素気流下(30ml/分)室温から300℃まで3.5時間かけて昇温し、さらに300℃で1時間還元処理した。放冷後、赤褐色の銅-シリカ触媒(触媒A)16.50gを得た。
[Preparation of copper-silica catalyst]
A copper-silica catalyst was prepared by an impregnation method with reference to the contents described in the literature (A. J. Marchi et al., Industrial & Engineering Chemistry Research, 46, 7657-7666, 2007). In an evaporating dish, 13.96 g of crushed silica of 250 to 500 μm (Fuji Silysia Chemical Co., Ltd., Q-15, surface area of 200 m 2 / g, pore volume of 1.21 ml / g) was placed, and copper nitrate trihydrate ( A solution prepared by dissolving 10.11 g of a reagent special grade (manufactured by Kanto Chemical Co., Ltd.) in 16.9 ml of water (corresponding to the silica pore volume) was dropped and impregnated as a whole. This was dried at 80 ° C. for 12 hours and calcined at 400 ° C. for 4 hours to obtain a copper oxide-silica catalyst (copper oxide: silica (mass ratio) = 19: 81) carrying 19% by mass of copper oxide. It was. Next, the catalyst was transferred to a tubular electric furnace, heated from room temperature to 300 ° C. over 3.5 hours in a hydrogen stream (30 ml / min), and further reduced at 300 ° C. for 1 hour. After standing to cool, 16.50 g of a reddish brown copper-silica catalyst (Catalyst A) was obtained.
 〔実施例1〕
 高圧用フィードポンプ、高圧用水素マスフロー、電気炉、触媒充填部分を有する反応器、背圧弁を設置した固定床反応装置を用い、ダウンフローによる加圧液相流通反応を行った。
[Example 1]
Using a fixed bed reactor equipped with a high-pressure feed pump, a high-pressure hydrogen mass flow, an electric furnace, a reactor having a catalyst-filled portion, and a back pressure valve, a pressurized liquid phase flow reaction was performed by downflow.
 原料のアセトンは試薬(和光純薬工業製、試薬特級品)を用い、また反応はワンパスの反応で行うため、反応液循環を想定して加えるイソプロパノールは試薬(和光純薬工業製、試薬特級品)を用いた。具体的には、内径1cmのSUS316製反応器に上記触媒A(250~500μmへ分級したもの)を1.50g充填した。水素で2MPaまで加圧した後、反応器入口側より10ml/分の水素気流下、200℃で3時間還元処理を行った。放冷後、水素フィード量を7.0ml/分に変更し、イソプロパノール/アセトン(モル比=94/6)を15.0g/h(水素/アセトン モル比=1.2)でフィードし140℃で反応させた。電気炉による外部加熱であるため、触媒層の温度分布の無い等温反応における結果を表1に示した。銅―シリカ触媒の場合、反応温度140℃でも高いイソプロパノール選択性を示した。 Acetone, which is a raw material, uses a reagent (made by Wako Pure Chemical Industries, special grade reagent), and the reaction is a one-pass reaction. ) Was used. Specifically, 1.50 g of the above catalyst A (classified to 250 to 500 μm) was charged into a SUS316 reactor having an inner diameter of 1 cm. After pressurizing to 2 MPa with hydrogen, reduction treatment was performed at 200 ° C. for 3 hours in a hydrogen stream of 10 ml / min from the reactor inlet side. After standing to cool, the hydrogen feed amount was changed to 7.0 ml / min, and isopropanol / acetone (molar ratio = 94/6) was fed at 15.0 g / h (hydrogen / acetone / molar ratio = 1.2). It was made to react with. Table 1 shows the results of an isothermal reaction without temperature distribution of the catalyst layer because it is external heating by an electric furnace. In the case of the copper-silica catalyst, high isopropanol selectivity was exhibited even at a reaction temperature of 140 ° C.
 〔比較例1〕
 触媒をラネーニッケル(日揮化学製、N154)に変えた以外は上記実施例1と同じ条件で反応を行った。反応結果を表1に示した。ラネーニッケル触媒では副生物が多く生成することがわかった。
[Comparative Example 1]
The reaction was carried out under the same conditions as in Example 1 except that the catalyst was changed to Raney nickel (manufactured by JGC Chemical Co., N154). The reaction results are shown in Table 1. Raney nickel catalyst was found to produce a lot of by-products.
 〔比較例2〕
 触媒を酸化銅-酸化亜鉛-酸化アルミニウム(SudChemie製、製品名MDC-7、酸化銅:42質量%、酸化亜鉛:48質量%、酸化アルミニウム:10質量%)に変えた以外は上記実施例1と同じ条件で反応を行った。反応結果を表1に示した。酸化銅-酸化亜鉛-酸化アルミニウム触媒では副生物が多く生成することがわかった。
[Comparative Example 2]
Example 1 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42 mass%, zinc oxide: 48 mass%, aluminum oxide: 10 mass%) The reaction was performed under the same conditions. The reaction results are shown in Table 1. It was found that a large amount of by-products were produced with the copper oxide-zinc oxide-aluminum oxide catalyst.
 〔実施例2〕
 反応温度を160℃に変えた以外は上記実施例1と同じ条件で反応を行った。反応結果を表1に示した。銅―シリカ触媒の場合、反応温度160℃でも高いイソプロパノール選択性を示した。
[Example 2]
The reaction was performed under the same conditions as in Example 1 except that the reaction temperature was changed to 160 ° C. The reaction results are shown in Table 1. In the case of the copper-silica catalyst, high isopropanol selectivity was exhibited even at a reaction temperature of 160 ° C.
 〔比較例3〕
 触媒を酸化銅-酸化亜鉛-酸化アルミニウム(SudChemie製、製品名MDC-7、酸化銅:42質量%、酸化亜鉛:48質量%、酸化アルミニウム:10質量%)に変えた以外は上記実施例2と同じ条件で反応を行った。反応結果を表1に示した。酸化銅-酸化亜鉛-酸化アルミニウム触媒ではアセトン2量体系の副生物が多く生成することがわかった。
[Comparative Example 3]
Example 2 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42% by mass, zinc oxide: 48% by mass, aluminum oxide: 10% by mass) The reaction was performed under the same conditions. The reaction results are shown in Table 1. It was found that a large amount of acetone dimer by-product was produced with the copper oxide-zinc oxide-aluminum oxide catalyst.
 [比較例4]
 触媒を酸化銅-酸化クロム(SudChemie製、製品名G-22/2、酸化銅:45~50質量%、酸化クロム(III):30~35質量%、バリウムクロマイト:10~15質量%、シリカ:5~10質量%)に変えた以外は上記実施例2と同じ条件で反応を行った。反応結果を表1に示した。酸化銅-酸化クロム触媒ではアセトン2量体系の副生物が多く生成することがわかった。
[Comparative Example 4]
The catalyst is copper oxide-chromium oxide (manufactured by SudChemie, product name G-22 / 2, copper oxide: 45-50% by mass, chromium (III) oxide: 30-35% by mass, barium chromite: 10-15% by mass, silica : The reaction was carried out under the same conditions as in Example 2 except that the amount was changed to 5 to 10% by mass). The reaction results are shown in Table 1. It was found that a large amount of acetone dimer by-product was produced with the copper oxide-chromium oxide catalyst.
 〔実施例3〕
 触媒を銅-シリカ(日揮化学製、製品名E35S、酸化銅:68質量%、二酸化ケイ素:28質量%、酸化ナトリウム:2質量%)に変えた以外は上記実施例2と同じ条件で反応を行った。反応結果を表1に示した。銅―シリカ触媒の場合、高いイソプロパノール選択性を示した。
〔実施例4〕
 反応温度を135℃に変えた以外は上記実施例1と同じ条件で反応を行った。反応結果を表1に示した。
〔比較例5〕
 触媒をラネーニッケル(日揮化学製、N154)に変えた以外は上記実施例4と同じ条件で反応を行った。
〔比較例6〕
 触媒を酸化銅-酸化亜鉛-酸化アルミニウム(SudChemie製、製品名MDC-7、酸化銅:42質量%、酸化亜鉛:48質量%、酸化アルミニウム:10質量%)に変えた以外は上記実施例4と同じ条件で反応を行った。反応結果を表1に示した。
Example 3
The reaction was carried out under the same conditions as in Example 2 except that the catalyst was changed to copper-silica (manufactured by JGC Chemicals, product name E35S, copper oxide: 68% by mass, silicon dioxide: 28% by mass, sodium oxide: 2% by mass). went. The reaction results are shown in Table 1. The copper-silica catalyst showed high isopropanol selectivity.
Example 4
The reaction was performed under the same conditions as in Example 1 except that the reaction temperature was changed to 135 ° C. The reaction results are shown in Table 1.
[Comparative Example 5]
The reaction was performed under the same conditions as in Example 4 except that the catalyst was changed to Raney nickel (NGC, N154).
[Comparative Example 6]
Example 4 except that the catalyst was changed to copper oxide-zinc oxide-aluminum oxide (manufactured by SudChemie, product name MDC-7, copper oxide: 42 mass%, zinc oxide: 48 mass%, aluminum oxide: 10 mass%). The reaction was performed under the same conditions. The reaction results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (3)

  1.  アセトンと水素とを含む原料を用い、銅および酸化銅の少なくとも一方、およびシリカを含む固体触媒の存在下でアセトンの水添反応を行うことを特徴とするイソプロパノールの製造方法。 A process for producing isopropanol, wherein a raw material containing acetone and hydrogen is used, and acetone is hydrogenated in the presence of at least one of copper and copper oxide and a solid catalyst containing silica.
  2.  最高温度が140~160℃の範囲でアセトンの水添反応を行うことを特徴とする請求項1記載のイソプロパノールの製造方法。 The process for producing isopropanol according to claim 1, wherein the hydrogenation reaction of acetone is carried out at a maximum temperature of 140 to 160 ° C.
  3.  断熱型反応器を用い、反応器出口の温度が140~160℃の範囲となるようにアセトンの水添反応を行うことを特徴とする請求項1または2に記載のイソプロパノールの製造方法。 The method for producing isopropanol according to claim 1 or 2, wherein a hydrogenation reaction of acetone is carried out using an adiabatic reactor so that the temperature at the outlet of the reactor is in the range of 140 to 160 ° C.
PCT/JP2013/067057 2012-06-27 2013-06-21 Method for producing isopropanol WO2014002884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-144617 2012-06-27
JP2012144617A JP2015166315A (en) 2012-06-27 2012-06-27 Method for producing isopropanol

Publications (1)

Publication Number Publication Date
WO2014002884A1 true WO2014002884A1 (en) 2014-01-03

Family

ID=49783041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067057 WO2014002884A1 (en) 2012-06-27 2013-06-21 Method for producing isopropanol

Country Status (3)

Country Link
JP (1) JP2015166315A (en)
TW (1) TW201408631A (en)
WO (1) WO2014002884A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666893C1 (en) * 2018-04-06 2018-09-13 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Method for preparing isopropil alcohol from acetone
RU2675362C1 (en) * 2018-08-28 2018-12-19 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Method for hydrogenizing acetone in isopropyl alcohol
RU2798625C1 (en) * 2022-11-22 2023-06-23 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Method of producing isopropyl alcohol

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234621A (en) * 2018-07-02 2019-09-13 株式会社大赛璐 The preparation method of acetic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2456187A (en) * 1941-09-05 1948-12-14 Melle Usines Sa Process for catalytically hydrogenating organic substances
JPH02270829A (en) * 1989-01-17 1990-11-05 Mitsui Petrochem Ind Ltd Production of isopropanol
JP2004536147A (en) * 2001-11-16 2004-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing isopropanol
WO2009104597A1 (en) * 2008-02-21 2009-08-27 三井化学株式会社 Process for production of 2-propanol
JP2010077055A (en) * 2008-09-25 2010-04-08 Mitsui Chemicals Inc Method for producing isopropanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2456187A (en) * 1941-09-05 1948-12-14 Melle Usines Sa Process for catalytically hydrogenating organic substances
JPH02270829A (en) * 1989-01-17 1990-11-05 Mitsui Petrochem Ind Ltd Production of isopropanol
JP2004536147A (en) * 2001-11-16 2004-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing isopropanol
WO2009104597A1 (en) * 2008-02-21 2009-08-27 三井化学株式会社 Process for production of 2-propanol
JP2010077055A (en) * 2008-09-25 2010-04-08 Mitsui Chemicals Inc Method for producing isopropanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IND. ENG. CHEM. RES., vol. 46, no. 23, 2007, pages 7657 - 7666 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666893C1 (en) * 2018-04-06 2018-09-13 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Method for preparing isopropil alcohol from acetone
RU2675362C1 (en) * 2018-08-28 2018-12-19 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Method for hydrogenizing acetone in isopropyl alcohol
RU2798625C1 (en) * 2022-11-22 2023-06-23 Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН, Институт катализа СО РАН) Method of producing isopropyl alcohol

Also Published As

Publication number Publication date
JP2015166315A (en) 2015-09-24
TW201408631A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
US9018427B2 (en) Production of higher alcohols
EP2809643B1 (en) Ethyl acetate production
CN108368080B (en) Method and system for removing vinyl iodide impurities from a recycle gas stream in ethylene oxide manufacture
KR101742749B1 (en) Process for producing fatty alcohols by hydrogenation of fatty acid triglycerides on a copper-containing heterogeneous catalyst
US10669221B2 (en) Composition of catalysts for conversion of ethanol to N-butanol and higher alcohols
US20160297737A1 (en) Production of Butyl Acetate from Ethanol
WO2018039609A1 (en) Production of higher alcohols
JP6345654B2 (en) Method for producing tetrahydrofuran
WO2014002884A1 (en) Method for producing isopropanol
CN103819344B (en) A kind of synthetic method of 1,2-propylene diamine
JP5595719B2 (en) Method for producing glycerin
EP3218338B1 (en) Process for the production of cyclohexanone from phenol
US20210147327A1 (en) Composition of catalysts for conversion of ethanol to n-butanol and higher alcohols
CN102056879B (en) Continuous process to produce hexafluoroisopropanol
JP5300392B2 (en) Method for producing isopropanol
TWI547478B (en) Method for producing n-propyl acetate and method for producing allyl acetate
JP5574968B2 (en) Method for producing alkylated aromatic compound, method for producing cumene and method for producing phenol
JP2014043415A (en) Method for producing dibenzylamine
JP7177135B2 (en) Process for preparing alkanediols and dialkyl carbonates
EP3115350B1 (en) A process for the production of a mixture comprising cyclohexanol and cyclohexanone
CN1789256A (en) Preparation of 2-methylfuran and cyclohexanone by couple method
JP5785910B2 (en) Method for producing (meth) acrylic acid or ester thereof
PL222393B1 (en) Method for preparing propylene glycol out of glycerine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP