JPH1070317A - Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor - Google Patents

Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor

Info

Publication number
JPH1070317A
JPH1070317A JP8223672A JP22367296A JPH1070317A JP H1070317 A JPH1070317 A JP H1070317A JP 8223672 A JP8223672 A JP 8223672A JP 22367296 A JP22367296 A JP 22367296A JP H1070317 A JPH1070317 A JP H1070317A
Authority
JP
Japan
Prior art keywords
plating
thermoelectric semiconductor
gas atmosphere
inert gas
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8223672A
Other languages
Japanese (ja)
Inventor
Shigeru Watanabe
渡辺  滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP8223672A priority Critical patent/JPH1070317A/en
Publication of JPH1070317A publication Critical patent/JPH1070317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably form a thermoelectric semiconductor which has excellent thermoelectric characteristics around room temperature by depositing alloy of a plurality of elements on a substrate electrode by plating method in an inert gas atmosphere and heat-treating the alloy in a hydrogen gas atmosphere. SOLUTION: An airtight glass container 10 having external inserting holes 20 at five areas is used as a plating bath. Aqueous solution containing a suitable quantity of nitric acid is used as solvent, and solution containing Bi(NO3 )3 , SbF3 and TeO2 is used as a plating solution 30 in the plating bath. Then, inert gas, Argon(Ar), is introduced into the solution at approximately 1 litter per minute from a gas introducing capillary 70 for 30 minutes or more, and Ar gas is kept flowing while plating is performed. A three-element alloy compound is obtained on the surface of a substrate 40 by reducing Bi<3+> ions, Sb<3+> ions and HTeO2 <+> ions. The plating film is heat-treated in a hydrogen flow or in the inert gas. Thus, a thermoelectric semiconductor with excellent thermoelectric characteristics is stably formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はBiSbTe化合
物熱電半導体の製造方法に関するものであり、さらに詳
しくは化合物の形成方法にメッキ法を用いているところ
に特徴をもつ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a BiSbTe compound thermoelectric semiconductor, and more particularly, to a method of forming a compound by using a plating method.

【0002】[0002]

【従来の技術】熱電半導体は温度差を与えると電圧を発
生するいわゆるゼーベック効果を利用して、発電用の素
子としての利用が考えられている。発電素子でもその用
途は様々であるが、熱電半導体を利用したものは構造が
簡単なため他の発電器と比較して微小化に有利と考えら
れ、腕時計のような携帯用の電子機器への応用が注目さ
れている。携帯用電子機器は一般的にその利用は室温近
辺であり、室温で特性の良好な熱電半導体がその発電素
子には有効である。
2. Description of the Related Art Thermoelectric semiconductors have been considered to be used as power generating elements by utilizing the so-called Seebeck effect, which generates a voltage when a temperature difference is applied. Although there are various uses for power generation elements, those using thermoelectric semiconductors are considered to be advantageous for miniaturization compared to other power generators because of their simple structure, and they are suitable for portable electronic devices such as watches. Applications are drawing attention. Portable electronic devices are generally used near room temperature, and thermoelectric semiconductors having good characteristics at room temperature are effective as power generating elements.

【0003】現在室温付近で最も特性良好な熱電半導体
はBiTe系化合物であるが、とくにP型半導体となる
ものはBiSbTeの3元系になっているものがよく使
われる。そして基本構造はBi2 Te3 とSb2 Te3
の固溶体となっている。ところでこのような熱電半導体
は原料の金属を溶融して結晶化させて得るのが一般的で
ある。そして溶融法で製造したBiSbTe化合物半導
体は、その熱起電力が150〜200μV/Kであり、
室温では他の化合物を大きく上回る。
At present, a thermoelectric semiconductor having the best characteristics at around room temperature is a BiTe-based compound, and a ternary BiSbTe is often used as a P-type semiconductor. The basic structures are Bi 2 Te 3 and Sb 2 Te 3
Solid solution. Incidentally, such a thermoelectric semiconductor is generally obtained by melting and crystallizing a raw material metal. The BiSbTe compound semiconductor manufactured by the melting method has a thermoelectromotive force of 150 to 200 μV / K,
At room temperature it far exceeds other compounds.

【0004】しかし、発電素子として溶融法で製造した
BiSbTe化合物を加工するためには機械的加工が伴
ってくる。機械的な加工は微小化に限界が生じてくるた
め、熱電半導体を微小に製造する新しい方法が必要とな
る。その1つとして、熱電半導体をスパッタリングや蒸
着などの気相法で薄膜状に形成し、エッチングなどによ
り微小化することが提案されている。
However, mechanical processing is required to process a BiSbTe compound produced by a melting method as a power generating element. Since mechanical processing has a limit in miniaturization, a new method for manufacturing thermoelectric semiconductors in a minute size is required. As one of them, it has been proposed that a thermoelectric semiconductor is formed into a thin film by a vapor phase method such as sputtering or vapor deposition, and is miniaturized by etching or the like.

【0005】しかしながら、気相法を利用するためには
その装置は大変高価なものが必要となり、工業的に利用
するには好ましくない。また、気相法での形成物は、組
成比をコントロールするのが非常に難しく、特性を安定
に保つことに問題がある。また、気相法では膜応力など
の影響による剥離やクラックの問題から、数μmの厚さ
での形成が限界であり、発電材料に応用するには素子抵
抗が下げられずに実用的ではない。
However, the use of the gas phase method requires a very expensive apparatus, which is not preferable for industrial use. Further, it is very difficult to control the composition ratio of the product formed by the vapor phase method, and there is a problem in maintaining stable characteristics. Further, in the vapor phase method, the formation at a thickness of several μm is the limit due to the problem of peeling and cracking due to the influence of film stress and the like, and it is not practical because the element resistance cannot be reduced for application to power generation materials. .

【0006】そこで、微小な熱電半導体を形成する方法
として考えられるのがメッキ法の利用である。メッキ法
は電鋳に代表されるように、フォトリソグラフィー技術
などと併用して、微小な構造物を作り出すのに各所で応
用されている。
Therefore, a plating method is considered as a method for forming minute thermoelectric semiconductors. The plating method is applied in various places to create minute structures by using in combination with photolithography technology, as represented by electroforming.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、メッキ
法を用いての熱電半導体の形成はあまり検討がされてい
なく、その形成物に関しての報告は非常に少ない。とく
に本発明で注目しているBiとSbとTeを含む3元系
化合物に関しては例がない。
However, formation of a thermoelectric semiconductor using a plating method has not been studied much, and there are very few reports on the formed product. In particular, there is no example of a ternary compound containing Bi, Sb, and Te which is of interest in the present invention.

【0008】そこで本発明の目的は、上記の課題点を解
決して、室温近辺で熱電特性が良好なBiSbTe熱電
半導体を微小化が可能なメッキ法で安定して形成し、良
好な特性を有する熱電半導体の製造方法を提供すること
にある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to form a BiSbTe thermoelectric semiconductor having good thermoelectric properties at around room temperature stably by a plating method capable of miniaturization and to have good properties. An object of the present invention is to provide a method for manufacturing a thermoelectric semiconductor.

【0009】[0009]

【課題を解決するための手段】上記の課題を達成するた
め本発明のビスマス・アンチモン・テルル化合物熱電半
導体の製造方法においては、下記記載の方法を採用す
る。
In order to achieve the above object, the following method is employed in the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention.

【0010】本発明のビスマス・アンチモン・テルル化
合物熱電半導体の製造方法は、電気化学的に反応するビ
スマス(Bi)とアンチモン(Sb)とテルル(Te)
を含む溶液を用い、不活性ガス雰囲気中でメッキ法を用
いて基板電極上にBiとSbとTeの合金を析出させ、
さらに合金を水素ガス雰囲気中あるいは不活性ガス雰囲
気中において熱処理をすることを特徴とする。
The method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention comprises the steps of electrochemically reacting bismuth (Bi), antimony (Sb) and tellurium (Te).
An alloy of Bi, Sb, and Te is deposited on the substrate electrode by plating in an inert gas atmosphere using a solution containing
Further, the heat treatment is performed on the alloy in a hydrogen gas atmosphere or an inert gas atmosphere.

【0011】本発明のビスマス・アンチモン・テルル化
合物熱電半導体の製造方法は、電気化学的に反応するビ
スマス(Bi)とアンチモン(Sb)とテルル(Te)
を含む溶液を用い、溶液に溶解しているBiとSbとT
eのモル比をBixSbyTezで表したとき、z=
1.5にたいして0.4≦x≦0.6かつ0.5≦yで
あるときに、不活性ガス雰囲気中でメッキ法を用いて基
板電極上にBiとSbとTeの合金を析出させ、さらに
合金を水素ガス雰囲気中あるいは不活性ガス雰囲気中に
おいて熱処理をすることを特徴とする。
The method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention comprises the steps of electrochemically reacting bismuth (Bi), antimony (Sb) and tellurium (Te).
Using a solution containing Bi, Sb and T dissolved in the solution.
When the molar ratio of e is represented by MixSbyTez, z =
When 0.4 ≦ x ≦ 0.6 and 0.5 ≦ y with respect to 1.5, an alloy of Bi, Sb, and Te is deposited on the substrate electrode using a plating method in an inert gas atmosphere, Further, the heat treatment is performed on the alloy in a hydrogen gas atmosphere or an inert gas atmosphere.

【0012】本発明のビスマス・アンチモン・テルル化
合物熱電半導体の製造方法は、電気化学的に反応するビ
スマス(Bi)とアンチモン(Sb)とテルル(Te)
を含む溶液を用い、溶液に溶解しているBiとSbとT
eのモル比をBixSbyTezで表したとき、z=
1.5に対して0.4≦x≦0.6かつ0.5≦yであ
り、さらに−20x+11.5≦y≦−20x+13.
5の関係にあるとき、不活性ガス雰囲気中でメッキ法を
用いて基板電極上にBiとSbとTeの合金を析出さ
せ、さらに合金を水素ガス雰囲気中あるいは不活性ガス
雰囲気中において熱処理をすることを特徴とする。
The method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention comprises the steps of electrochemically reacting bismuth (Bi), antimony (Sb) and tellurium (Te).
Using a solution containing Bi, Sb and T dissolved in the solution.
When the molar ratio of e is represented by MixSbyTez, z =
For 1.5, 0.4 ≦ x ≦ 0.6 and 0.5 ≦ y, and further −20x + 11.5 ≦ y ≦ −20x + 13.
When the relationship of 5 is satisfied, an alloy of Bi, Sb, and Te is deposited on the substrate electrode using a plating method in an inert gas atmosphere, and the alloy is heat-treated in a hydrogen gas atmosphere or an inert gas atmosphere. It is characterized by the following.

【0013】本発明のビスマス・アンチモン・テルル化
合物熱電半導体の製造方法は、密閉された容器に不活性
ガスのみを導入した不活性ガス雰囲気中でメッキを行う
ことで、安定して膜状のBiSbTe化合物半導体を製
造することができる。また溶融法で製造したBiSbT
eに含まれる元素比に比較して非常に多くのSbをメッ
キ液に溶解してメッキすることで、安定してBiSbT
e熱電半導体が得られる。
In the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention, plating is performed in an inert gas atmosphere in which only an inert gas is introduced into a sealed container, so that a stable BiSbTe film is formed. Compound semiconductors can be manufactured. BiSbT manufactured by the melting method
By dissolving a very large amount of Sb in the plating solution and plating compared to the element ratio contained in e, stable BiSbT
e A thermoelectric semiconductor is obtained.

【0014】また本発明のビスマス・アンチモン・テル
ル化合物熱電半導体の製造方法は、BiとSbとTeの
濃度条件を的確に設定することによって、非常に高特性
の熱電半導体膜を形成することができる。
In the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention, a thermoelectric semiconductor film having extremely high characteristics can be formed by appropriately setting the concentration conditions of Bi, Sb, and Te. .

【0015】さらに本発明のビスマス・アンチモン・テ
ルル化合物熱電半導体の製造方法で得られた被膜は、水
素ガス雰囲気中あるいは不活性ガス雰囲気中で熱処理を
施すことで良好なp型の熱電特性に改良することができ
る。
Further, the coating film obtained by the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor of the present invention is improved in a good p-type thermoelectric characteristic by performing a heat treatment in a hydrogen gas atmosphere or an inert gas atmosphere. can do.

【0016】そして本発明のビスマス・アンチモン・テ
ルル化合物熱電半導体の製造方法では、メッキで形成し
ていることから、フォトリソグラフィー技術などと併用
することで、これまで得られなかった高特性で微小寸法
の熱電発電素子を得ることができる。
In the method of manufacturing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention, since it is formed by plating, it can be used in combination with photolithography technology to obtain high-performance and minute dimensions which have not been obtained before. Can be obtained.

【0017】[0017]

【発明の実施の形態】以下図面を用いて本発明のビスマ
ス・アンチモン・テルル化合物熱電半導体の製造方法を
実施するための最良の形態を詳しく説明する。まずはじ
めに本発明におけるメッキ法によるBiSbTe化合物
熱電半導体の製造方法について図1を用いて説明する。
図1は本発明の実施形態で用いるメッキ装置の概略の構
成を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The best mode for carrying out the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor of the present invention will be described below in detail with reference to the drawings. First, a method for producing a BiSbTe compound thermoelectric semiconductor by a plating method according to the present invention will be described with reference to FIG.
FIG. 1 is a sectional view showing a schematic configuration of a plating apparatus used in an embodiment of the present invention.

【0018】図1に示すように、メッキ槽は5箇所の外
部挿入口20のある密閉型のガラス容器10を使用す
る。溶媒として硝酸を適量混合した水溶液を用い、メッ
キ槽にBi(NO33 とSbF3 とTe02 を溶解
し、最終的にペーハー(pH)を0.9に調整した溶液
をメッキ液30として用い、あらかじめガラス容器10
に入れる。
As shown in FIG. 1, the plating tank uses a sealed glass container 10 having five external insertion ports 20. Using an aqueous solution obtained by mixing an appropriate amount of nitric acid as a solvent, dissolving Bi (NO 3 ) 3 , SbF 3 and TeO 2 in a plating tank, and finally adjusting the pH (pH) to 0.9 as a plating solution 30 Use glass container 10 in advance
Put in.

【0019】あとに結果は説明するが、Te02 濃度は
1.5mmol/lに固定し、Bi(NO33 濃度を
0.25mmol/lから0.75mmol/lの範囲
で変化させ、またSbF3 濃度は0.5mmol/lか
ら6mmol/lの範囲で変化させて各種メッキ液30
を調製し膜形成は行う。
As will be described later, the concentration of TeO 2 is fixed at 1.5 mmol / l, and the concentration of Bi (NO 3 ) 3 is changed from 0.25 mmol / l to 0.75 mmol / l. The SbF 3 concentration was changed in the range of 0.5 mmol / l to 6 mmol / l, and various plating solutions 30 were used.
Is prepared and a film is formed.

【0020】メッキをする基板40には、Tiを真空蒸
着法により約1μmの膜厚で蒸着したガラス板を用い、
対極50にはPt板を、また参照極60には王水を用い
て表面を充分エッチング洗浄したPt線を用いる。また
ガス導入用キャピラリー70とガス排出用キャピラリー
80を用意し、前述の3つの電極とともに外部挿入口2
0より容器内部に挿入する。そして、外部挿入口20の
隙間はシール剤90により封止する。
As the substrate 40 to be plated, a glass plate on which Ti is deposited to a thickness of about 1 μm by a vacuum deposition method is used.
A Pt plate is used for the counter electrode 50, and a Pt wire whose surface is sufficiently etched and cleaned using aqua regia is used for the reference electrode 60. Further, a gas introduction capillary 70 and a gas discharge capillary 80 are prepared, and together with the three electrodes described above, the external insertion port 2 is provided.
Insert from 0 into the container. Then, the gap between the external insertion ports 20 is sealed with a sealant 90.

【0021】ガス導入用キャピラリー70より約1リッ
トル/分流量で不活性ガスであるアルゴン(Ar)ガス
を30分以上溶液中に導入し、溶液中の溶存酸素を充分
に除去した後にメッキは行い、メッキ中もArガスは流
したままにする。ここで、余分なガスはガス排出用キャ
ピラリー80より排出するが、この導入と排出の2カ所
以外は外部とは接していないため、容器内部はメッキ中
は不活性ガスで満たされた状態となる。
An argon (Ar) gas, which is an inert gas, is introduced into the solution at a flow rate of about 1 liter / minute from the gas introduction capillary 70 for at least 30 minutes, and plating is performed after the dissolved oxygen in the solution is sufficiently removed. During the plating, the Ar gas is kept flowing. Here, the excess gas is discharged from the gas discharge capillary 80. However, the inside of the container is filled with an inert gas during plating because it is not in contact with the outside except for the two points of introduction and discharge. .

【0022】この全体を不活性ガス雰囲気に保つことは
非常に重要である。たとえば容器を通常の開放型のビー
カーで行った場合、同じようにArで充分な時間脱酸素
を行い、ガスを流したままメッキしても形成される膜は
非常に密度の低い粗い膜となってしまい、使用するのは
難しい。
It is very important to keep this whole in an inert gas atmosphere. For example, when the container is made in a normal open-type beaker, similarly, deoxidation is performed with Ar for a sufficient time, and even if plating is performed while flowing a gas, a film formed is a very low-density coarse film. It is difficult to use.

【0023】これは、外部から酸素のような活性なガス
進入が可能な系では、溶液内のみでいかに脱酸素を行っ
ても限界があり、BiTe膜のメッキ形成には充分な環
境にはならない。そこで、本発明ではできる限り密閉さ
れた状態に近いメッキ槽を用い、3つの電極はすべて同
じ容器内に取り入れてメッキを行う。
In a system in which an active gas such as oxygen can be introduced from the outside, there is a limit even if deoxygenation is performed only in the solution, and the environment is not sufficient for forming a BiTe film by plating. . Therefore, in the present invention, plating is performed by using a plating tank that is as close as possible to a sealed state, and all three electrodes are taken in the same container.

【0024】30分間メッキ液30の溶存酸素をArガ
スにより充分除去した後、40℃の温度に維持する。メ
ッキ液30は強制的には撹拌しない状態で、基板40で
あるTi蒸着ガラスの電位をPt線電極に対して約−
0.65Vに設定し、メッキ液30中のBi3 + イオン
とSb3 + イオンとHTeO2 + イオンを還元して基板
40表面に3元系の合金化合物を得る。
After the dissolved oxygen in the plating solution 30 is sufficiently removed by Ar gas for 30 minutes, the temperature is maintained at 40 ° C. With the plating solution 30 not forcibly agitated, the potential of the Ti-deposited glass as the substrate 40 is set to about-
The voltage is set to 0.65 V, and Bi 3 + ions, Sb 3 + ions, and HTeO 2 + ions in the plating solution 30 are reduced to obtain a ternary alloy compound on the surface of the substrate 40.

【0025】このときメッキ電流密度は1mA/cm2
前後であり、通常のメッキ法と比較して非常に小さな電
流密度である。しかし、この低電流で形成することで緻
密な膜となる。
At this time, the plating current density was 1 mA / cm 2
Before and after, the current density is very small as compared with the ordinary plating method. However, a dense film can be formed by forming at a low current.

【0026】電気的な特性評価用には膜厚が2〜3μm
になるまでメッキを行い、形成したBiSbTe化合物
は基板40より剥離し、熱起電力および比抵抗を測定す
る。また、測定に先立ちメッキ膜は水素気流中あるいは
不活性ガス中において熱処理を施す。
For evaluation of electrical characteristics, the film thickness is 2-3 μm.
The BiSbTe compound formed is peeled off from the substrate 40 and the thermoelectromotive force and the specific resistance are measured. Prior to the measurement, the plating film is subjected to a heat treatment in a hydrogen stream or an inert gas.

【0027】ところでBiSbTe化合物は溶融法によ
って形成したものの結果から、膜中の化学量論比がB
i:Sb:Te=1:1:3になるとき、BiSbTe
化合物として特性の良好なものが得られることは知られ
ている。そこで本発明においては、はじめにメッキ液3
0にTeO2 を1.5mmol/lとBi(NO33
を0.5mmol/lとSbF3 を0.5mmol/l
溶解しメッキを行った。
By the way, the BiSbTe compound was formed by the melting method, and the result showed that the stoichiometric ratio in the film was B
When i: Sb: Te = 1: 1: 3, BiSbTe
It is known that a compound having good characteristics can be obtained as a compound. Therefore, in the present invention, first, the plating solution 3
0 and 1.5 mmol / l of TeO 2 and Bi (NO 3 ) 3
0.5 mmol / l and SbF 3 0.5 mmol / l
It was melted and plated.

【0028】2元系のBiTe化合物のメッキにおいて
は、膜中に含まれるBiとTeの元素比はメッキ液中の
元素比とほぼ同じになるため、BiSbTe化合物の系
においても同様になると思われるのが普通である。とこ
ろが、上記の比でメッキした膜を分析すると膜中にはほ
とんどSbは含まれていなかった。そして膜は目的の組
成になっていればP型半導体となるはずが、当然のこと
ながらSbの量が少ないためN型特性を有していた。こ
れは熱処理を加えても改良はされなかった。
In the plating of a binary BiTe compound, the element ratio of Bi and Te contained in the film is almost the same as the element ratio in the plating solution, and therefore, it seems that the same applies to the BiSbTe compound. Is common. However, when the film plated at the above ratio was analyzed, Sb was scarcely contained in the film. The film should be a P-type semiconductor if it has a desired composition, but naturally has an N-type characteristic because the amount of Sb is small. This was not improved by heat treatment.

【0029】つまり3元系のメッキではBiとTeの析
出によりSbの析出が抑制されるため目的組成にはなら
ず、このように3元系のBiSbTe化合物メッキは容
易には行うことができない。そこで本発明においては化
合物の化学量論比から通常考えられる元素量の2倍から
数倍の、かなり多くのSbを溶液中に溶解させメッキを
行う。これによって、膜中にSbを徐々に混入させるこ
とができる。
That is, in the ternary plating, the desired composition is not obtained because the precipitation of Sb is suppressed by the precipitation of Bi and Te, and thus the ternary BiSbTe compound plating cannot be easily performed. Therefore, in the present invention, plating is performed by dissolving a considerably large amount of Sb in the solution, which is twice to several times the amount of the element normally considered from the stoichiometric ratio of the compound. Thereby, Sb can be gradually mixed into the film.

【0030】図2には、メッキ液30にTeO2 を1.
5mmol/lとBi(NO33を0.5mmol/
lを溶解し、SbF3 を1mmol/l〜5mmol/
l変化させてメッキ形成した膜の熱起電力を示す。図2
中の符号aはメッキ直後の膜の熱起電力を示している。
熱起電力は負の数になっているが、これは形成された膜
がN型半導体特性を有していることを意味している。つ
まり、Sbが膜内にはいるだけではメッキ膜は必要なP
型特性を得ることはできない。
FIG. 2 shows that the plating solution 30 contains TeO 2 .
5 mmol / l and Bi (NO 3 ) 3 0.5 mmol /
was dissolved in l, the SbF 3 1mmol / l~5mmol /
1 shows the thermoelectromotive force of a film formed by changing the thickness of the film. FIG.
The symbol a in the figure indicates the thermoelectromotive force of the film immediately after plating.
The thermoelectromotive force is a negative number, which means that the formed film has N-type semiconductor characteristics. In other words, the plating film becomes necessary P if only Sb enters the film.
No mold characteristics can be obtained.

【0031】図2中の符号bはさらに水素気流中におい
て300℃、1時間の熱処理を加えたものの熱起電力を
同時に示している。図2より明らかなようにメッキ直後
にはN型特性を有していた膜は、熱処理により熱起電力
は正の数に変化しP型特性になっている。さらに、Sb
の濃度によっては熱起電力は150μV/K以上の非常
に高いものが得られることが分かる。ここで熱処理は膜
の酸化を防ぐために還元雰囲気である水素気流中におい
て行っている。これは安全を期してのことであり、熱処
理をする炉内壁等に不純物が少なければ、アルゴンや窒
素といった不活性ガス中での熱処理でも充分である。
The symbol "b" in FIG. 2 also indicates the thermoelectromotive force of a heat-treated material at 300 ° C. for one hour in a hydrogen stream. As is clear from FIG. 2, the film having the N-type characteristics immediately after plating changes the thermoelectromotive force to a positive number due to the heat treatment, and has the P-type characteristics. Furthermore, Sb
It can be seen that a very high thermoelectromotive force of 150 μV / K or more can be obtained depending on the concentration of Here, the heat treatment is performed in a hydrogen atmosphere, which is a reducing atmosphere, in order to prevent oxidation of the film. This is for the sake of safety. If there are few impurities on the inner wall of the furnace where heat treatment is performed, heat treatment in an inert gas such as argon or nitrogen is sufficient.

【0032】図3には、メッキ液30にTeO2 を1.
5mmol/lとBi(NO33を0.5mmol/
lとSbF3 を3mmol/l溶解してメッキ形成し、
熱処理を施したBiSbTe化合物膜のX線回折による
分析結果を示している。
FIG. 3 shows that the plating solution 30 contains TeO 2 .
5 mmol / l and Bi (NO 3 ) 3 0.5 mmol /
and SbF 3 are dissolved at 3 mmol / l to form a plating,
The analysis result by the X-ray diffraction of the BiSbTe compound film which performed the heat processing is shown.

【0033】図3より明らかなようにメッキ膜は充分な
結晶性を有しており、またその回折角を見ると、たとえ
ば(110)のピークは文献値より得られるBi2 Te
3 単体ピークとSb2 Te3 単体ピークの中間に位置し
ており、膜はBi2 Te3 とSb2 Te3 の固溶体にな
っていることが分かる。
As is clear from FIG. 3, the plating film has sufficient crystallinity, and when its diffraction angle is viewed, for example, the peak of (110) is Bi 2 Te obtained from the literature value.
3 is located in the middle of the single peak and Sb 2 Te 3 single peak, films can be seen that is a solid solution of Bi 2 Te 3 and Sb 2 Te 3.

【0034】そして、もっとも強い(110)の回折ピ
ークのd値はd=1.160であり文献値から得られる
Bi2 Te3 単体ピークのd=2.192とSb2 Te
3 単体ピークのd=2.130から計算すると、膜中に
Bi2 Te3 とSb2 Te3は約50%ずつ含まれてい
ることが分かる。つまりこれは、メッキ膜中の元素比B
i:Sb:Te=1:1:3となっていることであり、
まさに目的とした化学量論比が得られていることであ
る。
The d value of the strongest (110) diffraction peak is d = 1.160, and d = 2.192 of the Bi 2 Te 3 single peak obtained from the literature value and Sb 2 Te.
Calculating from d = 2.130 of the peak of 3 alone, it can be seen that Bi 2 Te 3 and Sb 2 Te 3 are contained in the film at about 50% each. That is, this corresponds to the element ratio B in the plating film.
i: Sb: Te = 1: 1: 3,
That is, the intended stoichiometric ratio is obtained.

【0035】つぎに図4には、メッキ液30中にTeO
2 を1.5mmol/l溶解し、さらにBi(NO3
3 濃度とSbF3 濃度を互いに変化させてメッキ形成し
た、各種BiSbTe化合物膜の電気的特性を表してい
る。図4においては、縦軸は電気的性能指数である。電
気的性能指数とは熱起電力の二乗を比抵抗で除した数で
あり、熱電材料の性能を表すには熱起電力のみよりもさ
らに有効である。当然のことながら、電気的性能指数は
大きい方が材料として優れている。
Next, FIG. 4 shows that the plating solution 30 contains TeO.
2 was dissolved at 1.5 mmol / l, and Bi (NO 3 )
3 shows the electrical characteristics of various BiSbTe compound films formed by plating while changing the 3 concentration and the SbF 3 concentration to each other. In FIG. 4, the vertical axis is the electrical figure of merit. The electrical figure of merit is a number obtained by dividing the square of the thermoelectromotive force by the specific resistance, and is more effective than the thermoelectromotive force alone in expressing the performance of the thermoelectric material. Naturally, the larger the electrical figure of merit, the better the material.

【0036】電気的性能指数はその式の構成から発電電
力を表すものであり、発電素子として熱電材料を用いる
場合、その値は少なくとも5×10-4W/mK2 を越え
ていることが必要と考えられる。
The electrical figure of merit represents the power generated from the formula, and when a thermoelectric material is used as the power generating element, its value must exceed at least 5 × 10 −4 W / mK 2. it is conceivable that.

【0037】また図4において、横軸はメッキ液中のS
b濃度を示しており、曲線aとbとcとdとeはそれぞ
れBi濃度が0.25mmol/lと0.4mmol/
lと0.5mmol/lと0.6mmol/lと0.7
5mmol/lのときの各種Sb濃度に対する電気的性
能指数を表している。
In FIG. 4, the horizontal axis represents S in the plating solution.
The curves a, b, c, d, and e show the Bi concentrations of 0.25 mmol / l and 0.4 mmol /
l, 0.5 mmol / l, 0.6 mmol / l and 0.7
The figure shows the electrical performance index for various Sb concentrations at 5 mmol / l.

【0038】はじめに図4のグラフから明らかなよう
に、メッキ液中のBi濃度が低いとき(0.25mmo
l/l)あるいは高いとき(0.75mmol/l)は
電気的性能指数は非常に低い。それに対して、Bi濃度
が0.4mmol/l〜0.6mmol/lのときは非
常に高い値を示すことが良く分かる。このとき、Sb濃
度は、0.5mmol/l以上あれば、つねに電気的性
能指数が5×10-4W/mK2 以上が得られる。
First, as is clear from the graph of FIG. 4, when the Bi concentration in the plating solution is low (0.25 mm
1 / l) or high (0.75 mmol / l) the electrical figure of merit is very low. On the other hand, when the Bi concentration is from 0.4 mmol / l to 0.6 mmol / l, it is clearly understood that the Bi concentration shows a very high value. At this time, if the Sb concentration is 0.5 mmol / l or more, an electric performance index of 5 × 10 −4 W / mK 2 or more can always be obtained.

【0039】またさらに、図4のグラフからメッキ液中
のBi濃度が0.4mmol/l〜0.6mmol/l
のときは電気的性能指数はある極大値をもって変化して
いることが分かる。そしてその極大値をもつときのメッ
キ液中のSb濃度は、Bi濃度が0.4mmol/lと
0.5mmol/lと0.6mmol/lに対して、1
mmol/lと3mmol/lと5mmol/lにな
り、両者は相関関係にある。
Further, according to the graph of FIG. 4, the Bi concentration in the plating solution was 0.4 mmol / l to 0.6 mmol / l.
In the case of, it can be seen that the electrical figure of merit changes with a certain maximum value. The Sb concentration in the plating solution having the maximum value is 1 with respect to the Bi concentrations of 0.4 mmol / l, 0.5 mmol / l and 0.6 mmol / l.
It becomes mmol / l, 3 mmol / l, and 5 mmol / l, and both have a correlation.

【0040】これを式で表すと、y=−20x+13と
なる。このとき、xはメッキ液中のBiの濃度およびy
はメッキ液中のSb濃度である。これは極大値だけでの
Sb濃度の限定であるが、Sb濃度はある広がりをもっ
て電気的性能指数は良好である。つまり極大値を得るS
b濃度の−1.5mmol/lから+0.5mmol/
lでは、Bi濃度とSb濃度をうまく設定すればつねに
5×10-4W/mK2以上の高い性能が得られることが
分かる。
When this is represented by an equation, y = −20x + 13. At this time, x is the concentration of Bi in the plating solution and y
Is the Sb concentration in the plating solution. This is the limitation of the Sb concentration only at the maximum value, but the Sb concentration has a certain spread and the electric figure of merit is good. That is, S to obtain the maximum value
b concentration of -1.5 mmol / l to +0.5 mmol /
In l, it can be seen that if successfully set the Bi concentration and Sb concentration always 5 × 10 -4 W / mK 2 or more high performance can be obtained.

【0041】つまりメッキ液中のTe濃度が1.5mm
ol/lのとき、Bi濃度(x)が0.4≦x≦0.6
ならば、Sb濃度(y)が−20x+11.5≦y≦−
20x+13.5となるときメッキを行えば、つねに高
特性のBiSbTe化合物膜を得ることができる。
That is, the Te concentration in the plating solution is 1.5 mm
ol / l, Bi concentration (x) is 0.4 ≦ x ≦ 0.6
Then, the Sb concentration (y) is −20x + 11.5 ≦ y ≦ −
If plating is performed at 20x + 13.5, a BiSbTe compound film with high characteristics can always be obtained.

【0042】本発明において、メッキ液中のBiとSb
とTeの濃度はすべてmmol/lのオーダーで調製し
てメッキを行っているが、これは低濃度の方が溶解が容
易だからである。ここで重要なのは、濃度の絶対値では
なくそれぞれの濃度比であるから、たとえばメッキ速度
を変えるために、本発明で得られる濃度比のまま濃度の
絶対値を増減してメッキすることは何の問題もない。
In the present invention, Bi and Sb in the plating solution
The plating is performed by adjusting the concentrations of Te and Te all in the order of mmol / l, because the lower the concentration, the easier the dissolution. What is important here is not the absolute value of the concentration but the ratio of each concentration. For example, in order to change the plating speed, it is not possible to perform plating by increasing or decreasing the absolute value of the concentration with the concentration ratio obtained in the present invention. No problem.

【0043】さらに本発明のビスマス・アンチモン・テ
ルル化合物熱電半導体の製造方法において、メッキを行
う場合に溶液には硝酸水溶液を用いているが、そのほか
硫酸水溶液や、塩酸水溶液など、溶質とするBi化合物
とSb化合物とTe化合物を溶解させられる溶液なら他
のものでもよい。
Further, in the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor of the present invention, a nitric acid aqueous solution is used as a solution when plating is performed. In addition, a Bi compound as a solute such as a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution is used. Other solutions may be used as long as they can dissolve the Sb compound and the Te compound.

【0044】さらに以上説明した本発明のビスマス・ア
ンチモン・テルル化合物熱電半導体の製造方法において
は、Bi源としてBi(NO3 )3 を用い、Sb源とし
てSbF3 を用い、Te源としてTe02 を用いてい
る。しかしそのほかの化合物である、Bi2 O3 、Bi
Cl3 、Bi(OH)3 、SbCl3 、Sb23 、T
eBr4 、TeCl4 など、溶解性のある化合物であれ
ば他のものも用いることができる。
[0044] In yet explained above bismuth antimony telluride method of manufacturing a thermoelectric semiconductor of the present invention, with Bi (NO3) 3 as a Bi source, SbF 3 used as Sb source, using a Te02 as Te source I have. However, other compounds such as Bi2O3 and Bi
Cl3, Bi (OH) 3, SbCl 3, Sb 2 O 3, T
Other soluble compounds such as eBr4 and TeCl4 can be used.

【0045】さらに本発明のビスマス・アンチモン・テ
ルル化合物熱電半導体の製造方法におけるメッキ方法
は、3電極方式を用いているが、電圧条件などを整えれ
ば2電極でも可能である。また基板40には、Ti蒸着
ガラスを用いたがTi板でも問題なく、他の金属板ある
いは金属の蒸着基板を利用することも可能である。
Further, the plating method in the method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor according to the present invention uses a three-electrode method, but two electrodes can be used if voltage conditions are adjusted. In addition, although Ti-deposited glass is used for the substrate 40, a Ti plate may be used without any problem, and another metal plate or a metal-deposited substrate may be used.

【0046】[0046]

【発明の効果】以上の説明から明らかなように、本発明
のメッキ法を用いるBiSbTe化合物熱電半導体の製
造方法は、容易に安定して膜状のBiSbTe化合物熱
電半導体を製造することができる。さらに得られた膜は
水素ガス雰囲気中あるいは不活性ガス雰囲気中で熱処理
を施すことで良好なP型の熱電特性に改良することがで
きる。
As is apparent from the above description, the method for producing a BiSbTe compound thermoelectric semiconductor using the plating method of the present invention can easily and stably produce a film-form BiSbTe compound thermoelectric semiconductor. Further, the obtained film is heat-treated in a hydrogen gas atmosphere or an inert gas atmosphere to improve the P-type thermoelectric properties.

【0047】またBiとSbとTeの濃度比を的確に設
定することによって、非常に高特性の熱電半導体膜を形
成することができる。本発明のBiSbTe化合物熱電
半導体はメッキで形成していることから微小化に有利で
あり、フォトリソグラフィー技術を併用することで、従
来達成できなかった小型でかつ高出力の熱電発電素子の
製造に応用することができる。
By appropriately setting the concentration ratio of Bi, Sb, and Te, a thermoelectric semiconductor film having very high characteristics can be formed. Since the BiSbTe compound thermoelectric semiconductor of the present invention is formed by plating, it is advantageous for miniaturization, and by using photolithography technology, it can be applied to the manufacture of a small and high-output thermoelectric power generation element that could not be achieved conventionally. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態で用いるBiSbTe化合物
半導体を製造するためのメッキ装置の概略構成を示す断
面図である。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a plating apparatus for manufacturing a BiSbTe compound semiconductor used in an embodiment of the present invention.

【図2】本発明の実施形態におけるメッキ法を用いて製
造したBiSbTe化合物熱電半導体の熱処理前後にお
ける熱起電力を示すグラフである。
FIG. 2 is a graph showing a thermoelectromotive force of a BiSbTe compound thermoelectric semiconductor manufactured by using a plating method according to an embodiment of the present invention before and after a heat treatment.

【図3】本発明の実施形態で製造したBiSbTe化合
物熱電半導体のX線回折パターンを示すグラフである。
FIG. 3 is a graph showing an X-ray diffraction pattern of a BiSbTe compound thermoelectric semiconductor manufactured according to an embodiment of the present invention.

【図4】本発明の実施形態で製造したBiSbTe化合
物熱電半導体の電気的性能指数とメッキ液中におけるB
i濃度およびSb濃度との関係を示すグラフである。
FIG. 4 shows the electrical performance index of the BiSbTe compound thermoelectric semiconductor manufactured according to the embodiment of the present invention and B in the plating solution.
It is a graph which shows the relationship between i density and Sb density.

【符号の説明】[Explanation of symbols]

10 ガラス容器 20 外部挿入口 30 メッキ液 40 基板 50 対極 60 参照極 70 ガス導入用キャピラリー 80 ガス排出用キャピラリー DESCRIPTION OF SYMBOLS 10 Glass container 20 External insertion port 30 Plating solution 40 Substrate 50 Counter electrode 60 Reference electrode 70 Capillary for gas introduction 80 Capillary for gas discharge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的に反応するビスマス(Bi)
とアンチモン(Sb)とテルル(Te)を含む溶液を用
い、不活性ガス雰囲気中でメッキ法を用いて基板電極上
にBiとSbとTeの合金を析出させ、さらに合金を水
素ガス雰囲気中あるいは不活性ガス雰囲気中において熱
処理をすることを特徴とするビスマス・アンチモン・テ
ルル化合物熱電半導体の製造方法。
1. Bismuth (Bi) electrochemically reacting
An alloy of Bi, Sb, and Te is deposited on a substrate electrode by a plating method in an inert gas atmosphere using a solution containing Al, antimony (Sb), and tellurium (Te), and the alloy is further placed in a hydrogen gas atmosphere or A method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor, comprising performing heat treatment in an inert gas atmosphere.
【請求項2】 電気化学的に反応するビスマス(Bi)
とアンチモン(Sb)とテルル(Te)を含む溶液を用
い、溶液に溶解しているBiとSbとTeのモル比をB
ixSbyTezで表したとき、 z=1.5に対して0.4≦x≦0.6かつ0.5≦y
であるときに、不活性ガス雰囲気中でメッキ法を用いて
基板電極上にBiとSbとTeの合金を析出させ、さら
に合金を水素ガス雰囲気中あるいは不活性ガス雰囲気中
において熱処理をすることを特徴とするビスマス・アン
チモン・テルル化合物熱電半導体の製造方法。
2. Bismuth (Bi) electrochemically reacting
And a solution containing antimony (Sb) and tellurium (Te), and the molar ratio of Bi, Sb, and Te dissolved in the solution is represented by B
When expressed as ixSbyTez, 0.4 ≦ x ≦ 0.6 and 0.5 ≦ y for z = 1.5
In this case, an alloy of Bi, Sb, and Te is deposited on the substrate electrode using a plating method in an inert gas atmosphere, and the alloy is heat-treated in a hydrogen gas atmosphere or an inert gas atmosphere. A method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor.
【請求項3】 電気化学的に反応するビスマス(Bi)
とアンチモン(Sb)とテルル(Te)を含む溶液を用
い、溶液に溶解しているBiとSbとTeのモル比をB
ixSbyTezで表したとき、 z=1.5に対して0.4≦x≦0.6かつ0.5≦y
であり、さらに−20x+11.5≦y≦−20x+1
3.5の関係にあるとき、不活性ガス雰囲気中でメッキ
法を用いて基板電極上にBiとSbとTeの合金を析出
させ、さらに合金を水素ガス雰囲気中あるいは不活性ガ
ス雰囲気中において熱処理をすることを特徴とするビス
マス・アンチモン・テルル化合物熱電半導体の製造方
法。
3. Bismuth (Bi) electrochemically reacting
And a solution containing antimony (Sb) and tellurium (Te), and the molar ratio of Bi, Sb, and Te dissolved in the solution is represented by B
When expressed as ixSbyTez, 0.4 ≦ x ≦ 0.6 and 0.5 ≦ y for z = 1.5
And -20x + 11.5 ≦ y ≦ −20x + 1
When the relationship of 3.5 is satisfied, an alloy of Bi, Sb, and Te is deposited on the substrate electrode using a plating method in an inert gas atmosphere, and the alloy is heat-treated in a hydrogen gas atmosphere or an inert gas atmosphere. A method for producing a bismuth-antimony-tellurium compound thermoelectric semiconductor, comprising:
JP8223672A 1996-08-26 1996-08-26 Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor Pending JPH1070317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8223672A JPH1070317A (en) 1996-08-26 1996-08-26 Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8223672A JPH1070317A (en) 1996-08-26 1996-08-26 Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor

Publications (1)

Publication Number Publication Date
JPH1070317A true JPH1070317A (en) 1998-03-10

Family

ID=16801845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8223672A Pending JPH1070317A (en) 1996-08-26 1996-08-26 Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor

Country Status (1)

Country Link
JP (1) JPH1070317A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533648B1 (en) * 2003-03-14 2005-12-06 한국과학기술연구원 GROWING METHOD FOR Bi THIN FILM AND Bi BASED DEVICE
KR100842152B1 (en) 2007-02-01 2008-06-27 오태성 Thin film thermoelectric module processed using electroplating and the fabrication methods of the same
KR101402229B1 (en) * 2012-10-30 2014-06-11 한국기계연구원 A Manufacturing Method of Thermolectric Semiconductor
WO2014188834A1 (en) * 2013-05-20 2014-11-27 ソニー株式会社 Method for manufacturing plating film, and plated product
JP2017050400A (en) * 2015-09-02 2017-03-09 学校法人神奈川大学 Manufacturing method of flexible thermoelectric conversion member
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533648B1 (en) * 2003-03-14 2005-12-06 한국과학기술연구원 GROWING METHOD FOR Bi THIN FILM AND Bi BASED DEVICE
KR100842152B1 (en) 2007-02-01 2008-06-27 오태성 Thin film thermoelectric module processed using electroplating and the fabrication methods of the same
KR101402229B1 (en) * 2012-10-30 2014-06-11 한국기계연구원 A Manufacturing Method of Thermolectric Semiconductor
WO2014188834A1 (en) * 2013-05-20 2014-11-27 ソニー株式会社 Method for manufacturing plating film, and plated product
JPWO2014188834A1 (en) * 2013-05-20 2017-02-23 ソニー株式会社 Manufacturing method of plating film
JP2017050400A (en) * 2015-09-02 2017-03-09 学校法人神奈川大学 Manufacturing method of flexible thermoelectric conversion member
JP2017212245A (en) * 2016-05-23 2017-11-30 学校法人神奈川大学 Method for manufacturing flexible thermoelectric conversion member

Similar Documents

Publication Publication Date Title
WO2000008693A1 (en) Microfabricated thermoelectric power-generation devices
US20060043354A1 (en) Reactive sputtering process for optimizing the thermal stability of thin chalcogenide layers
Takahashi et al. The composition and conductivity of electrodeposited Bi Te alloy films
CN102203327A (en) Method for forming boron-containing thin film and multilayer structure
Kim et al. Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures
US20200144471A1 (en) Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
CN111081859A (en) Thermoelectric alloy, manufacturing method thereof and thermoelectric alloy composite
JPH1070317A (en) Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor
Fleurial et al. Development of thick-film thermoelectric microcoolers using electrochemical deposition
KR100842152B1 (en) Thin film thermoelectric module processed using electroplating and the fabrication methods of the same
US4471004A (en) Method of forming refractory metal conductors of low resistivity
Anuar et al. Cyclic voltammetry study of copper tin sulfide compounds
Zeng et al. Correlation of the crystal structural and microstructural effects of the interfacial processes between gold and GaAs
JPWO2004088677A1 (en) Metal substrate for oxide superconducting wire, oxide superconducting wire, and manufacturing method thereof
JP3527807B2 (en) Method for producing bismuth tellurium compound thermoelectric semiconductor
Fleurial et al. Electrochemical deposition of (Bi, Sb) 2Te3 for thermoelectric microdevices
US4971663A (en) Cryoelectrosynthesis
JP2003218411A (en) Thermoelectric conversion material, its manufacturing method, and thin film thermoelectric conversion device
Padmanathan et al. Amorphous framework in electrodeposited CuBiTe thermoelectric thin films with high room-temperature performance
JP2516251B2 (en) Manufacturing method of oxide superconducting film
JPS61194786A (en) Heat treatment method of oxide superconductor thin-film
EP2187461B1 (en) Process for producing fine thermoelectric element
JPH05271995A (en) Manufacture of bismuth-tellurium series alloy thin film
JPS58138075A (en) Silicon metal oxide semiconductor type field-effect transistor and its manufacture
Ryan et al. Electrochemical deposition of semiconductors for thermoelectric devices