JP2014043415A - Method for producing dibenzylamine - Google Patents

Method for producing dibenzylamine Download PDF

Info

Publication number
JP2014043415A
JP2014043415A JP2012186464A JP2012186464A JP2014043415A JP 2014043415 A JP2014043415 A JP 2014043415A JP 2012186464 A JP2012186464 A JP 2012186464A JP 2012186464 A JP2012186464 A JP 2012186464A JP 2014043415 A JP2014043415 A JP 2014043415A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
dibenzylamine
benzaldehyde
benzyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012186464A
Other languages
Japanese (ja)
Inventor
Hidetaka Shimazu
秀高 嶋津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP2012186464A priority Critical patent/JP2014043415A/en
Publication of JP2014043415A publication Critical patent/JP2014043415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially and efficiently producing dibenzylamine via a gas phase catalytic reaction by using at least a compound selected from a group consisting of benzyl alcohol, benzaldehyde, and dibenzyl ether as a raw material.SOLUTION: In a method for producing dibenzylamine, a gas phase catalytic reaction of at least a compound selected from a group consisting of benzyl alcohol, benzaldehyde, and dibenzyl ether with ammonia is conducted in the presence of a catalyst including alumina or copper.

Description

本発明は、ジベンジルアミンの製造方法に関する。   The present invention relates to a method for producing dibenzylamine.

ジベンジルアミンの製造方法としては、パラジウム炭素触媒の存在下、メタノールを溶媒に用い、ベンズアルデヒド、アンモニア及び水素を反応させる方法が知られている(例えば、特許文献1)。
また、銅を含有する触媒の存在下、ベンジルアルコールとアンモニアを反応させてジベンジルアミンを製造する方法が知られている(例えば、非特許文献1)。
As a method for producing dibenzylamine, a method is known in which methanol is used as a solvent and benzaldehyde, ammonia and hydrogen are reacted in the presence of a palladium carbon catalyst (for example, Patent Document 1).
Further, a method for producing dibenzylamine by reacting benzyl alcohol with ammonia in the presence of a catalyst containing copper is known (for example, Non-Patent Document 1).

ヨーロッパ特許644177号公報European Patent 644177

Chemistry Letters、2010年、巻38、頁1182Chemistry Letters, 2010, Vol. 38, p. 1182

前記の従来のジベンジルアミンの製造方法は、バッチ式の加圧液相反応であり、大量の製品を効率よく製造する必要のあるジベンジルアミンの製造に適しているとはいえない。つまり、バッチ式加圧液相反応では、バッチごとに窒素置換、溶媒・触媒仕込み、圧力調整、撹拌、昇温、原料圧入、熟成、冷却、圧抜き、液排出・触媒ろ過などのそれぞれの操作の時間が必要なために、作業効率が悪く、結果としてジベンジルアミンを効率的に製造することができない。
このことから、ジベンジルアミン製造については上述のようなバッチ式加圧液相反応ではなく、よりベンジルアミンを効率的に製造できる連続式気相接触反応の開発が望まれていた。
The conventional method for producing dibenzylamine is a batch-type pressurized liquid phase reaction, and cannot be said to be suitable for production of dibenzylamine which requires efficient production of a large amount of products. In other words, in batch-type pressurized liquid phase reaction, each operation such as nitrogen substitution, solvent / catalyst preparation, pressure adjustment, stirring, temperature rise, raw material intrusion, aging, cooling, depressurization, liquid discharge / catalyst filtration is performed for each batch. Therefore, the working efficiency is poor, and as a result, dibenzylamine cannot be produced efficiently.
Therefore, for the production of dibenzylamine, development of a continuous gas phase catalytic reaction capable of more efficiently producing benzylamine is desired rather than the batch pressurized liquid phase reaction as described above.

本発明者は、かかる事情に鑑み鋭意検討した結果、銅を含有する触媒またはアルミナ触媒の存在下、ベンジルアルコール、ベンズアルデヒド、ジベンジルエーテルからなる群より選ばれた少なくとも1つの化合物をアンモニアと気相接触反応させることにより、ジベンジルアミンが効率よく得られることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of such circumstances, the present inventor has obtained at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde, and dibenzyl ether in the presence of a copper-containing catalyst or an alumina catalyst with ammonia and a gas phase. It has been found that dibenzylamine can be obtained efficiently by catalytic reaction, and the present invention has been completed.

即ち、本発明は、銅を含有する触媒またはアルミナ触媒の存在下、ベンジルアルコール、ジベンジルエーテル、ベンズアルデヒドからなる群より選ばれた少なくとも1つの化合物とアンモニアを気相接触反応させることを特徴とするジベンジルアミンの製造方法に関する。   That is, the present invention is characterized in that ammonia is vapor-phase contacted with at least one compound selected from the group consisting of benzyl alcohol, dibenzyl ether, and benzaldehyde in the presence of a copper-containing catalyst or an alumina catalyst. The present invention relates to a method for producing dibenzylamine.

本発明によれば、ジベンジルアミンを効率よく得ることができるため、本発明の方法は工業的に有用である。   According to the present invention, since dibenzylamine can be obtained efficiently, the method of the present invention is industrially useful.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明の製造方法は、銅を含有する触媒またはアルミナ触媒の存在下、ベンジルアルコール、ベンズアルデヒド、ジベンジルエーテルからなる群より選ばれた少なくとも1つの化合物をアンモニアと気相接触反応させてジベンジルアミンを製造する方法である。   The production method of the present invention comprises dibenzylamine by subjecting at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde, and dibenzyl ether to gas phase contact reaction with ammonia in the presence of a copper-containing catalyst or an alumina catalyst. It is a method of manufacturing.

本発明は気相接触反応で行われ、その反応温度は、通常、100〜450℃、好ましくは200〜350℃であり、常圧または加圧下で行われる。気相反応における反応方式は特に制限されず、固定床、流動床または移動床で行われる。   The present invention is carried out by a gas phase contact reaction, and the reaction temperature is usually 100 to 450 ° C., preferably 200 to 350 ° C., and is carried out under normal pressure or under pressure. The reaction system in the gas phase reaction is not particularly limited, and is performed in a fixed bed, a fluidized bed or a moving bed.

アンモニアの使用量は、ベンジルアルコール、ベンズアルデヒド、ジベンジルエーテルからなる群より選ばれた少なくとも1つの化合物1モルに対して、通常0.1モル以上、好ましくは0.3〜1.5モルである。   The amount of ammonia used is usually 0.1 mol or more, preferably 0.3 to 1.5 mol, per 1 mol of at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde and dibenzyl ether. .

原料であるベンジルアルコール、ベンズアルデヒドおよびジベンジルエーテルは、そのまま用いても良いし、水溶液あるいは有機溶媒溶液として用いることもでき、その濃度は特に制限されない。   The raw materials benzyl alcohol, benzaldehyde, and dibenzyl ether may be used as they are, or may be used as an aqueous solution or an organic solvent solution, and the concentration is not particularly limited.

本発明で用いる触媒は、銅を含有する触媒またはアルミナ触媒を用いることができ、具体的にはγ―アルミナ触媒または酸化銅―酸化亜鉛系触媒が挙げられる。   The catalyst used in the present invention can be a copper-containing catalyst or an alumina catalyst, and specifically includes a γ-alumina catalyst or a copper oxide-zinc oxide catalyst.

触媒には第二成分、第三成分が含まれていてもよく、Sn,Zn、Cu、Ni,Co,Fe,Mn,Cr,V,Ti、Zr,Mo,Ag,Sn、W、Pd等の元素を含むものが例示される。 The catalyst may contain a second component and a third component, such as Sn, Zn, Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Zr, Mo, Ag, Sn, W, Pd, etc. The thing containing these elements is illustrated.

本発明で用いるアルミナ触媒は、たとえば、α―アルミナ、低ソーダアルミナ、ベーマイト、γ―アルミナである。好ましくは活性γ―アルミナ触媒で、比表面積40〜500m/gのものであり、とくに好ましくは比表面積200〜350m/gのものである。本発明で用いる銅を含有する触媒は元素として銅を含有していればよい。たとえば、銅−アルミナ触媒、銅―シリカ触媒、酸化銅触媒、酸化銅―酸化亜鉛触媒、ラネー銅触媒、銅クロマイト触媒である。好ましくは酸化銅―酸化亜鉛触媒である。前記のアルミナ触媒あるいは銅を含有する触媒は担体として他の金属酸化物などを含有してもよい。担体は通常の触媒調製で用いられるものであればよく、例えばAl、SiO、ZrO、MgO、CeO、TiO、各種ゼオライト等が例示される。 The alumina catalyst used in the present invention is, for example, α-alumina, low soda alumina, boehmite, or γ-alumina. An active γ-alumina catalyst having a specific surface area of 40 to 500 m 2 / g is preferable, and a specific surface area of 200 to 350 m 2 / g is particularly preferable. The catalyst containing copper used in the present invention only needs to contain copper as an element. For example, copper-alumina catalyst, copper-silica catalyst, copper oxide catalyst, copper oxide-zinc oxide catalyst, Raney copper catalyst, copper chromite catalyst. A copper oxide-zinc oxide catalyst is preferred. The alumina catalyst or copper-containing catalyst may contain other metal oxides as a support. The support is not particularly limited as long as it is used in normal catalyst preparation, and examples thereof include Al 2 O 3 , SiO 2 , ZrO 2 , MgO, CeO 2 , TiO 2 , and various zeolites.

触媒の調製法は限定されるものではなく、混練法、含浸法、共沈法等により調製されたいずれの触媒も使用できる。成形法も任意の形状での押し出し成型、打錠成形により調製されたいずれの触媒も使用できる。また成形した触媒は150〜500℃までの温度で、窒素など任意のガス雰囲気下で焼成して用いることができる。   The method for preparing the catalyst is not limited, and any catalyst prepared by a kneading method, an impregnation method, a coprecipitation method or the like can be used. As the molding method, any catalyst prepared by extrusion molding or tableting in an arbitrary shape can be used. Further, the molded catalyst can be used after being calcined in an arbitrary gas atmosphere such as nitrogen at a temperature of 150 to 500 ° C.

本発明で用いる銅を含有する触媒は、反応前に水素で還元処理することが好ましい。触媒の還元方法は、特に限定されないが、水素流通下での熱処理が好ましい。水素の流通速度は、SV=100〜500/hr、好ましくはSV=200〜400/hrである。また、その際に水素を窒素、アルゴン等の不活性ガスで希釈してもよい。水素による還元温度は50〜400℃、好ましくは100〜300℃である。   The copper-containing catalyst used in the present invention is preferably reduced with hydrogen before the reaction. The method for reducing the catalyst is not particularly limited, but heat treatment under hydrogen flow is preferable. The flow rate of hydrogen is SV = 100 to 500 / hr, preferably SV = 200 to 400 / hr. At that time, hydrogen may be diluted with an inert gas such as nitrogen or argon. The reduction temperature with hydrogen is 50 to 400 ° C, preferably 100 to 300 ° C.

反応時に水素を共存させると、ジベンジルアミンの収率が向上するので好ましい。水素の使用量はベンジルアルコール、ベンズアルデヒド、ジベンジルエーテルからなる群より選ばれた少なくとの1つの化合物1モルに対して、通常0.1〜20モル、好ましくは0.2〜10モルである。   Coexistence of hydrogen during the reaction is preferable because the yield of dibenzylamine is improved. The amount of hydrogen used is usually 0.1 to 20 mol, preferably 0.2 to 10 mol, per 1 mol of at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde and dibenzyl ether. .

ベンジルアルコール、ベンズアルデヒド、ジベンジルエーテルからなる群より選ばれた少なくとの1つの化合物の供給量の空間速度は、通常LHSV(液空間速度)で0.01〜2(g/cc−触媒・h)であり、好ましくは0.1〜1(g/cc−触媒・h)である。   The space velocity of the supply amount of at least one compound selected from the group consisting of benzyl alcohol, benzaldehyde and dibenzyl ether is usually 0.01 to 2 (g / cc-catalyst · h) in LHSV (liquid space velocity). And preferably 0.1 to 1 (g / cc-catalyst · h).

反応は、希釈剤の存在下又は不存在下に行われる。希釈剤としては、反応に不活性なものであれば特に限定されることなく、任意のものを用いることができる。具体的には、窒素、アルゴン等の不活性ガス、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンなどの脂肪族炭化水素、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン化脂肪族炭化水素、水などを用いることができる。これらは、単独又は2種以上を混合して用いてもよい。   The reaction is carried out in the presence or absence of a diluent. The diluent is not particularly limited as long as it is inert to the reaction, and any diluent can be used. Specifically, inert gases such as nitrogen and argon, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane and undecane, halogenated aliphatic hydrocarbons such as dichloromethane and 1,2-dichloroethane, water, etc. Can be used. You may use these individually or in mixture of 2 or more types.

反応終了後、反応ガスを冷却あるいは水または溶剤に吸収させるなどの適宜手段にて生成物を捕集した後、蒸留等の通常の手段によって目的物であるジベンジルアミンを得ることができる。   After completion of the reaction, the product is collected by an appropriate means such as cooling of the reaction gas or absorption in water or a solvent, and then the target dibenzylamine can be obtained by an ordinary means such as distillation.

つぎに、本発明を実施例に基づいて具体的に説明するが、本発明はなんらこれらに限定されるものではない。なお、実施例中のガスクロマトグラフィーによる分析は、以下の条件で行った。   Next, the present invention will be specifically described based on examples, but the present invention is not limited thereto. In addition, the analysis by the gas chromatography in an Example was performed on condition of the following.

ガスクロマトグラフィー分析条件
ガスクロマトグラフ:島津製作所製GC−2010
カラム:J&W社製、HP−1,50m、内径0.32mm,膜厚1.05μm
温度:50℃→(10℃/min)→250℃
Gas chromatography analysis conditions Gas chromatograph: Shimadzu GC-2010
Column: manufactured by J & W, HP-1, 50 m, inner diameter 0.32 mm, film thickness 1.05 μm
Temperature: 50 ° C. → (10 ° C./min)→250° C.

なお、転化率及び収率は、以下の定義に従って計算した。
(原料がベンジルアルコールまたはベンズアルデヒドの場合)
転化率(%)=反応したベンジルアルコールまたはベンズアルデヒドまたは(モル)/反応に供給したベンジルアルコールまたはベンズアルデヒド(モル)×100
収率(%)=生成したジベンジルアミン(モル)/反応に供給したベンジルアルコールまたはベンズアルデヒドまたは(モル)×100×2
(原料がジベンジルエーテルの場合)
転化率(%)=反応したジベンジルエーテル(モル)/反応に供給したジベンジルエーテル(モル)×100
収率(%)=生成したジベンジルアミン(モル)/反応に供給したジベンジルエーテル(モル)×100
The conversion rate and yield were calculated according to the following definitions.
(When the raw material is benzyl alcohol or benzaldehyde)
Conversion (%) = reacted benzyl alcohol or benzaldehyde or (mole) / benzyl alcohol or benzaldehyde (mole) fed to the reaction × 100
Yield (%) = dibenzylamine produced (mol) / benzyl alcohol or benzaldehyde fed to the reaction or (mol) × 100 × 2
(When the raw material is dibenzyl ether)
Conversion (%) = reacted dibenzyl ether (mol) / dibenzyl ether fed to reaction (mol) × 100
Yield (%) = Dibenzylamine (mol) produced / Dibenzyl ether (mol) fed to the reaction × 100

実施例1
内径19mmの反応管に、住友化学株式会社製のアルミナ触媒NKHD−24(活性γアルミナ、直径2〜4mm球状)を10ml充填し、その上下に直径2〜3mmの粒状カーボランダムをそれぞれ高さ12cm分ずつ充填した。この反応管をヒーターで加熱して温度300℃に保った。この反応管に上部から窒素30ml/minを導入して窒素パージをした。次に窒素を停止して、ベンジルアルコールとアンモニアガスと水素のモル比が、ベンジルアルコール:アンモニア:水素=1:0.6:4になるように上部から原料とガスを導入した。原料のベンジルアルコールの導入速度は液空間速度LHSV=0.5g/cc−触媒・hrであった。反応生成物は氷冷した水中にバブリングして捕集してガスクロマトグラフィーで分析した。反応開始後2時間までのジベンジルアミンの平均収率は仕込みのベンジルアルコールのモル数基準で57.6%、ベンジルアルコールの平均転化率は95.2%であった。
Example 1
A reaction tube having an inner diameter of 19 mm is filled with 10 ml of an alumina catalyst NKHD-24 (active γ-alumina, diameter 2-4 mm spherical) manufactured by Sumitomo Chemical Co., Ltd. Filled in minutes. The reaction tube was heated with a heater and maintained at a temperature of 300 ° C. The reaction tube was purged with nitrogen by introducing nitrogen at 30 ml / min from the top. Next, nitrogen was stopped, and raw materials and gas were introduced from the top so that the molar ratio of benzyl alcohol, ammonia gas, and hydrogen was benzyl alcohol: ammonia: hydrogen = 1: 0.6: 4. The introduction rate of the raw material benzyl alcohol was liquid space velocity LHSV = 0.5 g / cc-catalyst · hr. The reaction product was collected by bubbling in ice-cold water and analyzed by gas chromatography. The average yield of dibenzylamine up to 2 hours after the start of the reaction was 57.6% based on the number of moles of benzyl alcohol charged, and the average conversion of benzyl alcohol was 95.2%.

実施例2
原料モル比がベンジルアルコール:アンモニア=1:1になるように、水素なしで反応管にベンジルアルコールとアンモニアガスを導入した他は実施例1と同様に反応した。その結果、反応開始後2時間までのジベンジアルアミンの平均収率は52.5%で、ベンジルアルコールの平均転化率は95.2%であった。
Example 2
The reaction was performed in the same manner as in Example 1 except that benzyl alcohol and ammonia gas were introduced into the reaction tube without hydrogen so that the raw material molar ratio was benzyl alcohol: ammonia = 1: 1. As a result, the average yield of dibenzediamine up to 2 hours after the start of the reaction was 52.5%, and the average conversion of benzyl alcohol was 95.2%.

実施例3
原料としてベンジルアルコールのかわりにジベンジルエーテルを原料として用いて、ジベンジルエーテル:アンモニアガス:水素のモル比が1:1:4になるように反応管に導入した他は実施例1と同様に反応した。その結果反応開始後2時間までのジベンジルアミンの平均収率は57.6%(ジベンジルエーテル基準)でジベンジルエーテルの平均転化率は95.2%であった。
Example 3
As in Example 1, except that dibenzyl ether was used as a raw material instead of benzyl alcohol, and the dibenzyl ether: ammonia gas: hydrogen molar ratio was 1: 1: 4. Reacted. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 57.6% (based on dibenzyl ether), and the average conversion of dibenzyl ether was 95.2%.

実施例4
原料モル比をジベンジルエーテル:アンモニア=1:1になるようにしてジベンジルエーテルとアンモニアガスを水素なしで反応管に導入した他は実施例3と同様に反応した。その結果反応開始後2時間までのジベンジルアミンの平均収率は39.1%(ジベンジルエーテル基準)で、ジベンジルエーテルの平均転化率は88.9%であった。
Example 4
The reaction was conducted in the same manner as in Example 3 except that dibenzyl ether and ammonia gas were introduced into the reaction tube without hydrogen so that the raw material molar ratio was dibenzyl ether: ammonia = 1: 1. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 39.1% (based on dibenzyl ether), and the average conversion of dibenzyl ether was 88.9%.

実施例5
内径19mmの反応管に、ズードケミー触媒株式会社製のMDC−1触媒(酸化銅-酸化亜鉛触媒、直径6mm、長さ3mm円柱状)を10ml充填し、その上下に直径2〜3mmの粒状カーボランダムをそれぞれ高さ12cm分ずつ充填した。この反応管をヒーターで加熱して温度240℃に保った。この反応管に上部から窒素30ml/minを導入して窒素パージをした。次に窒素を停止して、反応管に水素50ml/minを0.5h導入して、触媒の前還元を行った。次にベンジルアルコールのかわりにベンズアルデヒドを原料に用いて、ベンズアルデヒド:アンモニア:水素=1:0.6:8になるように、原料と水素ガスとアンモニアガスを導入した。原料のベンズアルデヒドの導入速度は液空間速度LHSV=0.5g/cc−触媒・hrであった。ヒーター温度は240℃で反応した。反応生成物は氷冷した水中にバブリングして捕集してガスクロマトグラフィーで分析した。その結果反応開始後2時間までのジベンジルアミンの平均収率は66.2%(ベンズアルデヒド基準)で、ベンズアルデヒドの平均転化率は100%であった。
Example 5
A reaction tube having an inner diameter of 19 mm was filled with 10 ml of MDC-1 catalyst (copper oxide-zinc oxide catalyst, diameter 6 mm, length 3 mm cylindrical) manufactured by Zude Chemie Catalysts Co., Ltd., and granular carborundum having a diameter of 2 to 3 mm above and below it. Each was filled with a height of 12 cm. The reaction tube was heated with a heater and maintained at a temperature of 240 ° C. The reaction tube was purged with nitrogen by introducing nitrogen at 30 ml / min from the top. Next, nitrogen was stopped and 50 ml / min of hydrogen was introduced into the reaction tube for 0.5 h to perform pre-reduction of the catalyst. Next, benzaldehyde was used as a raw material instead of benzyl alcohol, and the raw material, hydrogen gas, and ammonia gas were introduced so that benzaldehyde: ammonia: hydrogen = 1: 0.6: 8. The introduction rate of the raw material benzaldehyde was liquid space velocity LHSV = 0.5 g / cc-catalyst · hr. The heater temperature was 240 ° C. The reaction product was collected by bubbling in ice-cold water and analyzed by gas chromatography. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 66.2% (based on benzaldehyde), and the average conversion of benzaldehyde was 100%.

実施例6
ズードケミー触媒株式会社製のActisorb301触媒(酸化銅―酸化亜鉛、直径1.5mm押し出し成形品)を用いて、原料モル比が、ベンズアルデヒド:アンモニア:水素=1:0.6:4になるように、ベンズアルデヒドとアンモニアガスと水素ガスを反応管に導入して反応した他は実施例5と同様に反応した。その結果、反応開始後2時間までのジベンジルアミンの平均収率は64.5%(ベンズアルデヒド基準)で、ベンズアルデヒドの平均転化率は100%であった。
Example 6
Using Actisorb 301 catalyst (copper oxide-zinc oxide, extruded product with a diameter of 1.5 mm) manufactured by Zude Chemie Catalysts Co., Ltd., so that the raw material molar ratio is benzaldehyde: ammonia: hydrogen = 1: 0.6: 4, The reaction was the same as in Example 5 except that benzaldehyde, ammonia gas, and hydrogen gas were introduced into the reaction tube and reacted. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 64.5% (based on benzaldehyde), and the average conversion of benzaldehyde was 100%.

比較例1
株式会社テイカ製のチタニアAMT−100(アナタース)の粉末を70MPaでプレスした後、粉砕して10−16メッシュに分級したものを触媒に用いた他は、実施例1と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は22.0%(ベンジルアルコール基準)、ベンジルアルコールの平均転化率は98.4%であった。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that the powder of titania AMT-100 (Anatase) manufactured by Teika Co., Ltd. was pressed at 70 MPa and then pulverized and classified to 10-16 mesh. . As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 22.0% (based on benzyl alcohol), and the average conversion of benzyl alcohol was 98.4%.

比較例2
東ソー株式会社製のH型ベータゼオライト粉末(HSZ−940HOA)を70MPaでプレスした後、粉砕して10−16メッシュに分級したものを触媒に用いた他は、実施例1と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は25.3%(ベンジルアルコール基準)、ベンジルアルコールの平均転化率は97.3%であった。
Comparative Example 2
The reaction was carried out in the same manner as in Example 1 except that H-type beta zeolite powder (HSZ-940HOA) manufactured by Tosoh Corporation was pressed at 70 MPa and then crushed and classified to 10-16 mesh was used as the catalyst. It was. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 25.3% (based on benzyl alcohol), and the average conversion of benzyl alcohol was 97.3%.

比較例3
比較例1と同じ触媒を用いた他は、実施例3と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は6.5%(ジベンジルエーテル基準)、ジベンジルエーテルの平均転化率は98.7%であった。
Comparative Example 3
The reaction was performed in the same manner as in Example 3 except that the same catalyst as in Comparative Example 1 was used. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 6.5% (based on dibenzyl ether), and the average conversion of dibenzyl ether was 98.7%.

比較例4
比較例2と同じ触媒を用いた他は、実施例3と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は4.3%(ジベンジルエーテル基準)、ジベンジルエーテルの平均転化率は59.0%であった。
Comparative Example 4
The reaction was performed in the same manner as in Example 3 except that the same catalyst as in Comparative Example 2 was used. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 4.3% (based on dibenzyl ether), and the average conversion of dibenzyl ether was 59.0%.

比較例5
NEケムキャット株式会社製の0.5%Pd/アルミナ触媒(直径3mm、長さ3mm、円柱型)を触媒に用いた他は、実施例4と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は0.2%(ジベンジルエーテル基準)、ジベンジルエーテルの平均転化率は99.5%であった。
Comparative Example 5
The reaction was performed in the same manner as in Example 4 except that 0.5% Pd / alumina catalyst (diameter 3 mm, length 3 mm, cylindrical type) manufactured by NE Chemcat Co., Ltd. was used as the catalyst. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 0.2% (based on dibenzyl ether), and the average conversion of dibenzyl ether was 99.5%.

比較例6
NEケムキャット株式会社製の0.5%Pt/アルミナ触媒(直径3mm、長さ3mm、円柱型)を触媒に用いた他は、実施例6と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は0.3%(ベンズアルデヒド基準)、ベンズアルデヒドの平均転化率は100%であった。
Comparative Example 6
The reaction was performed in the same manner as in Example 6 except that 0.5% Pt / alumina catalyst (diameter 3 mm, length 3 mm, cylindrical type) manufactured by NE Chemcat Co., Ltd. was used as the catalyst. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 0.3% (based on benzaldehyde), and the average conversion of benzaldehyde was 100%.

比較例7
日揮化学株式会社製のN−112触媒(安定化ニッケル/珪藻土触媒、直径3mm、長さ2.9mm、円柱型)を触媒に用いた他は、実施例6と同様に反応を行った。その結果、反応開始後2時間までのジベンジルアミンの平均収率は0%(ベンズアルデヒド基準)、ベンズアルデヒドの平均転化率は100%であった。
Comparative Example 7
The reaction was carried out in the same manner as in Example 6 except that N-112 catalyst (stabilized nickel / diatomaceous earth catalyst, diameter 3 mm, length 2.9 mm, cylindrical type) manufactured by JGC Chemical Co., Ltd. was used as the catalyst. As a result, the average yield of dibenzylamine up to 2 hours after the start of the reaction was 0% (based on benzaldehyde), and the average conversion of benzaldehyde was 100%.

Claims (3)

触媒の存在下、ベンズアルデヒド、ベンジルアルコール、ジベンジルエーテルからなる群より選ばれた少なくとも1つの化合物とアンモニアを気相接触反応させることを特徴とするジベンジルアミンの製造方法。 A process for producing dibenzylamine, characterized by reacting ammonia with at least one compound selected from the group consisting of benzaldehyde, benzyl alcohol, and dibenzyl ether in the presence of a catalyst. 触媒がアルミナ触媒である請求項1に記載のジベンジルアミンの製造方法。 The method for producing dibenzylamine according to claim 1, wherein the catalyst is an alumina catalyst. 触媒が銅を含有する触媒である請求項1に記載のジベンジルアミンの製造方法。 The method for producing dibenzylamine according to claim 1, wherein the catalyst is a catalyst containing copper.
JP2012186464A 2012-08-27 2012-08-27 Method for producing dibenzylamine Pending JP2014043415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186464A JP2014043415A (en) 2012-08-27 2012-08-27 Method for producing dibenzylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186464A JP2014043415A (en) 2012-08-27 2012-08-27 Method for producing dibenzylamine

Publications (1)

Publication Number Publication Date
JP2014043415A true JP2014043415A (en) 2014-03-13

Family

ID=50394968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186464A Pending JP2014043415A (en) 2012-08-27 2012-08-27 Method for producing dibenzylamine

Country Status (1)

Country Link
JP (1) JP2014043415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132938A1 (en) * 2016-02-04 2017-08-10 Rhodia Operations Macroporous catalyst for the preparation of aliphatic amines
JP2022530870A (en) * 2019-04-25 2022-07-04 ランクセス・ドイチュランド・ゲーエムベーハー Method for preparing N, N-disubstituted benzothiazolyl sulfenamide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514692A2 (en) * 1991-05-18 1992-11-25 BASF Aktiengesellschaft Process for the preparation of amines
EP0644177B1 (en) * 1993-09-20 1997-07-09 Dsm N.V. Process for the preparation of dibenzylamine
JP2000290237A (en) * 1999-03-12 2000-10-17 Basf Ag Production of amine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514692A2 (en) * 1991-05-18 1992-11-25 BASF Aktiengesellschaft Process for the preparation of amines
EP0644177B1 (en) * 1993-09-20 1997-07-09 Dsm N.V. Process for the preparation of dibenzylamine
JP2000290237A (en) * 1999-03-12 2000-10-17 Basf Ag Production of amine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132938A1 (en) * 2016-02-04 2017-08-10 Rhodia Operations Macroporous catalyst for the preparation of aliphatic amines
US11084776B2 (en) 2016-02-04 2021-08-10 Rhodia Operations Macroporous catalyst for the preparation of aliphatic amines
JP2022530870A (en) * 2019-04-25 2022-07-04 ランクセス・ドイチュランド・ゲーエムベーハー Method for preparing N, N-disubstituted benzothiazolyl sulfenamide

Similar Documents

Publication Publication Date Title
EP3227268B1 (en) Process for production of 2,5-bis-hydroxymethylfuran, 2,5-bis-hydroxymethyltetrahydrofuran, 1,6-hexanediol and 1,2,6-hexanetriol from 5-hydroxymethylfurfural
US7468342B2 (en) Catalysts and process for producing aromatic amines
JP2020522538A (en) Method for producing ethyleneamine
JP7472133B2 (en) Process for producing 1-(4-isobutylphenyl)ethanol by hydrogenation of 1-(4-isobutylphenyl)ethanone in the presence of a catalyst composition containing copper
US8921616B2 (en) Method for producing glycol from polyhydric alcohol
JP2015107954A (en) Production method of 1,2-pentane diol and 1,5-pentane diol
CN103304427B (en) Method for preparing aniline through low-temperature liquid-phase catalytic hydrogenation
JP2014043415A (en) Method for producing dibenzylamine
JP2001199939A (en) Method of producing monoisoprorylamine
JP5468324B2 (en) Process for producing N-alkyl-tert-butylamine
WO2014123248A1 (en) METHOD FOR PRODUCING α,β-UNSATURATED ALCOHOL
JP5790103B2 (en) Method for producing cyclopentanone
US20170216830A1 (en) Catalyst comprising fluorinated metal oxide, manufacture process and hydrogenation process
JP6159327B2 (en) Method for producing 2- (isopropylamino) ethanol
JP2011147934A (en) Hydrogenation catalyst, method of producing the same, and use thereof
JP2014148488A (en) Method for producing 2,3,5-collidine
JP6208679B2 (en) Method for producing 2- (ethylamino) ethanol
CA2798971C (en) Process for preparing 2-(2-tert-butylaminoethoxy)ethanol (tert-butylaminodiglycol, tbadg)
JP4432390B2 (en) Method for producing chlorobenzene
KR101178940B1 (en) Catalyst For Manufacturing Alkylamine And Its Preparing Method
JP2017218404A (en) Production method of 3,4-dihydro-2h-pyran
JP2012197235A (en) PROCESS FOR PRODUCING N-ALKYL-tert-BUTYLAMINE
JP6378680B2 (en) Method for producing 1-alkylimidazole compound
KR100651353B1 (en) A continuous method for preparing venlafaxine intermediates with high yield
CN104350037B (en) The method producing 2-(isopropylamino) ethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913