JP2011147934A - Hydrogenation catalyst, method of producing the same, and use thereof - Google Patents

Hydrogenation catalyst, method of producing the same, and use thereof Download PDF

Info

Publication number
JP2011147934A
JP2011147934A JP2010288883A JP2010288883A JP2011147934A JP 2011147934 A JP2011147934 A JP 2011147934A JP 2010288883 A JP2010288883 A JP 2010288883A JP 2010288883 A JP2010288883 A JP 2010288883A JP 2011147934 A JP2011147934 A JP 2011147934A
Authority
JP
Japan
Prior art keywords
copper
hydrogenation catalyst
catalyst
oxide
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288883A
Other languages
Japanese (ja)
Other versions
JP5966244B2 (en
Inventor
Tsuneo Harada
恒夫 原田
Tadashi Kawabe
正 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010288883A priority Critical patent/JP5966244B2/en
Publication of JP2011147934A publication Critical patent/JP2011147934A/en
Application granted granted Critical
Publication of JP5966244B2 publication Critical patent/JP5966244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst free of a risk of contaminating the environment and of a risk of a health hazard thanks to the absence of an oxide of chromium unlike a prior art copper/chromium-oxide, and moreover exhibiting activity, selectivity and durability equal to or higher than those of a prior art copper/chromium-oxide catalyst. <P>SOLUTION: The hydrogenation catalyst comprising copper and calcium silicate as its main components, is characterized in that copper is contained in an amount of 20 to 60 wt.%, and the molar ratio of calcium oxide (CaO) to silicon oxide (SiO<SB>2</SB>) in calcium silicate is in a range of 0.1 to 0.7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機化合物の水素化に用いる触媒に関する。具体的にはアルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類等の水素化に用いられる有用な触媒に関する。   The present invention relates to a catalyst used for hydrogenation of organic compounds. Specifically, the present invention relates to a useful catalyst used for hydrogenation of aldehydes, ketones, carboxylic acids, carboxylic acid esters, aromatic nitro compounds and the like.

上記水素化反応に用いられる有用な触媒としては、従来、銅クロマイト触媒として銅/クロム酸化物触媒が広く知られている(例えば、非特許文献1参照)。   As a useful catalyst used in the hydrogenation reaction, conventionally, a copper / chromium oxide catalyst is widely known as a copper chromite catalyst (see, for example, Non-Patent Document 1).

その具体的な例として、反応温度180〜370℃、圧力0.1〜0.5MPa、ニトロベンゼン濃度2〜14容量%の条件下で、銅/クロム酸化物触媒を用いてガス状のニトロベンゼンを水素還元し、アニリンを製造する方法が知られている(例えば、特許文献1参照)。しかし、このようなクロム酸化物を含む触媒は、クロムによる健康被害や環境汚染の恐れがあるため、その取り扱いに際しては細心の注意が求められるとともに、使用済み触媒の処理と回収にも多大な労力と費用が必要であった。   As a specific example thereof, gaseous nitrobenzene is hydrogenated using a copper / chromium oxide catalyst under conditions of a reaction temperature of 180 to 370 ° C., a pressure of 0.1 to 0.5 MPa, and a nitrobenzene concentration of 2 to 14% by volume. A method for producing aniline by reduction is known (for example, see Patent Document 1). However, since such a catalyst containing chromium oxide may cause health damage or environmental pollution due to chromium, careful handling is required for its handling, and a great deal of effort is required to treat and recover the used catalyst. And cost was necessary.

さらに、銅、鉄及びアルミニウムを基本成分とする変性ラネー銅触媒を用いた、芳香族ニトロ化合物の水素化による芳香族アミンを製造する方法が提案されている(例えば、特許文献2参照)。しかしながら、一般的に、ラネー金属触媒は表面酸化による活性低下が起こりやすいため、水中や不活性ガス雰囲気中で保管しなければならず、その取り扱いには細心の注意が必要となる。また、活性は高いものの、反面、耐久性において十分でないという問題がある。   Furthermore, a method for producing an aromatic amine by hydrogenation of an aromatic nitro compound using a modified Raney copper catalyst containing copper, iron and aluminum as basic components has been proposed (for example, see Patent Document 2). However, in general, Raney metal catalysts are prone to decrease in activity due to surface oxidation, so they must be stored in water or in an inert gas atmosphere, and careful handling is required. Moreover, although activity is high, there exists a problem that it is not enough in durability.

最近では、銅、ケイ酸カルシウム、アタパルジャイト等の天然粘土鉱物からなる成型水素化触媒が提案されている(例えば、特許文献3参照)。しかし、この成型触媒は、強度と耐久性に優れているものの、原料として天然素材を含むため、その組成や物性変動により、製造される触媒の組成や粒度などにおいて、再現性が乏しいという欠点を有する。   Recently, a molded hydrogenation catalyst made of natural clay minerals such as copper, calcium silicate, and attapulgite has been proposed (see, for example, Patent Document 3). However, although this molded catalyst is excellent in strength and durability, it contains a natural material as a raw material, so that the composition and particle size of the produced catalyst are not reproducible due to variations in its composition and physical properties. Have.

また、銅、ケイ酸カルシウム、ハイドロタルサイトからなる成型触媒が提案されている(例えば、特許文献4参照)。しかし、この成型触媒は、組成がコントロールされたハイドロタルサイトや花弁状のケイ酸カルシウムを使用するため、比較的高価にならざるを得ないという経済的問題点を有する。   Moreover, the shaping | molding catalyst which consists of copper, a calcium silicate, and a hydrotalcite is proposed (for example, refer patent document 4). However, since this molded catalyst uses hydrotalcite or petal-like calcium silicate whose composition is controlled, it has an economic problem that it must be relatively expensive.

特開昭49−231号公報JP-A-49-231 特開平9−124562号公報Japanese Patent Laid-Open No. 9-124562 特表平11−507867号公報Japanese National Patent Publication No. 11-507867 特開2007−289855公報JP 2007-289855 A

触媒工学講座10 触媒学会編集「元素別触媒便覧」(80頁)Catalysis Engineering Lecture 10 “Handbook of Catalysts by Elements” (page 80)

本発明は、従来の銅/クロム酸化物とは異なり、クロム酸化物を含まないことによって、環境汚染や健康被害を招く恐れがなく、その上、従来の銅/クロム酸化物触媒同等以上の活性、選択率及び耐久性を示す触媒を提供することを目的とする。   Unlike the conventional copper / chromium oxide, the present invention does not cause any environmental pollution or health hazard by not containing chromium oxide, and moreover, the activity is equal to or higher than that of the conventional copper / chromium oxide catalyst. An object of the present invention is to provide a catalyst exhibiting selectivity and durability.

本発明者らは、鋭意検討を行った結果、銅とケイ酸カルシウムを主成分とする水素化触媒において、銅を20〜60重量%含有し、好適には銅を30〜60重量%含有し、ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲である水素化触媒が、上記課題を解決することを見出した。 As a result of intensive studies, the present inventors have found that the hydrogenation catalyst mainly composed of copper and calcium silicate contains 20 to 60% by weight of copper, and preferably contains 30 to 60% by weight of copper. It has been found that a hydrogenation catalyst having a molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in calcium silicate in the range of 0.1 to 0.7 solves the above problem.

また、本発明において、銅酸化物を30〜75重量%含有し、好適には40〜75重量%含有し、ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲である水素化触媒前駆体を還元することにより、本発明の水素化触媒が製造できる。 In the present invention, the copper oxide is contained in an amount of 30 to 75% by weight, preferably 40 to 75% by weight, and the molar amount of calcium oxide (CaO) with respect to silicon oxide (SiO 2 ) in calcium silicate. The hydrogenation catalyst of the present invention can be produced by reducing a hydrogenation catalyst precursor having a ratio in the range of 0.1 to 0.7.

さらに、本発明によれば、上記水素化触媒を用いて、100〜350℃の温度範囲で、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類から選ばれる化合物と水素を接触させて水素化化合物を製造することができる。   Further, according to the present invention, a compound selected from aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds and hydrogen in the temperature range of 100 to 350 ° C. using the hydrogenation catalyst. To produce a hydrogenated compound.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

すなわち本発明は、銅とケイ酸カルシウムからなる水素化触媒において、ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲であることを特徴とする水素化触媒に関する。 That is, the present invention provides a hydrogenation catalyst comprising copper and calcium silicate, wherein the molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in calcium silicate is in the range of 0.1 to 0.7. The present invention relates to a hydrogenation catalyst.

水素化触媒成分である銅は、銅酸化物、焼成によって銅酸化物形態に容易に変化しうる水酸化物、炭酸塩もしくは硝酸塩など、または2種類以上の混合物としての水素化触媒前躯体を還元することにより調製される。また、本発明の水素化触媒は、銅を20〜60重量%、好適には30〜60重量%、さらに好適には30〜55重量%含有する。銅の濃度が20重量%未満であると反応ロード(原料フィード量)に対し活性不足となり、コーキングが増加し、触媒ライフが短くなり、一方、銅の濃度が60重量%を超えると銅担持時の分散性が低下し、担持銅あたりの活性が低下する傾向にある。また、銅の濃度が30〜60重量%、さらに30〜55重量%の範囲であると触媒ライフの向上が見込めるため好ましい。   Copper, the hydrogenation catalyst component, reduces the hydrogenation catalyst precursor as copper oxide, hydroxide, carbonate or nitrate that can be easily converted into copper oxide form upon firing, or a mixture of two or more. To be prepared. The hydrogenation catalyst of the present invention contains 20 to 60% by weight of copper, preferably 30 to 60% by weight, and more preferably 30 to 55% by weight. When the copper concentration is less than 20% by weight, the reaction load (raw material feed amount) becomes insufficient in activity, coking increases and the catalyst life is shortened. On the other hand, when the copper concentration exceeds 60% by weight, the copper is loaded. The dispersibility of the copper tends to decrease, and the activity per supported copper tends to decrease. Further, it is preferable that the copper concentration is in the range of 30 to 60% by weight, more preferably 30 to 55% by weight, because improvement in catalyst life can be expected.

銅の水素化触媒中の濃度は、銅イオンとしてJIS K0400−52−30に記載のICP分析方法により算出した値である。   The concentration of copper in the hydrogenation catalyst is a value calculated by the ICP analysis method described in JIS K0400-52-30 as copper ions.

本発明で用いるケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比は0.1〜0.7の範囲であり、好適には0.2〜0.4である。ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲であると銅担持の際、銅の分散性が著しく高くなり、担持された銅の粒子径は微粒子となる。その結果、銅の表面積が大きくなり、触媒の活性が高くなる効果がみられる。また、触媒の酸塩基性を改質し、触媒表面への炭素の析出、所謂コーキングを抑える等の効果がみられる。よって、コーキングによる活性劣化が抑制され、触媒ライフが著しく長くなるものと思われる。また、ケイ素酸化物に対するカルシウム酸化物のモル比が0.2〜0.4の範囲であると触媒ライフの向上が見込めるため好ましい。 The molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in the calcium silicate used in the present invention is in the range of 0.1 to 0.7, preferably 0.2 to 0.4. is there. When the molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in calcium silicate is in the range of 0.1 to 0.7, the copper dispersibility is remarkably increased when the copper is supported. The particle diameter of the copper thus obtained becomes fine particles. As a result, there is an effect that the surface area of copper is increased and the activity of the catalyst is increased. In addition, the acid basicity of the catalyst is modified, and the effect of suppressing carbon deposition on the catalyst surface, so-called coking, is observed. Therefore, it is considered that the activity deterioration due to coking is suppressed and the catalyst life is remarkably increased. Further, it is preferable that the molar ratio of calcium oxide to silicon oxide is in the range of 0.2 to 0.4 because improvement of catalyst life can be expected.

本発明において、ケイ酸カルシウム中のケイ素酸化物(SiO)は、JIS K0101に記載の重量法による分析方法により算出し、カルシウム酸化物(CaO)は、カルシウムイオンとしてJIS K0400−52−30に記載のICP分析方法により算出し、カルシウム酸化物として換算した。 In the present invention, silicon oxide (SiO 2 ) in calcium silicate is calculated by a weight method analysis method described in JIS K0101, and calcium oxide (CaO) is converted into calcium ion in JIS K0400-52-30. It was calculated by the described ICP analysis method and converted as calcium oxide.

本発明で用いるケイ酸カルシウムの表面積は100m/g以上が好ましく、さらに好適には150m/g以上である。ケイ酸カルシウムの表面積が100m/g以上であるとケイ酸カルシウム上に銅が高分散されて担持される。従って、銅の粒子径は微粒子となり、その結果、銅の表面積が大きくなり、触媒の活性が高くなる効果がみられる。よって、コーキングが抑制され、触媒ライフが著しく長くなるものと思われる。また、ケイ酸カルシウムの表面積が150m/g以上であると触媒ライフの向上がさらに見込めるため好ましい。 The surface area of the calcium silicate used in the present invention is preferably 100 m 2 / g or more, and more preferably 150 m 2 / g or more. When the surface area of the calcium silicate is 100 m 2 / g or more, copper is highly dispersed and supported on the calcium silicate. Therefore, the particle diameter of copper becomes fine particles. As a result, the surface area of copper is increased, and the effect of increasing the activity of the catalyst is observed. Therefore, it is considered that coking is suppressed and the catalyst life is remarkably prolonged. Further, it is preferable that the surface area of the calcium silicate is 150 m 2 / g or more because further improvement of the catalyst life can be expected.

ケイ酸カルシウムの表面積は、JIS Z8830に記載の気体吸着法により算出した。   The surface area of calcium silicate was calculated by the gas adsorption method described in JIS Z8830.

本発明で用いるケイ酸カルシウムは天然源または合成源のいずれのものでもよいが、好適にはケイ素酸化物に対するカルシウム酸化物を0.1〜0.7のモル比にコントロールして合成されたものを用いる。   The calcium silicate used in the present invention may be a natural source or a synthetic source, but is preferably synthesized by controlling the calcium oxide to silicon oxide at a molar ratio of 0.1 to 0.7. Is used.

より詳細には、ケイ素酸化物と反応しうる生石灰(酸化カルシウム)、消石灰(水酸化カルシウム)、塩化カルシウム、炭酸カルシウム等のカルシウム源とを大気圧下、常温あるいは加温下で混合し、ケイ酸カルシウムを得る。この際、反応を早めるために水酸化ナトリウム、炭酸ナトリウムなどのアルカリを添加してもよい。ケイ素酸化物は非結晶性、結晶性またはその混合物を使用することができるが、非結晶性のものが好ましい。非結晶性のケイ素酸化物は乾式合成法または湿式合成法のどちらで製造されたものでもよいが、安価な湿式合成法で製造されたもの、例えば、東ソーシリカ(株)からNipsil「NS−K」(登録商標)として市販品を入手することができる。   More specifically, calcium sources such as quick lime (calcium oxide), slaked lime (calcium hydroxide), calcium chloride, and calcium carbonate that can react with silicon oxide are mixed under atmospheric pressure at room temperature or under warming. Obtain calcium acid. At this time, an alkali such as sodium hydroxide or sodium carbonate may be added to accelerate the reaction. The silicon oxide can be amorphous, crystalline, or a mixture thereof, but is preferably amorphous. The non-crystalline silicon oxide may be produced by either a dry synthesis method or a wet synthesis method, but it may be produced by an inexpensive wet synthesis method, for example, Nipsil “NS-K from Tosoh Silica Corporation. ”(Registered trademark) is commercially available.

本発明の触媒を製造する際、水素化触媒成分である銅、あるいは銅酸化物、または焼成によって銅酸化物形態に容易に変化しうる水酸化物、炭酸塩もしくは硝酸塩などからなる少なくとも1種類以上の銅化合物とケイ酸カルシウムを混合させる手段は特に限定されないが、これらを均一に混合できる手段であれば、いずれの手段でも用いることができる。例えば、上記適正範囲の組成物を混合装置に仕込み、乾式混合、または湿式混合した場合には、得られた混合物を乾燥、焼成することにより、本発明の水素化触媒の前駆体粉末を得ることができる。   At the time of producing the catalyst of the present invention, at least one or more of copper, which is a hydrogenation catalyst component, or copper oxide, or hydroxide, carbonate or nitrate which can be easily changed into a copper oxide form by firing The means for mixing the copper compound and calcium silicate is not particularly limited, and any means can be used as long as these can be mixed uniformly. For example, when the composition in the appropriate range is charged into a mixing apparatus and dry-mixed or wet-mixed, the resulting mixture is dried and calcined to obtain the precursor powder of the hydrogenation catalyst of the present invention. Can do.

また、上述のケイ素酸化物と酸化カルシウムから湿式合成されたケイ酸カルシウムのスラリー水溶液に、硝酸銅、塩化銅などの水溶液を連続的、または一括もしくは分割して加え、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液などにより中和し、ケイ酸カルシウム上に銅を担持し、ろ過して触媒湿潤ケークを得る。得られた湿潤ケークを乾燥して本発明の水素化触媒の前駆体粉末を得ることができる。   In addition, an aqueous solution of copper nitrate, copper chloride or the like is added to the aqueous slurry of calcium silicate wet-synthesized from the above-mentioned silicon oxide and calcium oxide, continuously or collectively or dividedly, and an aqueous sodium hydroxide solution, sodium carbonate Neutralize with an aqueous solution, an aqueous solution of sodium hydrogen carbonate, etc., and carry copper on calcium silicate and filter to obtain a catalyst wet cake. The obtained wet cake can be dried to obtain the hydrogenation catalyst precursor powder of the present invention.

必要に応じて、流動調節剤、細孔付与剤、補強剤、粘土のようなバインダーを助剤として用い、粉末状の触媒を押出し成型または圧縮成型して、種々の構造や形態の成型体を得た後、焼成することにより水素化触媒前躯体の成型体を得ることができる。   If necessary, flow control agents, pore imparting agents, reinforcing agents, binders such as clay are used as auxiliary agents, and powdered catalysts are extruded or compression molded to form molded bodies of various structures and forms. After being obtained, the molded body of the hydrogenation catalyst precursor can be obtained by firing.

本発明において、水素化触媒前駆体は、好ましくは反応器内において、目的とする水素化反応を行う前に還元し、活性化して、水素化触媒とする。水素化触媒前駆体を還元する方法としては、例えば、還元剤として水素ガスを用い気相または液相で行う場合、100〜500℃、好ましくは150〜300℃の温度で気相還元することが望ましい。100℃未満では還元反応が進み難く、500℃を越えると銅のシンタリングによる活性の低下が起こるため好ましくない。また、150〜300℃の温度範囲では安定して反応が進むため好ましい。この場合、窒素、ヘリウム、アルゴン等の不活性ガスで水素ガスを希釈したものを用いてもよい。   In the present invention, the hydrogenation catalyst precursor is preferably reduced in the reactor before the intended hydrogenation reaction and activated to form a hydrogenation catalyst. As a method for reducing the hydrogenation catalyst precursor, for example, when hydrogen gas is used as a reducing agent in a gas phase or a liquid phase, the gas phase reduction may be performed at a temperature of 100 to 500 ° C., preferably 150 to 300 ° C. desirable. If the temperature is lower than 100 ° C., the reduction reaction is difficult to proceed. If the temperature exceeds 500 ° C., the activity is reduced due to copper sintering, which is not preferable. Moreover, since reaction advances stably in the temperature range of 150-300 degreeC, it is preferable. In this case, a hydrogen gas diluted with an inert gas such as nitrogen, helium, or argon may be used.

このようにして得られる本発明の水素化触媒は、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類を対象とした水素化反応に好適に用いられる。   The hydrogenation catalyst of the present invention thus obtained is suitably used for a hydrogenation reaction targeting aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds.

本発明の触媒を用いて、水素化してアルコールを製造することができるアルデヒド類の例としては、ホルムアルデヒド、プロピオンアルデヒド、n−ブチルアルデヒド、イソブチルアルデヒド、バレルアルデヒド、2−メチルブチルアルデヒド、3−メチルブチルアルデヒド、2,2−ジメチルプロピオンアルデヒド、カプロンアルデヒド、2−メチルバレルアルデヒド、3−メチルバレルアルデヒド、4−メチルバレルアルデヒド、2−エチルブチルアルデヒド、2,2−ジメチルブチルアルデヒド、3,3−ジメチルブチルアルデヒド、カプリルアルデヒド、カプリンアルデヒド、グルタルジアルデヒドなどが挙げられる。また、ケトン類としては、アセトン、ブタノン、ペンタノン、ヘキサノン、シクロヘキサノン、アセトフェノンなどが挙げられる。   Examples of aldehydes that can be hydrogenated to produce alcohol using the catalyst of the present invention include formaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, valeraldehyde, 2-methylbutyraldehyde, 3-methyl Butyraldehyde, 2,2-dimethylpropionaldehyde, capronaldehyde, 2-methylvaleraldehyde, 3-methylvaleraldehyde, 4-methylvaleraldehyde, 2-ethylbutyraldehyde, 2,2-dimethylbutyraldehyde, 3,3- Examples include dimethylbutyraldehyde, caprylaldehyde, caprinaldehyde, glutardialdehyde. Examples of ketones include acetone, butanone, pentanone, hexanone, cyclohexanone, acetophenone, and the like.

本発明の触媒を用いて、水素化してアルコールを製造することができるカルボン酸類やカルボン酸エステル類としては、ギ酸、酢酸、カプロン酸、カプリル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリル酸、オレイン酸、シュウ酸、マレイン酸、アジピン酸、セバシン酸、シクロヘキサンカルボン酸、安息香酸、フタル酸などやそのエステルが挙げられる。   Carboxylic acids and carboxylic acid esters that can be produced by hydrogenation using the catalyst of the present invention include formic acid, acetic acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, Examples include isostearyl acid, oleic acid, oxalic acid, maleic acid, adipic acid, sebacic acid, cyclohexanecarboxylic acid, benzoic acid, phthalic acid, and esters thereof.

本発明の触媒を用いて、水素化して芳香族アミン化合物を製造することができる芳香族ニトロ化合物類としては、ニトロベンゼン、アルキル置換ニトロベンゼン類、ニトロナフタレン類、4−ニトロジフェニル、ニトロアントラキノン類、ニトロフェナントロ類、2−ニトロフラン、2−ニトロチオフェン、3−ニトロピリジン、2−ニトロジフェニルエーテル、5−ニトロ−1H−ベンゾトリアゾール、異性体ジニトロベンゼン類、異性体ニトロアニリン類、p−ニトロ安息香酸、m−ニトロ安息香酸、o−ニトロ安息香酸、異性体ニトロフェノール類、o−ニトロクロロベンゼン、m−ニトロクロロベンゼン、p−ニトロクロロベンゼン、3,4−ジニトロクロロベンゼンなどが挙げられる。特に、ニトロベンゼンは本発明の水素化反応を適用するのに好適なニトロ化合物である。このニトロベンゼンの水素化は、通常、100〜350℃の範囲の温度、0.1〜0.5MPaの加圧下で行うことにより、副反応を抑え、触媒ライフを長くすることができるため効果的である。水素/ニトロベンゼンのモル比は10〜20倍が好適であり、また、反応熱の除去や触媒劣化の観点から窒素などの不活性ガスを混合して行うことも可能である。GHSV(単位容積あたりの原料ガス流入速度)は1000〜2000h−1の範囲が好適である。 Aromatic nitro compounds that can be produced by hydrogenation using the catalyst of the present invention include nitrobenzene, alkyl-substituted nitrobenzenes, nitronaphthalenes, 4-nitrodiphenyl, nitroanthraquinones, nitro Phenanthros, 2-nitrofuran, 2-nitrothiophene, 3-nitropyridine, 2-nitrodiphenyl ether, 5-nitro-1H-benzotriazole, isomeric dinitrobenzenes, isomeric nitroanilines, p-nitrobenzoic acid Examples include acids, m-nitrobenzoic acid, o-nitrobenzoic acid, isomeric nitrophenols, o-nitrochlorobenzene, m-nitrochlorobenzene, p-nitrochlorobenzene, 3,4-dinitrochlorobenzene. In particular, nitrobenzene is a suitable nitro compound for applying the hydrogenation reaction of the present invention. This hydrogenation of nitrobenzene is effective because it can suppress side reactions and prolong the catalyst life by performing it under a temperature of 100 to 350 ° C. and a pressure of 0.1 to 0.5 MPa. is there. The molar ratio of hydrogen / nitrobenzene is preferably 10 to 20 times, and an inert gas such as nitrogen can be mixed from the viewpoint of removal of reaction heat and catalyst deterioration. The range of 1000 to 2000 h −1 is suitable for GHSV (raw material gas inflow rate per unit volume).

本発明による水素化触媒は、成分として有害なクロムを含有せず、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類等の水素化反応に対して優れた活性、選択率及び長い触媒寿命を有する。   The hydrogenation catalyst according to the present invention does not contain harmful chromium as a component, and has excellent activity and selection for hydrogenation reactions such as aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds. With high rate and long catalyst life.

ケイ酸カルシウムのCaO/SiOのモル比と触媒推定ライフの関係を示す。A molar ratio of CaO / SiO 2 of calcium silicate and the estimated catalyst life relationship.

以下の実施例によって本発明を詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   The present invention will be described in detail by the following examples, but the present invention is not limited by these examples.

実施例1
(水素化触媒前躯体の調製)
2Lのガラス容器に、イオン交換水225mLを添加し、次に、シリカ(ケイ素酸化物)に対する酸化カルシウムのモル比(CaO/SiOモル比)が0.25になるように、シリカ粉末(東ソーシリカ製、Nipsil「NS−K」)30.0g及び生石灰粉末(関東化学製、試薬1級)7.0gを仕込み、25℃で24時間攪拌して、ケイ酸カルシウム担体を調製した。この調製したケイ酸カルシウムスラリー水溶液を攪拌下、25℃に保ちながら、39重量%硝酸銅水溶液(関西触媒化学製)382.7gを3時間かけて等速添加した。その時、該スラリー水溶液は、20重量%炭酸ナトリウム水溶液でpH6.5〜7.5にコントロールした。硝酸銅水溶液の添加終了後、25℃で2時間攪拌熟成した。次に、沈殿物をろ過し、湿潤ケークを3Lのイオン交換水で洗浄した。
Example 1
(Preparation of hydrogenation catalyst precursor)
Add 225 mL of ion-exchanged water to a 2 L glass container, and then add silica powder (Tosoh) so that the molar ratio of calcium oxide to silica (silicon oxide) (CaO / SiO 2 molar ratio) is 0.25. A silica silicate carrier was prepared by charging 30.0 g of silica (Nipsil “NS-K”) and 7.0 g of quicklime powder (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) and stirring at 25 ° C. for 24 hours. While maintaining the prepared calcium silicate slurry aqueous solution at 25 ° C. with stirring, 382.7 g of 39 wt% aqueous copper nitrate solution (manufactured by Kansai Catalysts Chemical) was added at a constant rate over 3 hours. At that time, the slurry aqueous solution was controlled to pH 6.5 to 7.5 with a 20 wt% sodium carbonate aqueous solution. After completion of the addition of the aqueous copper nitrate solution, the mixture was aged with stirring at 25 ° C. for 2 hours. The precipitate was then filtered and the wet cake was washed with 3 L of ion exchange water.

得られた湿潤ケークは110℃で一晩、空気中で乾燥し、この乾燥した固形物は粗粉砕し、450℃で3時間焼成した。得られた焼成粉末に滑剤としてグラファイト2.0gを添加し、混合した後、ロータリー打錠機で5mmΦ×5mmの円筒形に成型した。得られた成型物は450℃で3時間、再び焼成して水素化触媒前躯体とした。   The resulting wet cake was dried in air at 110 ° C. overnight, and the dried solid was coarsely ground and calcined at 450 ° C. for 3 hours. After adding 2.0 g of graphite as a lubricant to the obtained fired powder and mixing it, it was molded into a cylindrical shape of 5 mmΦ × 5 mm with a rotary tableting machine. The obtained molded product was fired again at 450 ° C. for 3 hours to obtain a hydrogenation catalyst precursor.

(ニトロベンゼンの水素化反応)
上記水素化触媒前躯体を乳鉢で破砕し、2.8mmと1.0mmの篩を用いて、触媒を2.8〜1.0mmの粒子に篩分けした。篩分けした触媒粒子30mLをSUS製の固定床反応器に充填し、水素流通下、215℃で24時間還元し、活性化した。触媒性能評価は、水素圧0.14MPa、反応温度175℃、GHSV1500h−1、LHSV(単位容積あたりの原料液体の供給速度)0.4h−1、及び水素/ニトロベンゼンモル比15の条件下にて、ニトロベンゼンの水素化反応を800時間連続して行った。得られた反応生成物をガスクロマトグラフィー(装置は島津製作所社製GC−14A、カラムはDB170)にて分析した。反応800時間後のアニリン選択率は99.8%であった。また、この反応800時間の触媒層内最高温度位置の移動速度から計算した触媒推定ライフは約17,000時間となった。
(Nitrobenzene hydrogenation reaction)
The hydrogenation catalyst precursor was crushed with a mortar, and the catalyst was sieved to 2.8 to 1.0 mm particles using 2.8 mm and 1.0 mm sieves. 30 mL of the sieved catalyst particles were charged into a SUS fixed bed reactor, and reduced and activated at 215 ° C. for 24 hours under hydrogen flow. The catalyst performance was evaluated under the conditions of a hydrogen pressure of 0.14 MPa, a reaction temperature of 175 ° C., GHSV 1500 h −1 , LHSV (feed rate of raw material liquid per unit volume) 0.4 h −1 , and a hydrogen / nitrobenzene molar ratio of 15. The hydrogenation reaction of nitrobenzene was carried out continuously for 800 hours. The obtained reaction product was analyzed by gas chromatography (device is GC-14A manufactured by Shimadzu Corporation, column is DB170). The aniline selectivity after 800 hours of the reaction was 99.8%. Further, the estimated catalyst life calculated from the moving speed of the maximum temperature position in the catalyst layer during the 800 hours of the reaction was about 17,000 hours.

表1に銅濃度(重量%)、CaO/SiOモル比、反応800時間後のアニリン選択率(%)及び触媒推定ライフ(時間)を示す。 Copper concentration in Table 1 (wt%), indicating CaO / SiO 2 molar ratio, aniline selectivity after the reaction 800 hours (%) and the estimated catalyst life (time).

なお、銅の濃度は、パーキンエルマー社製ICP Optima5300DVにより定量した。また、担体表面積は島津製作所社製フローソープII2300により計測した。   The copper concentration was quantified by ICP Optima 5300 DV manufactured by PerkinElmer. The surface area of the carrier was measured with Flow Soap II2300 manufactured by Shimadzu Corporation.

実施例2〜5
表1に示す所定の銅濃度(重量%)と所定のCaO/SiOモル比となるようにしたこと以外は、実施例1と同様に実施した。そして、反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
Examples 2-5
The same operation as in Example 1 was performed except that the predetermined copper concentration (% by weight) shown in Table 1 and the predetermined CaO / SiO 2 molar ratio were obtained. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

実施例6
(水素化触媒前躯体の調製)
2Lのガラス容器に、イオン交換水225mLを添加し、次に、シリカ(ケイ素酸化物)に対する酸化カルシウムのモル比(CaO/SiOモル比)が0.25になるように、シリカ粉末(東ソーシリカ製、Nipsil「NS−K」)36.0g及び消石灰粉末(関東化学製、試薬1級)11.1gを仕込み、40℃で6時間攪拌して、ケイ酸カルシウム担体を調製した。この調製したケイ酸カルシウムスラリー水溶液を攪拌下、40℃に保ちながら、39重量%硝酸銅水溶液(関西触媒化学製)305.5gを4時間かけて等速添加した。その時、該スラリー水溶液は、20重量%炭酸ナトリウム水溶液でpH6.5〜7.5にコントロールした。硝酸銅水溶液の添加終了後、40℃で2時間攪拌熟成した。次に、沈殿物をろ過し、湿潤ケークを3Lのイオン交換水で洗浄した。
Example 6
(Preparation of hydrogenation catalyst precursor)
Add 225 mL of ion-exchanged water to a 2 L glass container, and then add silica powder (Tosoh) so that the molar ratio of calcium oxide to silica (silicon oxide) (CaO / SiO 2 molar ratio) is 0.25. 36.0 g made of silica (Nippil “NS-K”) and 11.1 g slaked lime powder (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) were charged and stirred at 40 ° C. for 6 hours to prepare a calcium silicate carrier. While maintaining the prepared calcium silicate slurry aqueous solution at 40 ° C. with stirring, 305.5 g of 39 wt% aqueous copper nitrate solution (manufactured by Kansai Catalyst Chemical) was added at a constant rate over 4 hours. At that time, the slurry aqueous solution was controlled to pH 6.5 to 7.5 with a 20 wt% sodium carbonate aqueous solution. After completion of the addition of the copper nitrate aqueous solution, the mixture was aged and stirred at 40 ° C. for 2 hours. The precipitate was then filtered and the wet cake was washed with 3 L of ion exchange water.

得られた湿潤ケークは110℃で一晩、空気中で乾燥した。得られた乾燥粉末に滑剤としてグラファイト2.0gを添加し、混合した後、ロータリー打錠機で5mmΦ×5mmの円筒形に成型した。得られた成型物は450℃で3時間、再び焼成して水素化触媒前躯体とした。   The resulting wet cake was dried in air at 110 ° C. overnight. After adding 2.0 g of graphite as a lubricant to the obtained dry powder and mixing, it was molded into a cylindrical shape of 5 mmΦ × 5 mm with a rotary tableting machine. The obtained molded product was fired again at 450 ° C. for 3 hours to obtain a hydrogenation catalyst precursor.

(ニトロベンゼンの水素化反応)
得られた水素化触媒前躯体を用いること以外は、実施例1と同様に実施した。反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
(Nitrobenzene hydrogenation reaction)
The same operation as in Example 1 was performed except that the obtained hydrogenation catalyst precursor was used. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

実施例7〜8
表1に示す所定の銅濃度(重量%)と所定のCaO/SiOモル比となるようにしたこと以外は、実施例6と同様に実施した。そして、反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
Examples 7-8
The same operation as in Example 6 was performed except that the predetermined copper concentration (% by weight) shown in Table 1 and the predetermined CaO / SiO 2 molar ratio were obtained. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

実施例9
シリカ成分として、シリカ粉末(東ソーシリカ製、Nipgel「CX−200」)を使用して、表1に示す所定の銅濃度(重量%)と所定のCaO/SiOモル比となるようにしたこと以外は、実施例6と同様に実施した。そして、反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
Example 9
Using silica powder (Nippel “CX-200”, manufactured by Tosoh Silica) as the silica component, the predetermined copper concentration (wt%) shown in Table 1 and the predetermined CaO / SiO 2 molar ratio were obtained. Except for this, the same procedure as in Example 6 was performed. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

実施例10
表面積130m/gのケイ酸カルシウム(トクヤマ製、フローライト)を使用して、表1に示す所定の銅濃度(重量%)となるようにしたこと以外は、実施例6と同様に実施した。そして、反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
Example 10
This was carried out in the same manner as in Example 6 except that calcium silicate having a surface area of 130 m 2 / g (made by Tokuyama, Fluorite) was used to achieve the predetermined copper concentration (weight%) shown in Table 1. . Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

比較例1〜3
表1に示す所定の銅濃度(重量%)と所定のCaO/SiOモル比となるようにしたこと以外は、実施例1と同様に実施した。そして、反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
Comparative Examples 1-3
The same operation as in Example 1 was performed except that the predetermined copper concentration (% by weight) shown in Table 1 and the predetermined CaO / SiO 2 molar ratio were obtained. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

比較例4
(水素化触媒前躯体の調製)
2Lのガラス容器に、イオン交換水400mLを仕込み、攪拌下、シリカ含有量が6.76mol/Lのケイ酸ソーダ3号液(キシダ化学製)286mLと、0.16mol/Lの硫酸アルミニウム水溶液(関東化学製)302mLを、それぞれ定量ポンプを用いて1時間で等速投入した。該反応操作は25℃で実施し、反応終了後pHは4となった。
Comparative Example 4
(Preparation of hydrogenation catalyst precursor)
Into a 2 L glass container, 400 mL of ion-exchanged water is charged, and under stirring, 286 mL of sodium silicate solution No. 3 having a silica content of 6.76 mol / L (manufactured by Kishida Chemical) and an aqueous solution of 0.16 mol / L aluminum sulfate ( 302 mL (manufactured by Kanto Chemical Co., Inc.) was introduced at a constant rate in 1 hour using a metering pump. The reaction operation was carried out at 25 ° C., and the pH was 4 after completion of the reaction.

続いて、得られた反応液を95℃で1時間加熱し熟成した。   Subsequently, the resulting reaction solution was aged by heating at 95 ° C. for 1 hour.

その後、ヌッチェを用いて吸引ろ過し、湿潤ケークを500mLのイオン交換水で洗浄した。得られた湿潤ケークを75℃で一晩、空気中で乾燥し、得られた固形物を粗粉砕して、ケイ酸アルミニウム担体を得た。   After that, suction filtration was performed using a Nutsche, and the wet cake was washed with 500 mL of ion-exchanged water. The obtained wet cake was dried in air at 75 ° C. overnight, and the obtained solid was coarsely pulverized to obtain an aluminum silicate carrier.

2Lのガラス容器に、イオン交換水400mLを添加し、次に上記ケイ酸アルミニウム担体を32g添加して60℃に加熱した。調製した担体スラリー水溶液を攪拌下、60℃に保ちながら、39重量%硝酸銅水溶液(関東化学製)382.7gを3時間かけて等速添加した。その時、該スラリー水溶液は、20重量%炭酸ナトリウム水溶液でpH6.5〜7.5にコントロールした。硝酸銅水溶液の添加終了後、60℃で2時間熟成した。次に沈殿物をろ過し、湿潤ケークを3Lのイオン交換水で洗浄した。   To a 2 L glass container, 400 mL of ion exchange water was added, and then 32 g of the above aluminum silicate support was added and heated to 60 ° C. While maintaining the prepared carrier slurry aqueous solution at 60 ° C. with stirring, 382.7 g of 39 wt% aqueous copper nitrate solution (manufactured by Kanto Chemical) was added at a constant rate over 3 hours. At that time, the slurry aqueous solution was controlled to pH 6.5 to 7.5 with a 20 wt% sodium carbonate aqueous solution. After completion of the addition of the copper nitrate aqueous solution, aging was performed at 60 ° C. for 2 hours. The precipitate was then filtered and the wet cake was washed with 3 L of ion exchange water.

得られた湿潤ケークは110℃で一晩、空気中で乾燥し、この乾燥した固形物は粗粉砕し、450℃で3時間焼成した。得られた焼成粉末にバインダーとしてシリカゾル(日産化学製、スノーテックス40)を5g添加し、混合した後、ロータリー打錠機で5mmΦ×5mmの円筒形に成型した。得られた成型物は450℃で3時間、再び焼成して水素化触媒前躯体とした。   The resulting wet cake was dried in air at 110 ° C. overnight, and the dried solid was coarsely ground and calcined at 450 ° C. for 3 hours. 5 g of silica sol (manufactured by Nissan Chemical Co., Snowtex 40) was added to the obtained fired powder as a binder, mixed, and then molded into a cylindrical shape of 5 mmΦ × 5 mm with a rotary tableting machine. The obtained molded product was fired again at 450 ° C. for 3 hours to obtain a hydrogenation catalyst precursor.

(ニトロベンゼンの水素化反応)
得られた水素化触媒前躯体を用いること以外は、実施例1と同様に実施した。反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
(Nitrobenzene hydrogenation reaction)
The same operation as in Example 1 was performed except that the obtained hydrogenation catalyst precursor was used. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

比較例5
(水素化触媒前躯体の調製)
2Lのガラス容器に、イオン交換水1Lを添加し、次に硝酸銅三水和物(関東化学製、試薬特級)111.2gを加え、攪拌しながら80℃に昇温して、硝酸銅水溶液を調製した。別に、イオン交換水0.8Lに水酸化ナトリウム(関東化学製、試薬1級)45gを加え溶解して、水酸化ナトリウム水溶液を調製した。上記硝酸銅水溶液を80℃に保ち、攪拌しながら、水酸化ナトリウム水溶液を添加した。添加終了後に80℃で30分間攪拌した後、スラリーを50℃まで冷却し、沈殿物をろ過し、湿潤ケークを366mLのイオン交換水で洗浄した。
Comparative Example 5
(Preparation of hydrogenation catalyst precursor)
Add 1 L of ion-exchanged water to a 2 L glass container, then add 111.2 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd., reagent grade), raise the temperature to 80 ° C. with stirring, and add a copper nitrate aqueous solution. Was prepared. Separately, 45 g of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) was added to 0.8 L of ion-exchanged water and dissolved to prepare an aqueous sodium hydroxide solution. While maintaining the copper nitrate aqueous solution at 80 ° C., the sodium hydroxide aqueous solution was added while stirring. After completion of the addition, the mixture was stirred at 80 ° C. for 30 minutes, and then the slurry was cooled to 50 ° C., the precipitate was filtered, and the wet cake was washed with 366 mL of ion-exchanged water.

次に、2Lガラス容器に、イオン交換水1Lを加え、上記沈殿物を添加、リパルプし、さらにケイ酸カルシウム(トクヤマ製、フローライト)40.2g及びマグネシウムを含有するハイドロタルサイト(協和化学工業製、アルカマック)1.8gを添加し、1時間攪拌した。該スラリーをろ過し、湿潤ケークを得た。   Next, 1 L of ion exchange water is added to a 2 L glass container, the above precipitate is added, repulped, and hydrotalcite (Kyowa Chemical Industry) containing 40.2 g of calcium silicate (made by Tokuyama, Florite) and magnesium. (Manufactured by Alkamak) was added and stirred for 1 hour. The slurry was filtered to obtain a wet cake.

得られた湿潤ケークは110℃で一晩、空気中で乾燥し、この乾燥した固形物は粗粉砕した。得られた乾燥粉末に滑剤としてグラファイト1.5gを添加し、混合した後、プレス成型機にて成型した。この成型物は400℃で6時間焼成して水素化触媒前躯体とした。   The resulting wet cake was dried in air at 110 ° C. overnight, and the dried solid was coarsely ground. 1.5 g of graphite was added to the obtained dry powder as a lubricant, mixed, and then molded with a press molding machine. This molded product was calcined at 400 ° C. for 6 hours to obtain a hydrogenation catalyst precursor.

(ニトロベンゼンの水素化反応)
得られた水素化触媒前躯体を用いること以外は、実施例1と同様に実施した。反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
(Nitrobenzene hydrogenation reaction)
The same operation as in Example 1 was performed except that the obtained hydrogenation catalyst precursor was used. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

比較例6
(水素化触媒前躯体の調製)
2Lのガラス容器に、イオン交換水1Lを添加し、次に硝酸銅三水和物(関東化学製、試薬特級)111.2gを加え、攪拌しながら80℃に昇温して、硝酸銅水溶液を調製した。別に、イオン交換水0.8Lに水酸化ナトリウム(関東化学製、試薬1級)45gを加え溶解して、水酸化ナトリウム水溶液を調製した。上記硝酸銅水溶液を80℃に保ち、攪拌しながら、水酸化ナトリウム水溶液を添加した。添加終了後に80℃で30分間攪拌した後、スラリーを50℃まで冷却し、沈殿物をろ過し、湿潤ケークを366mLのイオン交換水で洗浄した。得られた湿潤ケークを110℃で一晩乾燥し、酸化第二銅粉末を得た。
Comparative Example 6
(Preparation of hydrogenation catalyst precursor)
Add 1 L of ion-exchanged water to a 2 L glass container, then add 111.2 g of copper nitrate trihydrate (manufactured by Kanto Chemical Co., Ltd., reagent grade), raise the temperature to 80 ° C. with stirring, and add a copper nitrate aqueous solution. Was prepared. Separately, 45 g of sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., reagent grade 1) was added to 0.8 L of ion-exchanged water and dissolved to prepare an aqueous sodium hydroxide solution. While maintaining the copper nitrate aqueous solution at 80 ° C., the sodium hydroxide aqueous solution was added while stirring. After completion of the addition, the mixture was stirred at 80 ° C. for 30 minutes, and then the slurry was cooled to 50 ° C., the precipitate was filtered, and the wet cake was washed with 366 mL of ion-exchanged water. The obtained wet cake was dried at 110 ° C. overnight to obtain cupric oxide powder.

乳鉢に、この酸化第二銅粉末25.7g、水酸化カルシウム(関東化学製、試薬1級)9.1g、アタパルジャイト粘土(BASF製、Attagel40)2.1gを添加し、5分間混練した。次に、40重量%コロイダルシリカ(日産化学製、スノーテックス40)28.9gを添加し、27分間混練した。さらにイオン交換水9.0mLを添加しながら、34分間混練を継続した。   To the mortar, 25.7 g of this cupric oxide powder, 9.1 g of calcium hydroxide (manufactured by Kanto Chemical Co., Ltd., reagent grade 1), and 2.1 g of attapulgite clay (manufactured by BASF, Attage 40) were added and kneaded for 5 minutes. Next, 28.9 g of 40 wt% colloidal silica (Nissan Chemical, Snowtex 40) was added and kneaded for 27 minutes. Further, kneading was continued for 34 minutes while adding 9.0 mL of ion-exchanged water.

得られた混練物はプレス成型機にて成型し、125℃で一晩空気中で乾燥し、この乾燥した成型物は600℃で2時間焼成し、水素化触媒前躯体を得た。   The obtained kneaded product was molded by a press molding machine and dried in air at 125 ° C. overnight. The dried molded product was calcined at 600 ° C. for 2 hours to obtain a hydrogenation catalyst precursor.

(ニトロベンゼンの水素化反応)
得られた水素化触媒前躯体を用いること以外は、実施例1と同様に実施した。反応800時間後のアニリン選択率と触媒推定ライフの結果を表1に示す。
(Nitrobenzene hydrogenation reaction)
The same operation as in Example 1 was performed except that the obtained hydrogenation catalyst precursor was used. Table 1 shows the results of aniline selectivity and estimated catalyst life after 800 hours of reaction.

Figure 2011147934
表1に示す結果から明らかなように、本発明の水素化触媒を用いれば、水素化によって得られた生成物を高選択率、且つ高収率で得ることができ、しかも、著しく長い期間に渡って反応を継続することができる。
Figure 2011147934
As is apparent from the results shown in Table 1, when the hydrogenation catalyst of the present invention is used, the product obtained by hydrogenation can be obtained with high selectivity and high yield, and in a significantly long period. The reaction can continue across.

図1に、ケイ酸カルシウムのCaO/SiOのモル比と触媒推定ライフの関係を示すが、図1から明らかなように、本発明の水素化触媒を用いれば、水素化反応を著しく長い期間に渡って継続することができる。 FIG. 1 shows the relationship between the CaO / SiO 2 molar ratio of calcium silicate and the estimated life of the catalyst. As is apparent from FIG. 1, when the hydrogenation catalyst of the present invention is used, the hydrogenation reaction takes a very long time. Can continue over to.

本発明による水素化触媒は、成分として有害なクロムを含有せず、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類等の水素化反応に対して優れた活性、選択率及び長い触媒寿命を有するため、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類等の広範な水素化反応に使用できる。   The hydrogenation catalyst according to the present invention does not contain harmful chromium as a component, and has excellent activity and selection for hydrogenation reactions such as aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds. Since it has a high rate and a long catalyst life, it can be used in a wide range of hydrogenation reactions such as aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds.

Claims (8)

銅とケイ酸カルシウムからなる水素化触媒において、ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲であることを特徴とする水素化触媒。 In the hydrogenation catalyst comprising copper and calcium silicate, the molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in calcium silicate is in the range of 0.1 to 0.7. Hydrogenation catalyst. 銅の濃度が20〜60重量%であることを特徴とする請求項1に記載の水素化触媒。 The hydrogenation catalyst according to claim 1, wherein the copper concentration is 20 to 60% by weight. ケイ酸カルシウムの表面積が100m/g以上であることを特徴とする請求項1または2に記載の水素化触媒。 The hydrogenation catalyst according to claim 1 or 2, wherein the surface area of calcium silicate is 100 m 2 / g or more. アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類から選ばれる化合物の水素化に用いられる請求項1乃至3のいずれか一項に記載の水素化触媒。 The hydrogenation catalyst according to any one of claims 1 to 3, which is used for hydrogenation of a compound selected from aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds. 芳香族ニトロ化合物類がニトロベンゼンであることを特徴とする請求項4に記載の水素化触媒。 The hydrogenation catalyst according to claim 4, wherein the aromatic nitro compound is nitrobenzene. 銅酸化物を30〜75重量%含有し、ケイ酸カルシウム中のケイ素酸化物(SiO)に対するカルシウム酸化物(CaO)のモル比が0.1〜0.7の範囲である水素化触媒前駆体を還元することを特徴とする請求項1乃至5のいずれか一項に記載の水素化触媒の製造方法。 A hydrogenation catalyst precursor containing 30 to 75% by weight of copper oxide and having a molar ratio of calcium oxide (CaO) to silicon oxide (SiO 2 ) in calcium silicate in the range of 0.1 to 0.7. The method for producing a hydrogenation catalyst according to any one of claims 1 to 5, wherein the body is reduced. 請求項1乃至3のいずれか一項に記載の水素化触媒を使用し、100〜350℃の温度範囲で、アルデヒド類、ケトン類、カルボン酸類、カルボン酸エステル類及び芳香族ニトロ化合物類から選ばれる化合物と水素を接触させることを特徴とする水素化化合物の製造方法。 A hydrogenation catalyst according to any one of claims 1 to 3 is used and selected from aldehydes, ketones, carboxylic acids, carboxylic acid esters and aromatic nitro compounds in a temperature range of 100 to 350 ° C. A method for producing a hydrogenated compound, comprising bringing hydrogen into contact with a compound to be produced. 芳香族ニトロ化合物類がニトロベンゼンであり、水素化化合物がアニリンであることを特徴とする請求項7に記載の水素化化合物の製造方法。 The method for producing a hydrogenated compound according to claim 7, wherein the aromatic nitro compound is nitrobenzene and the hydrogenated compound is aniline.
JP2010288883A 2009-12-25 2010-12-24 Hydrogenation catalyst, method for producing the same, and use thereof Active JP5966244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288883A JP5966244B2 (en) 2009-12-25 2010-12-24 Hydrogenation catalyst, method for producing the same, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009295876 2009-12-25
JP2009295876 2009-12-25
JP2010288883A JP5966244B2 (en) 2009-12-25 2010-12-24 Hydrogenation catalyst, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2011147934A true JP2011147934A (en) 2011-08-04
JP5966244B2 JP5966244B2 (en) 2016-08-10

Family

ID=44535435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288883A Active JP5966244B2 (en) 2009-12-25 2010-12-24 Hydrogenation catalyst, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP5966244B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128901A (en) * 2011-12-22 2013-07-04 Tosoh Corp Molded product of hydrogenation catalyst composition and method for producing the same
JP2017031115A (en) * 2015-08-04 2017-02-09 Jxエネルギー株式会社 Method for producing aldehyde and dehydrogenation catalyst
JP2018140395A (en) * 2012-09-03 2018-09-13 株式会社クラレ Copper-based catalyst precursor, production method of the same, and hydrogenation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725795A (en) * 1993-06-24 1995-01-27 Ind Technol Res Inst Vapor phase one-step production of 1,4-butanediol and gamma-butyrolactone
JPH10152485A (en) * 1996-09-05 1998-06-09 Basf Ag Vapor-phase dehydrogenation of 1,4-butanediol into gamma-butyrolactone
JPH11507867A (en) * 1995-06-15 1999-07-13 エンゲルハード・コーポレーシヨン Molded catalyst for hydrogenation and its production and use
JP2000103966A (en) * 1998-07-29 2000-04-11 Dow Corning Toray Silicone Co Ltd Silicone rubber composition for rubber contact and rubber contact
JP2004043290A (en) * 2002-05-14 2004-02-12 Konoshima Chemical Co Ltd Method of manufacturing porous calcium silicate and porous calcium silicate
JP2004307311A (en) * 2003-02-19 2004-11-04 National Institute Of Advanced Industrial & Technology Platy calcium silicate, method for manufacture the same, platy silica porous body obtained from platy calcium silicate and method for manufacture the same
JP2004535470A (en) * 2001-07-18 2004-11-25 アトフイナ・リサーチ・ソシエテ・アノニム Hydrogenation and dehydrogenation methods and catalysts therefor
JP2005238192A (en) * 2004-02-27 2005-09-08 Konoshima Chemical Co Ltd Metal supported catalyst
JP2007007520A (en) * 2005-06-29 2007-01-18 Yamaguchi Univ Catalyst and method for manufacturing aldehyde
JP2007289855A (en) * 2006-04-25 2007-11-08 Sakai Chem Ind Co Ltd Hydrogenation catalyst, its use and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725795A (en) * 1993-06-24 1995-01-27 Ind Technol Res Inst Vapor phase one-step production of 1,4-butanediol and gamma-butyrolactone
JPH11507867A (en) * 1995-06-15 1999-07-13 エンゲルハード・コーポレーシヨン Molded catalyst for hydrogenation and its production and use
JPH10152485A (en) * 1996-09-05 1998-06-09 Basf Ag Vapor-phase dehydrogenation of 1,4-butanediol into gamma-butyrolactone
JP2000103966A (en) * 1998-07-29 2000-04-11 Dow Corning Toray Silicone Co Ltd Silicone rubber composition for rubber contact and rubber contact
JP2004535470A (en) * 2001-07-18 2004-11-25 アトフイナ・リサーチ・ソシエテ・アノニム Hydrogenation and dehydrogenation methods and catalysts therefor
JP2009161766A (en) * 2001-07-18 2009-07-23 Total Petrochemicals Research Feluy Hydrogenation and dehydrogenation method and catalyst thereof
JP2004043290A (en) * 2002-05-14 2004-02-12 Konoshima Chemical Co Ltd Method of manufacturing porous calcium silicate and porous calcium silicate
JP2004307311A (en) * 2003-02-19 2004-11-04 National Institute Of Advanced Industrial & Technology Platy calcium silicate, method for manufacture the same, platy silica porous body obtained from platy calcium silicate and method for manufacture the same
JP2005238192A (en) * 2004-02-27 2005-09-08 Konoshima Chemical Co Ltd Metal supported catalyst
JP2007007520A (en) * 2005-06-29 2007-01-18 Yamaguchi Univ Catalyst and method for manufacturing aldehyde
JP2007289855A (en) * 2006-04-25 2007-11-08 Sakai Chem Ind Co Ltd Hydrogenation catalyst, its use and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128901A (en) * 2011-12-22 2013-07-04 Tosoh Corp Molded product of hydrogenation catalyst composition and method for producing the same
JP2018140395A (en) * 2012-09-03 2018-09-13 株式会社クラレ Copper-based catalyst precursor, production method of the same, and hydrogenation method
JP2017031115A (en) * 2015-08-04 2017-02-09 Jxエネルギー株式会社 Method for producing aldehyde and dehydrogenation catalyst

Also Published As

Publication number Publication date
JP5966244B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2011078354A1 (en) Hydrogenation catalyst, process for production thereof, and use thereof
EP0737514B1 (en) Reductive amination processes for the selective production of aminoethylethanolamine
US7468342B2 (en) Catalysts and process for producing aromatic amines
JP2018521842A (en) Silica-supported tantalum-based catalysts for the conversion of ethanol to butadiene
JP2009215322A (en) Method and catalyst for producing alcohol
US5891820A (en) Reductive amination processes for the selective production of amino-ethyylethanolamine
EP2817096B1 (en) Methods of making a catalyst for the oxidative dehydrogenation of olefins
JP2007289855A (en) Hydrogenation catalyst, its use and its manufacturing method
WO2016025383A1 (en) Hydrogenation catalysts
JP5966244B2 (en) Hydrogenation catalyst, method for producing the same, and use thereof
JP4199676B2 (en) Hydrogenation reaction catalyst, process for producing the same, and process for producing gamma-butyrolactone from maleic anhydride using the catalyst
JP2001199917A (en) METHOD FOR PRODUCING alpha-PHENYLETHYL ALCOHOL
JP5747499B2 (en) Hydrogenation catalyst, method for producing the same, and use thereof
KR100821566B1 (en) Preparation of copper/silica-based nano-composite catalysts used for the dehydrogenation of diethyleneglycol
JP2000212175A (en) Production of 2,2&#39;-morpholino diethyl ether
KR20130123397A (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols
JP6789992B2 (en) Preparation and use of copper-containing hydrogenation catalysts
JP4344057B2 (en) Process for producing N-ethyl-diisopropylamine
JP2001199939A (en) Method of producing monoisoprorylamine
JP5853620B2 (en) Method for producing hydrogenation catalyst
US8962508B2 (en) Process for treating shaped catalyst bodies and shaped catalyst bodies having increased mechanical strength
US5600000A (en) Reductive amination processes for the selective production of amino-ethylethanolamine
JP2014043415A (en) Method for producing dibenzylamine
JP6556549B2 (en) Method for producing aldehyde and dehydrogenation catalyst
KR101178940B1 (en) Catalyst For Manufacturing Alkylamine And Its Preparing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151