JP2000261046A - Thermoelectric converting material and manufacture or the same - Google Patents

Thermoelectric converting material and manufacture or the same

Info

Publication number
JP2000261046A
JP2000261046A JP11063099A JP6309999A JP2000261046A JP 2000261046 A JP2000261046 A JP 2000261046A JP 11063099 A JP11063099 A JP 11063099A JP 6309999 A JP6309999 A JP 6309999A JP 2000261046 A JP2000261046 A JP 2000261046A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
additive element
atomic
type semiconductor
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11063099A
Other languages
Japanese (ja)
Inventor
Nobuhiro Sadatomi
信裕 貞富
Osamu Yamashita
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11063099A priority Critical patent/JP2000261046A/en
Priority to AU29415/00A priority patent/AU752619B2/en
Priority to EP00908000A priority patent/EP1083610A4/en
Priority to CNB008005028A priority patent/CN100385694C/en
Priority to US09/674,978 priority patent/US7002071B1/en
Priority to CA002331533A priority patent/CA2331533A1/en
Priority to KR10-2000-7012611A priority patent/KR100419488B1/en
Publication of JP2000261046A publication Critical patent/JP2000261046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycrystalline Si system thermoelectric converting materials, having a high Seebeck coefficient contained by a new Si system thermoelectric converting materials in which various kinds of dopant elements are included in Si by 20 atom% or less, which can be easily manufactured without damaging electric conductivity, and which can be easily manufactured in the same method as the method for manufacturing an integrated circuit, and a method for manufacturing this polycrystalline Si system thermoelectric converting materials. SOLUTION: An Si-rich layer using Si as main components and a dopant element rich layer using dopant elements as main components are film-formed and laminated on a required substrate made of silicon or glass, and heat treatment is carried out so that organization in which the dopant element rich layer is distributed to the grain field of the Si rich layer in the laminated direction and/or each layer can be generated. Thus, a Seebeck coefficient can be sharply increased, and thermal conductivity can be reduced, and thermoelectric conversion efficiency can be sharply increased, and Si rich in resources can be used as main components, and environmental contamination can be sharply reduced in this thin film-shaped polycrystalline Si system thermoelectric converting materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、Siに種々の添加
元素を20原子%以下含有させた新規な熱電変換材料に関
し、シリコンやガラスなどの所要基板上に、Siが主なSi
リッチ層と添加元素が主な添加元素リッチ層を成膜、積
層し、さらに熱処理を加えて、積層方向及び/又は各層
にSiリッチ相の粒界に添加元素のリッチ相を分散させた
組織を生成することにより、ゼーベック係数が極めて大
きくかつ熱伝導率が小さくなり、熱電変換効率を著しく
高め、資源的に豊富なSiが主体で環境汚染が極めて少な
いことを特徴とする薄膜状の多結晶Si系熱電変換材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel thermoelectric conversion material containing 20 atomic% or less of various additive elements in Si, wherein Si is mainly formed on a required substrate such as silicon or glass.
A rich layer and an additive element are formed by depositing and laminating a main additive element-rich layer, and further performing a heat treatment to disperse a structure in which a rich phase of the additive element is dispersed in a lamination direction and / or a grain boundary of a Si-rich phase in each layer. By forming it, the Seebeck coefficient is extremely large and the thermal conductivity is low, the thermoelectric conversion efficiency is remarkably increased, and polycrystalline Si in the form of a thin film is characterized by mainly silicon rich in resources and extremely low environmental pollution The present invention relates to a thermoelectric conversion material.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効利用の観点から実用化が
期待されているデバイスであり、例えば、廃熱を利用し
て電気エネルギーに変換するシステムや、屋外で簡単に
電気を得るための小型携帯用発電装置、ガス機器の炎セ
ンサー等、非常に広範囲の用途が検討されている。
2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries. For example, thermoelectric conversion elements convert waste heat into electric energy. A very wide range of applications are being studied, such as systems, small portable generators for easily obtaining electricity outdoors, and flame sensors for gas appliances.

【0003】この熱エネルギーから電気エネルギーへの変換
効率は、性能指数ZTの関数であり、ZTが高いほど高くな
る。この性能指数ZTは(1)式のように表されている。 ZT=α2σT/κ (1)式 ここで、αは熱電材料のゼーベック係数、σは電気伝導
率、κは熱伝導率、そしてTは熱電素子の高温側(TH)と
低温側(TL)の平均値で表した絶対温度である。
[0003] The conversion efficiency from heat energy to electric energy is a function of the figure of merit ZT, and increases as ZT increases. This figure of merit ZT is expressed as in equation (1). ZT = α 2 σT / κ (1) where α is the Seebeck coefficient of the thermoelectric material, σ is the electrical conductivity, κ is the thermal conductivity, and T is the high-temperature side (T H ) and low-temperature side ( It is the absolute temperature represented by the average value of T L ).

【0004】今までに知られている熱電変換材料であるFeSi
2、SiGe等のケイ化物は資源的に豊富であるが、前者は
性能指数(ZT)は0.2以下でその変換効率が低くかつ使用
温度範囲が非常に狭く、後者は資源的に乏しいGeの含有
量が20〜30at%程度でなければ熱伝導の低下は見られ
ず、またSiとGeは全律固溶の液相線と固相線の幅広い状
態をもち、溶解やZL法(Zone-Leveling)では組成を均一
に作製するのが困難で工業化し難い等の理由から汎用さ
れるには至っていない。
[0004] FeSi, a thermoelectric conversion material known so far,
2 , silicides such as SiGe are abundant in resources, but the former has a figure of merit (ZT) of 0.2 or less, its conversion efficiency is low and the operating temperature range is very narrow, and the latter contains Ge which is poor in resources. If the amount is not about 20 to 30 at%, no decrease in heat conduction is observed, and Si and Ge have a wide range of liquid-solid and solid-phase lines of totally controlled solid solution, dissolution and ZL method (Zone-Leveling ) Is not widely used because it is difficult to produce a uniform composition and it is difficult to industrialize.

【0005】現在、最も高い性能指数を示すスクッテルダイ
ト型結晶構造を有するIrSb3を初め、BiTe、PbTe等のカ
ルコゲン系化合物は高効率の熱電変換能力を有すること
が知られているが、地球環境保全の観点からみれば、こ
れらの重金属系元素の使用は今後規制されていくことが
予想される。
At present, chalcogen-based compounds such as BiTe and PbTe, such as IrSb 3 having a skutterudite-type crystal structure exhibiting the highest figure of merit, are known to have high-efficiency thermoelectric conversion capabilities. From the viewpoint of environmental protection, it is expected that the use of these heavy metal elements will be regulated in the future.

【0006】[0006]

【発明が解決しようとする課題】一方、Siは高いゼーベ
ック係数を有する反面、熱伝導率が非常に高いために、
高効率の熱電材料には適していないと考えられ、その熱
電特性の研究はキャリヤー濃度1018(Mm3)以下のSiに限
られていた。
On the other hand, while Si has a high Seebeck coefficient, it has a very high thermal conductivity,
It is not considered suitable for high-efficiency thermoelectric materials, and the study of its thermoelectric properties has been limited to Si with a carrier concentration of 10 18 (Mm 3 ) or less.

【0007】ところが、発明者らは、Si単体に各種元素を添
加すること、例えば、Siに微量の3族あるいは5族元素と
少量のGeを複合添加することにより、熱伝導率を下げる
ことが可能で、従来から知られるSi-Ge系、Fe-Si系に比
べ、ゼーベック係数が同等以上、あるいは所定のキャリ
ヤー濃度で極めて高くなることを知見し、Si単体が有す
る本質的な長所を損ねることなく、熱電変換材料として
大きな性能指数を示し高性能化できることを知見した。
[0007] However, the inventors have found that adding various elements to Si alone, for example, adding a small amount of a group 3 or 5 element and a small amount of Ge to Si can lower the thermal conductivity. It is possible to find that the Seebeck coefficient is equal to or higher than that of conventionally known Si-Ge and Fe-Si systems, or that it is extremely high at a given carrier concentration, impairing the essential advantages of Si alone. Instead, it was found that the thermoelectric conversion material exhibited a large figure of merit and could be improved in performance.

【0008】また、発明者らは、Siに種々元素を添加してP
型半導体とN型半導体を作製し、その添加量と熱電特性
の関係を調査検討した結果、添加量つまりキャリヤー濃
度が1018(M/m3)まではキャリヤーの増加と共にゼーベッ
ク係数は低下するが、1018〜1019(M/m3)にかけて極大値
を持つことを知見した。
[0008] The inventors have also added various elements to Si to add P
As a result of investigating the relationship between the amount of addition and the thermoelectric properties, the Seebeck coefficient decreased with the increase of the carrier up to the addition amount, that is, the carrier concentration of 10 18 (M / m 3 ). , 10 18 to 10 19 (M / m 3 ).

【0009】この発明は、発明者らが知見したこの新規なSi
系熱電変換材料が有する高いゼーベック係数を有し、電
気伝導度を損なうことなく、容易に製造できる構成や集
積回路の製造方法と同方法で容易に製造できる構成から
なる多結晶Si系熱電変換材料とその製造方法の提供を目
的としている。
[0009] The present invention is based on this novel Si which the inventors have found.
Polycrystalline Si-based thermoelectric conversion material that has a high Seebeck coefficient that the system-based thermoelectric conversion material has and can be easily manufactured without impairing the electrical conductivity and the same method as the integrated circuit manufacturing method And a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】発明者らは、種々の添加
元素を添加したSi系熱電変換材料において、高いゼーベ
ック係数が得られる機構について鋭意調査したところ、
この新規なSi系材料は、図3に示すごとくSiが主体とな
るSiリッチ相の粒界に当該添加元素のリッチ相が形成さ
れた組織を有することを知見した。
Means for Solving the Problems The present inventors have conducted intensive studies on the mechanism of obtaining a high Seebeck coefficient in a Si-based thermoelectric conversion material to which various additive elements are added.
As shown in FIG. 3, this novel Si-based material was found to have a structure in which a rich phase of the additive element was formed at the grain boundary of a Si-rich phase mainly composed of Si.

【0011】さらに発明者らは、結晶組織の検討を加えたと
ころ、ゼーベック係数が高くなるのは、結晶粒界に添加
元素を凝集させ、そこでキャリヤーの伝導を大きくし、
結晶粒内のSiリッチ相で高いゼーベック係数が得られる
ことを知見し、ゼーベック係数を高く保ち、熱伝導率を
低下させる方法として、成分系以外に結晶組織の制御を
検討したところ、Siリッチ相と添加元素リッチ相を溶
解、凝固時の冷却速度を制御することによって、これら
の相が材料内に所要配置で分散した組織が得られること
を知見した。
[0011] Further, the inventors have studied the crystal structure, and found that the increase in the Seebeck coefficient is caused by the aggregation of the additional element at the crystal grain boundaries, thereby increasing the carrier conduction.
We found that a high Seebeck coefficient can be obtained in the Si-rich phase in the crystal grains, and as a method of keeping the Seebeck coefficient high and reducing the thermal conductivity, we examined the control of the crystal structure other than the component system. By controlling the cooling rate at the time of dissolving and solidifying the additive-rich phase and the additive element-rich phase, it was found that a structure in which these phases were dispersed in a required arrangement in the material was obtained.

【0012】そこで発明者らは、かかる組織、構造を有する
Si系熱電変換材料を簡単に実現できる構成や製造方法に
ついて鋭意検討した結果、SiまたはSiが主体となるSiリ
ッチ層と添加元素リッチ層とを例えば交互に成膜、積層
し、その後熱処理を加えることにより、積層厚み方向に
あるいは各層毎に図3と同等の組織が得られること、ま
た、Siと所要添加元素とのSiリッチ層、所要添加元素が
主体でSiも含有する添加元素リッチ層とを交互に成膜、
積層することにより、溶解、凝固時の冷却速度を制御し
て得た組織と同等構成が得られ、前記の高い性能指数を
有する材料が基板に成膜するだけの簡単な方法で得られ
ることを知見し、この発明を完成した。
[0012] Therefore, the inventors have such a structure and structure.
As a result of intensive studies on the configuration and manufacturing method that can easily realize a Si-based thermoelectric conversion material, for example, alternately depositing and laminating a Si-rich layer mainly composed of Si or Si and an additional element-rich layer, and then applying a heat treatment By doing so, a structure equivalent to that of FIG. 3 can be obtained in the thickness direction of the laminate or for each layer.Also, an Si-rich layer of Si and the required additive element, and an additive element-rich layer mainly containing the required additive element and also containing Si Alternately,
By laminating, melting, a structure equivalent to the structure obtained by controlling the cooling rate during solidification can be obtained, and the material having the high figure of merit can be obtained by a simple method of forming a film on the substrate. We have found and completed this invention.

【0013】[0013]

【発明の実施の形態】この発明による熱電変換材料の特
徴である、Siが主体となるSiリッチ相の粒界に前記添加
元素のリッチ相が形成された組織について説明すると、
例えば、アーク溶解によりSi1-xGex(at%)溶湯を作製
し、その溶解後の冷却を急冷として作製すると、図2の
模式図に示すごとく、Siのみまたは添加元素を含むがほ
とんどがSiであり、Siが主体となるSiリッチ相と、この
Siリッチ相の粒界に添加元素が偏析した添加元素リッチ
相とが形成された組織が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the thermoelectric conversion material according to the present invention, in which a rich phase of the additive element is formed at a grain boundary of a Si-rich phase mainly composed of Si, will be described.
For example, when a melt of Si 1-x Ge x (at%) is produced by arc melting and the cooling after melting is made as rapid cooling, as shown in the schematic diagram of FIG. Si-rich phase mainly composed of Si
A structure in which the additive element segregates at the grain boundary of the Si-rich phase and the additive element-rich phase is obtained.

【0014】また、Geに変えてPやBの添加元素の結晶粒界へ
の析出とn型とp型Siのキャリヤー濃度との関係を調査し
たところ、添加量とキャリヤー濃度との相関は一致して
増加することを確認し、Siリッチ相の粒界に前記添加元
素のリッチ相が形成された組織によって、結晶粒界に添
加元素を凝集させ、そこでキャリヤーの伝導を大きく
し、結晶粒内のSiリッチ相で高いゼーベック係数が得ら
れることを確認した。
[0014] Further, when the relationship between the precipitation of added elements of P and B instead of Ge at the crystal grain boundaries and the carrier concentration of n-type and p-type Si was investigated, the correlation between the added amount and the carrier concentration was found to be one. It was confirmed that the additive element was agglomerated at the crystal grain boundary by the structure in which the rich phase of the additional element was formed at the grain boundary of the Si-rich phase, where the carrier conduction was increased and the It was confirmed that a high Seebeck coefficient can be obtained in the Si-rich phase.

【0015】さらに、このSi系熱電変換材料の熱伝導率は、
キャリヤー濃度を増加させるに従って小さくなることを
確認した。これは結晶中の添加元素による不純物の局在
フォノンの散乱によりκphが低下したためであると考え
られる。
Further, the thermal conductivity of this Si-based thermoelectric conversion material is as follows:
It was confirmed that it decreased as the carrier concentration increased. This is considered to be because κ ph decreased due to scattering of localized phonons of impurities due to the added element in the crystal.

【0016】この発明による熱電変換材料は、単結晶や多結
晶シリコン基板、ガラスやセラミックス基板、樹脂基板
など、あるいは樹脂膜、他の成膜上など、例えば熱電変
換素子を形成するのに利用できる公知のいずれの基板、
膜も使用でき、かかる基板、膜にSi層又はSiが主体とな
るSiリッチ層と、SiをP型半導体又はN型半導体となすた
めの単独又は複数の添加元素が主体となる添加元素リッ
チ層とが積層された構成、すなわち、基板上にSi層又は
Siリッチ層と添加元素リッチ層との積層体が形成された
構成を特徴としている。
The thermoelectric conversion material according to the present invention can be used for forming a thermoelectric conversion element, for example, on a single crystal or polycrystalline silicon substrate, a glass or ceramic substrate, a resin substrate, or a resin film, or another film. Any known substrate,
A film can also be used, such a substrate, a Si layer or a Si-rich layer mainly composed of Si, and an additive element-rich layer mainly composed of one or more additional elements for forming Si into a P-type semiconductor or an N-type semiconductor. Are laminated, that is, a Si layer or
It is characterized in that a stacked body of a Si-rich layer and an additive element-rich layer is formed.

【0017】例えば、図1Aに示す構成例は、結晶面が(111)
または(100)の単結晶シリコン基板上に、まず添加元素
リッチ層としてGe+Pの薄膜層を所要厚みに成膜し、次に
Siリッチ層としてSiのみの薄膜層を所要厚みに成膜し、
さらに上記のGe+Pの薄膜層とSiの薄膜層とを交互に積層
してある。
For example, in the configuration example shown in FIG. 1A, the crystal plane is (111)
Or, on a (100) single crystal silicon substrate, first, a Ge + P thin film layer is formed to a required thickness as an additive element rich layer, and then
A thin film layer of only Si is formed to a required thickness as a Si rich layer,
Further, the above Ge + P thin film layers and Si thin film layers are alternately laminated.

【0018】積層後に、例えば真空中で873K、1時間の熱処
理を施すと、図1Bに示すごとく、各薄膜層間で拡散が生
じ、Siが拡散してきたGe+P+ΔSiの薄膜層と、GeとPが拡
散してきたSi+ΔP+ΔGeの薄膜層が交互に積層された積
層体ができる。図1AでSiリッチ層がSi+P薄膜層の場合
は、熱処理後はSi+P層がSi+ΔGe+Pの薄膜層となる。
After the lamination, for example, when heat treatment is performed at 873 K for 1 hour in a vacuum, as shown in FIG. 1B, diffusion occurs between the thin film layers, and the Ge + P + ΔSi thin film layer in which Si is diffused, And a thin film layer of Si + ΔP + ΔGe in which P is diffused is alternately stacked. In FIG. 1A, when the Si-rich layer is a Si + P thin film layer, the Si + P layer becomes a Si + ΔGe + P thin film layer after the heat treatment.

【0019】また、図2に示すごとく、添加元素リッチ層と
してGeとPが主体でSiも含むGe+P+Siの薄膜層を所要厚み
に成膜し、次にSiリッチ層としてSi+Geの薄膜層を所要
厚みに成膜し、さらに上記のGe+P+Siの薄膜層とSi+Geの
薄膜層とを交互に積層することにより、図1Bの熱処理後
の積層状態を実現することが可能である。
As shown in FIG. 2, a Ge + P + Si thin film layer mainly containing Ge and P and containing Si is formed to a required thickness as an additive element rich layer, and then a Si + Ge A thin film layer of the required thickness is formed, and the thin film layer of Ge + P + Si and the thin film layer of Si + Ge are alternately stacked to realize the stacked state after the heat treatment of FIG.1B. Is possible.

【0020】単結晶シリコン基板上に成膜、積層された図1B
または図2に示す積層体は、その厚み方向、すなわち積
層方向に図3に示すSiが主体となるSiリッチ相と、このS
iリッチ相の粒界に添加元素が偏析した添加元素リッチ
相とが形成された組織を具現化したことと同等であり、
拡散熱処理した場合には各薄膜層平面で見ても類似した
組織が形成されており、この積層体は、所要量のGeとP
を含有するSi系溶湯を急冷して得た図3と同等の組織を
有した熱電変換材料となる。
FIG. 1B shows a film formed and laminated on a single crystal silicon substrate.
Alternatively, the laminate shown in FIG. 2 has a Si-rich phase mainly composed of Si shown in FIG.
It is equivalent to embodying a structure in which an additive element-rich phase in which the additive element segregates at the grain boundary of the i-rich phase is formed,
When the diffusion heat treatment is performed, a similar structure is formed even when viewed in the plane of each thin film layer.
A thermoelectric conversion material having a structure equivalent to that of FIG. 3 obtained by rapidly cooling a Si-based molten metal containing

【0021】従って、上述のSi層又はSiリッチ層と添加元素
リッチ層の各厚みやその積層厚み比は、目的とするSi系
熱電変換材料の組成に応じて、これらが適宜分散するよ
うにSiリッチ層と添加元素リッチ層の各組成や厚みを選
定する必要が有り、Siリッチ層と添加元素リッチ層の各
組成を積層毎に変化させたり、積層パターンを上記の単
なる交互でない種々のパターンや種々の組成の組合せと
するなど、少なくとも図3に示す組織を積層方向に具現
化できれば、いずれの積層手段も採用可能である。
Therefore, the thickness of the above-described Si layer or the Si-rich layer and the additive element-rich layer and the stacking thickness ratio thereof are determined so that these are appropriately dispersed according to the composition of the target Si-based thermoelectric conversion material. It is necessary to select the composition and thickness of the rich layer and the additive element-rich layer, and change the composition of the Si-rich layer and the additive element-rich layer for each lamination, Any laminating means can be adopted as long as at least the structure shown in FIG. 3 can be embodied in the laminating direction, such as a combination of various compositions.

【0022】上述のごとく基板上に成膜、積層された熱電変
換材料は、この積層体全体で後述の組成となるように適
宜選定されており、また積層方向に図3に示す組織を形
成してあるため、目的とする熱電変換素子の温度勾配方
向が上記の積層方向となるように、当該Si系熱電変換材
料によるP型半導体、S型半導体、電極膜などを適宜のパ
ターンで成膜、積層することにより、容易に熱電変換素
子を得ることができる。
As described above, the thermoelectric conversion material formed and laminated on the substrate is appropriately selected so that the entire laminate has a composition described later, and forms the structure shown in FIG. 3 in the lamination direction. Therefore, a P-type semiconductor, an S-type semiconductor, an electrode film, etc. of the Si-based thermoelectric conversion material are formed in an appropriate pattern such that the temperature gradient direction of the target thermoelectric conversion element is the above-described stacking direction, By stacking, a thermoelectric conversion element can be easily obtained.

【0023】成膜、積層方法は、公知の蒸着、スパッタリン
グ、CVDなどの気相成長法、放電プラズマ処理法、添加
元素を含有するガスを用いたプラズマ処理法などいずれ
の成長、成膜方法も採用できる。また、後述するように
添加元素はいずれの元素も添加できるため、元素の種類
によって採用される手段が選択可能な場合から、限定さ
れるなど種々のケースが想定され、さらに、複合添加す
る場合の組み合せる元素によって選定した手段の処理条
件も種々異なるため、目的とする組成に応じて上記手
段、条件を適宜選定する必要がある。また熱処理方法
は、目的とする各層間に拡散を生じる条件であれば、い
ずれの温度条件、雰囲気、加熱方法も採用可能である。
The film forming and laminating methods include any of known growth and film forming methods such as a known vapor deposition method such as vapor deposition, sputtering, and CVD, a discharge plasma processing method, and a plasma processing method using a gas containing an additive element. Can be adopted. In addition, as described later, any of the additional elements can be added, and therefore, various cases such as limitations are assumed from a case where the means adopted can be selected depending on the type of the element. Since the processing conditions of the means selected vary depending on the elements to be combined, it is necessary to appropriately select the above means and conditions according to the desired composition. As the heat treatment method, any temperature condition, atmosphere, and heating method can be adopted as long as the conditions cause diffusion between the respective layers.

【0024】この発明による熱電変換材料は、ダイヤモンド
型結晶構造を有する多結晶Si半導体中に各種不純物を添
加してキャリヤー濃度を調整することにより、Si単体が
有する本来的な長所を損ねることなく、電気抵抗を下げ
てゼーベック係数を向上させて、性能指数を飛躍的に高
めたP型半導体とN型半導体の高効率のSi系熱電変換材料
である。
[0024] The thermoelectric conversion material according to the present invention is capable of adjusting the carrier concentration by adding various impurities to a polycrystalline Si semiconductor having a diamond-type crystal structure, without impairing the inherent advantages of Si alone. This is a highly efficient Si-based thermoelectric conversion material of P-type and N-type semiconductors whose electrical index has been lowered and the Seebeck coefficient has been improved to dramatically improve the figure of merit.

【0025】ここで、熱電変換材料の用途を考慮すると、熱
源、使用箇所や形態、扱う電流、電圧の大小などの用途
に応じて異なる条件によって、ゼーベック係数、電気伝
導率、熱伝導率などの特性のいずれかに重きを置く必要
が生じるが、この発明の熱電変換材料は、選択元素の添
加量によりキャリヤー濃度を選定できる。
Here, considering the application of the thermoelectric conversion material, the Seebeck coefficient, electric conductivity, thermal conductivity, etc., vary depending on the application such as the heat source, the place of use and form, the current to be handled, and the magnitude of the voltage. Although it is necessary to place emphasis on any of the characteristics, in the thermoelectric conversion material of the present invention, the carrier concentration can be selected by the addition amount of the selected element.

【0026】例えば、前述の添加元素αの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるP型半導体が得られ、また、
添加元素αを0.5原子%〜5.0原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるP型半導体が得られる。
[0026] For example, it contains 0.001 atomic% to 0.5 atomic% of elements added element α of the foregoing alone or combined to give P-type semiconductor carrier concentration is 10 17 ~10 20 (M / m 3) is And
A P-type semiconductor having a carrier concentration of 10 19 to 10 21 (M / m 3 ) containing 0.5 to 5.0 atomic% of the additional element α is obtained.

【0027】同様に、前述の添加元素βの元素を単独又は複
合して0.001原子%〜0.5原子%含有して、キャリヤー濃度
が1017〜1020(M/m3)であるN型半導体が得られ、また、
添加元素βを0.5原子%〜10原子%含有して、キャリヤー
濃度が1019〜1021(M/m3)であるN型半導体が得られる。
Similarly, an N-type semiconductor containing 0.001 atomic% to 0.5 atomic% of the above-mentioned additive element β alone or in combination and having a carrier concentration of 10 17 to 10 20 (M / m 3 ) Obtained and also
An N-type semiconductor containing 0.5 to 10 atomic% of the additive element β and having a carrier concentration of 10 19 to 10 21 (M / m 3 ) is obtained.

【0028】前述の添加元素αあるいは添加元素βの元素を
含有させて、キャリヤー濃度が1019〜1021(M/m3)となる
ように0.5〜5.0原子%添加したとき、高効率な熱電変換
素子が得られ、優れた熱電変換効率を有するが、その熱
伝導率が室温で50〜150W/m・K程度であり、熱伝導率を
低下させることができれば、さらに性能指数ZTを向上さ
せることが期待できる。
When the additive element α or the additive element β is contained and 0.5 to 5.0 atomic% is added so that the carrier concentration becomes 10 19 to 10 21 (M / m 3 ), a highly efficient thermoelectric Although the conversion element is obtained and has excellent thermoelectric conversion efficiency, its thermal conductivity is about 50 to 150 W / mK at room temperature, and if the thermal conductivity can be reduced, the figure of merit ZT is further improved. I can expect that.

【0029】一般に、固体の熱伝導率はフォノンによる伝導
とキャリヤーによる伝導との和で与えられる。Si系半導
体の熱電変換材料の場合、キャリヤー濃度が小さいた
め、フォノンによる伝導が支配的となる。よって、熱伝
導率を下げるためにはフォノンの吸収または散乱を大き
くしてやる必要がある。フォノンの吸収または散乱を大
きくするためには、結晶粒径や結晶構造の規則性を乱し
てやることが効果的である。
In general, the thermal conductivity of a solid is given by the sum of phonon conduction and carrier conduction. In the case of a Si-based semiconductor thermoelectric conversion material, phonon conduction is dominant because the carrier concentration is low. Therefore, in order to reduce the thermal conductivity, it is necessary to increase the absorption or scattering of phonons. In order to increase the absorption or scattering of phonons, it is effective to disturb the regularity of the crystal grain size and the crystal structure.

【0030】そこで、Siへの添加元素について種々検討した
結果、Siに、3族元素と5族元素の各々を少なくとも1種
ずつ添加して、キャリヤー濃度を1019〜1021(M/m3)に制
御することにより、Si中のキャリヤー濃度を変えずに結
晶構造を乱してやることが可能で、熱伝導率を30〜90%
低下させ、室温で150W/m・K以下にすることができ、高
効率な熱電変換材料が得られることを知見した。
Therefore, as a result of various studies on the elements to be added to Si, at least one of a Group 3 element and a Group 5 element was added to Si, and the carrier concentration was 10 19 to 10 21 (M / m 3 ), It is possible to disturb the crystal structure without changing the carrier concentration in Si, and to reduce the thermal conductivity by 30 to 90%.
It was found that the temperature can be reduced to 150 W / m · K or less at room temperature, and a highly efficient thermoelectric conversion material can be obtained.

【0031】また、上記構成の熱電変換材料において、3族
元素を5族元素より0.3〜5原子%多く含有させるとP型半
導体が得られ、5族元素を3族元素より0.3〜5原子%多く
含有させるとN型半導体が得られる。
In the thermoelectric conversion material having the above structure, a P-type semiconductor is obtained when the Group 3 element is contained in an amount of 0.3 to 5 atomic% more than the Group 5 element, and the Group 5 element is contained in an amount of 0.3 to 5 atomic% than the Group 3 element. If a large amount is contained, an N-type semiconductor can be obtained.

【0032】さらに、3族元素と5族元素以外で熱伝導率の低
下が達成できるか検討したところ、Siに、3‐5族化合物
半導体あるいは2‐6族化合物半導体を添加して、さらに
3族元素または5族元素の少なくとも1種を添加し、キャ
リヤー濃度を1019〜1021(M/m3)に制御することにより、
Si中のキャリヤー濃度を変えずに結晶構造を乱してやる
ことが可能で、熱伝導率が室温で150W/m・K以下にする
ことができ、高効率な熱電変換材料が得られる。
Further, it was examined whether a reduction in thermal conductivity could be achieved with elements other than the group 3 element and the group 5 element, and it was found that adding a group 3-5 compound semiconductor or a group 2-6 compound semiconductor to Si further
By adding at least one of a Group 3 element or a Group 5 element and controlling the carrier concentration to 10 19 to 10 21 (M / m 3 ),
The crystal structure can be disturbed without changing the carrier concentration in Si, the thermal conductivity can be reduced to 150 W / mK or less at room temperature, and a highly efficient thermoelectric conversion material can be obtained.

【0033】また、Siへの他の添加元素について種々検討し
た結果、SiにGe,C,Snの4族元素を0.1〜5原子%含有し、S
iの元素の一部を原子量の異なる4族元素に置換させてや
ることにより、結晶中のフォノンの散乱が大きくなり、
半導体の熱伝導率を20〜90%低下させ、室温で150W/m・K
以下にすることが可能であること、さらに3族元素を0.1
〜5.0原子%含有させてP型半導体となした熱電変換材
料、さらに5族元素を0.1〜10原子%含有させてN型半導体
となした熱電変換材料が得られる。
Further, as a result of various studies on other additional elements to Si, it was found that Si contained a Group 4 element of Ge, C, and Sn in an amount of 0.1 to 5 atomic%,
By substituting a part of the element i with a group 4 element with a different atomic weight, the scattering of phonons in the crystal increases,
Reduces the thermal conductivity of semiconductors by 20 to 90%, 150 W / mK at room temperature
It is possible to make
A thermoelectric conversion material containing a P-type semiconductor by containing 5.05.0 at% and a N-type semiconductor containing a Group V element by 0.1 to 10 at% can be obtained.

【0034】この発明の熱電変換材料において、以上の3族
元素や5族元素以外の元素で、同様にSiに添加可能であ
るかを調査したところ、P型、N型半導体になるものであ
れば、特に制限されるものはないが、あまりイオン半径
の異なる元素を添加すると、ほとんどが粒界相に析出し
てしまうので、イオン半径はSiのそれに比較的近い元素
が好ましく、P型半導体となすための添加元素αとし
て、また、N型半導体となすための添加元素βとして、
以下のグループの元素の単独又は複合添加が特に有効で
あることを確認した。
[0034] In the thermoelectric conversion material of the present invention, it was investigated whether elements other than the above-mentioned Group 3 elements and Group 5 elements can be similarly added to Si. For example, although there is no particular limitation, if an element having a very different ionic radius is added, most of the element is precipitated in the grain boundary phase. As an additive element α for forming, and as an additional element β for forming an N-type semiconductor,
It has been confirmed that the single or combined addition of the following groups of elements is particularly effective.

【0035】添加元素αとしては、添加元素A(Be,Mg,Ca,Sr,
Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)、遷移金属元素M1(M1;Y,M
o,Zr)の各群であり、添加元素βとしては、添加元素B
(N,P,As,Sb,Bi,O,S,Se,Te)、遷移金属元素M2(M2;Ti,V,C
r,Mn,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Os,Ir,P
t,Au、但しFeは10原子%以下)、希土類元素RE(RE;La,Ce,
Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)の各群がある。
As the additional element α, the additional element A (Be, Mg, Ca, Sr,
Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), transition metal element M 1 (M 1 ; Y, M
o, Zr), and the additive element β is the additive element B
(N, P, As, Sb, Bi, O, S, Se, Te), transition metal element M 2 (M 2 ; Ti, V, C
r, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, P
t, Au, where Fe is 10 atomic% or less), rare earth element RE (RE; La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu).

【0036】またさらに、P型半導体となすための添加元素
αとN型半導体となすための添加元素βを、各群より少
なくとも1種ずつ総量で0.002原子%〜20原子%含有し、例
えば、P型半導体を得るには、添加元素αの総量が添加
元素βのそれを超えてP型半導体となるのに必要量だけ
含有すれば、各群の組合せは任意に選定できる。
Further, the additive element α for forming a P-type semiconductor and the additional element β for forming an N-type semiconductor are contained in a total amount of at least one from each group in a total amount of 0.002 to 20 atomic%. In order to obtain a P-type semiconductor, the combination of each group can be arbitrarily selected as long as the total amount of the additional element α exceeds that of the additional element β and is contained in a necessary amount to become a P-type semiconductor.

【0037】[0037]

【実施例】実施例1 Si(111)ウェーハを10-6Torrの真空チャンバー内に挿入
し、電子ビーム加熱にて表1に示す元素をA層とB層とし
てそれぞれ表1に示す厚みで交互に50回成膜、積層させ
た。
EXAMPLE 1 A Si (111) wafer was inserted into a vacuum chamber of 10 -6 Torr, and the elements shown in Table 1 were alternately changed into A and B layers by electron beam heating at the thicknesses shown in Table 1 respectively. Was deposited and laminated 50 times.

【0038】得られたSiウェーハ上の試料を5×15mm、10×1
0mm、外径10mmの形状に切断加工し、それぞれのゼーベ
ック係数、ホール係数(キャリヤー濃度と電気伝導率を
含む)、熱伝導率をSiウェーハと共に測定した。1100Kに
おける測定値と、性能指数(ZT=S2T/ρκ)を表2に示す。
[0038] The sample on the obtained Si wafer was 5 × 15 mm, 10 × 1
The workpiece was cut into a shape having a diameter of 0 mm and an outer diameter of 10 mm, and the Seebeck coefficient, the Hall coefficient (including the carrier concentration and the electrical conductivity), and the thermal conductivity were measured together with the Si wafer. Table 2 shows the measured values at 1100 K and the figure of merit (ZT = S 2 T / ρκ).

【0039】ゼーベック係数は、昇温しながら高温部と低温
部の温度差を約6Kになるように設定し、試料の熱起電力
をデジタルマルチメーターで測定した後、温度差で割っ
た値として求めた。また、ホール係数の測定は、交流法
により行い、キャリヤー濃度と同時に四端子法により電
気抵抗を測定した。熱伝導率は、レーザーフラッシュ法
により測定を行った。
The Seebeck coefficient is set as a value obtained by setting the temperature difference between the high temperature part and the low temperature part to about 6K while increasing the temperature, measuring the thermoelectromotive force of the sample with a digital multimeter, and dividing by the temperature difference. I asked. The Hall coefficient was measured by an AC method, and the electrical resistance was measured by a four-terminal method simultaneously with the carrier concentration. The thermal conductivity was measured by a laser flash method.

【0040】実施例2 Si(111)ウェーハ基板を10-2Torrの真空チャンバー内に
挿入し、スパッタにて表3に示す元素をA層とB層として
それぞれ表1に示す厚みで交互に50回成膜、積層させ
た。
Example 2 A Si (111) wafer substrate was inserted into a vacuum chamber of 10 -2 Torr, and the elements shown in Table 3 were alternately sputtered into layers A and B at the thicknesses shown in Table 1, respectively, by sputtering. Film formation and lamination were repeated.

【0041】得られたSiウェーハ上の試料を5×15mm、10×1
0mm、外径10mmの形状に切断加工し、それぞれのゼーベ
ック係数、ホール係数(キャリヤー濃度と電気伝導率を
含む)、熱伝導率をSiウェーハと共に測定した。1100Kに
おける測定値と、性能指数(ZT=S2T/ρκ)を表4に示す。
The sample on the obtained Si wafer was 5 × 15 mm, 10 × 1
The workpiece was cut into a shape having a diameter of 0 mm and an outer diameter of 10 mm, and the Seebeck coefficient, the Hall coefficient (including the carrier concentration and the electrical conductivity), and the thermal conductivity were measured together with the Si wafer. Table 4 shows the measured values at 1100K and the figure of merit (ZT = S 2 T / ρκ).

【0042】[0042]

【表1】 【table 1】

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【発明の効果】この発明による熱電変換材料は、主体の
Siが地球環境、地球資源さらに安全性の点からも優れて
おり、しかも比重が小さく軽いために自動車用の熱電変
換素子として非常に好都合であり、またSiは耐食性に優
れているために、表面処理等が不要であるという利点が
ある。
The thermoelectric conversion material according to the present invention comprises
Si is excellent in terms of global environment, earth resources and safety, and it is very convenient as a thermoelectric conversion element for automobiles because of its low specific gravity and light.Si has excellent corrosion resistance, There is an advantage that processing and the like are unnecessary.

【0047】この発明による熱電変換材料は、Siを主体に用
いることから、高価なGeを多量に含んだSi-Ge系材料よ
りも安価であり、Fe-Si系よりも高い性能指数が得られ
る。さらに、この発明に用いるSiは、半導体デバイス用
に比べてはるかに純度が低いために原料は比較的安価に
入手でき、単に成膜、積層する簡単な方法で生産でき、
生産性が良く品質が安定した安価な熱電変換材料が得ら
れる。
Since the thermoelectric conversion material according to the present invention mainly uses Si, it is less expensive than a Si-Ge material containing a large amount of expensive Ge, and a higher figure of merit can be obtained than an Fe-Si material. . Further, Si used in the present invention has a much lower purity than for semiconductor devices, so the raw materials can be obtained relatively inexpensively, and can be produced by a simple method of simply forming and laminating,
An inexpensive thermoelectric material with good productivity and stable quality can be obtained.

【0048】この発明による熱電変換材料は、キャリヤー濃
度の大きいところでゼーベック係数が大きく、電気抵抗
も小さいSiの特徴を活かし、且つ熱伝導率の大きい欠点
を大幅に低下させて、性能指数の大きな材料を得るのに
有効な方法である。また、添加元素の種類や量によりそ
の物性値を制御できる利点がある。
The thermoelectric conversion material according to the present invention makes use of the characteristics of Si having a large Seebeck coefficient and a small electric resistance where the carrier concentration is high, and significantly reduces defects having a large thermal conductivity, and has a large figure of merit. Is an effective way to get Further, there is an advantage that the physical property value can be controlled by the type and amount of the added element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による熱電変換材料の積層状態を示す
説明図であり、Aは積層後、Bは熱処理後の状態を示す。
FIG. 1 is an explanatory view showing a laminated state of a thermoelectric conversion material according to the present invention, wherein A shows a state after lamination and B shows a state after heat treatment.

【図2】この発明による熱電変換材料の他の積層状態を
示す説明図である。
FIG. 2 is an explanatory diagram showing another laminated state of the thermoelectric conversion material according to the present invention.

【図3】この発明による熱電変換材料の結晶組織を示す
模式説明図である。
FIG. 3 is a schematic explanatory view showing a crystal structure of a thermoelectric conversion material according to the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板又は膜上に、Si層又はSiが主体とな
るSiリッチ層と、SiをP型半導体又はN型半導体となすた
めの単独又は複数の添加元素が主体となる添加元素リッ
チ層とが積層されて形成された積層体からなり、全体組
成が前記添加元素を0.001原子%〜20原子%含有するSiか
らなる熱電変換材料。
Claims 1. A substrate or a film, comprising a Si layer or a Si-rich layer mainly composed of Si, and an additive element-rich layer mainly composed of one or more additional elements for forming Si into a P-type semiconductor or an N-type semiconductor. A thermoelectric conversion material comprising a laminate formed by laminating layers, and having a total composition of Si containing the additive element in an amount of 0.001 atomic% to 20 atomic%.
【請求項2】 請求項1において、積層体に熱処理が施さ
れた熱電変換材料。
2. The thermoelectric conversion material according to claim 1, wherein the heat treatment is performed on the laminate.
【請求項3】 請求項1において、P型半導体となすため
の添加元素(添加元素αという)とN型半導体となすため
の添加元素(添加元素βという)を、各群より少なくとも
1種ずつ総量で0.002原子%〜20原子%含有し、添加元素α
またはβの総量が相対する添加元素βまたはαのそれを
超えてP型半導体又はN型半導体となすために必要量だけ
含有した熱電変換材料。
3. The method according to claim 1, wherein the additional element (additional element α) for forming a P-type semiconductor and the additional element (additional element β) for forming an N-type semiconductor are at least
0.002 atomic% to 20 atomic% in total in each case, and additional element α
Or a thermoelectric conversion material containing only a necessary amount of β to form a P-type semiconductor or an N-type semiconductor exceeding that of the corresponding additive element β or α.
【請求項4】 請求項1において、P型半導体となすため
の添加元素(添加元素α)は、添加元素A(Be,Mg,Ca,Sr,B
a,Zn,Cd,Hg,B,Al,Ga,In,Tl)、遷移金属元素M1(M1;Y,Mo,
Zr)の各群から選択する1種又は2種以上であり、N型半導
体となすための添加元素(添加元素β)は、添加元素B(N,
P,As,Sb,Bi,O,S,Se,Te)、遷移金属元素M 2(M2;Ti,V,Cr,M
n,Fe,Co,Ni,Cu,Nb,Ru,Rh,Pd,Ag,Hf,Ta,W,Re,Os,Ir,Pt,A
u、但しFeは10原子%以下)、希土類元素RE(RE;La,Ce,Pr,
Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Lu)の各群から選択す
る1種又は2種以上である熱電変換材料。
4. The semiconductor device according to claim 1, wherein the semiconductor device is a P-type semiconductor.
The additive element (additive element α) of the additive element A (Be, Mg, Ca, Sr, B
a, Zn, Cd, Hg, B, Al, Ga, In, Tl), transition metal element M1(M1; Y, Mo,
Zr) is one or more selected from each group, and is an N-type semiconductor.
The additive element (additive element β) for forming the body is an additive element B (N,
P, As, Sb, Bi, O, S, Se, Te), transition metal element M Two(MTwo; Ti, V, Cr, M
n, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, A
u, where Fe is 10 atomic% or less), rare earth element RE (RE; La, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu)
One or more thermoelectric conversion materials.
【請求項5】 請求項1において、3‐5族化合物半導体あ
るいは2‐6族化合物半導体を1〜10原子%、さらに添加元
素A(Be,Mg,Ca,Sr,Ba,Zn,Cd,Hg,B,Al,Ga,In,Tl)または添
加元素B(N,P,As,Sb,Bi,O,S,Se,Te)の少なくとも1種を1
〜10原子%含有した熱電変換材料。
5. The method according to claim 1, wherein 1 to 10 atomic% of a Group 3-5 compound semiconductor or a Group 2-6 compound semiconductor is further added, and an additional element A (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg , B, Al, Ga, In, Tl) or additional element B (N, P, As, Sb, Bi, O, S, Se, Te)
Thermoelectric conversion material containing up to 10 atomic%.
【請求項6】 請求項1において、Ge,C,Snの少なくとも1
種を0.1〜5原子%と、添加元素A(Be,Mg,Ca,Sr,Ba,Zn,Cd,
Hg,B,Al,Ga,In,Tl)または添加元素B(N,P,As,Sb,Bi,O,S,
Se,Te)の各添加元素群から単独又は複合して含有した熱
電変換材料。
6. The method according to claim 1, wherein at least one of Ge, C, and Sn is selected.
0.1 to 5 atomic% of the seed and the additive element A (Be, Mg, Ca, Sr, Ba, Zn, Cd,
Hg, B, Al, Ga, In, Tl) or additive element B (N, P, As, Sb, Bi, O, S,
A thermoelectric conversion material that is contained singly or in combination from the respective additive element groups of (Se, Te).
【請求項7】 基板又は膜上に、Si層又はSiが主体とな
るSiリッチ層と、SiをP型半導体又はN型半導体となすた
めの単独又は複数の添加元素が主体となる添加元素リッ
チ層とを積層し、形成した積層体の全体組成を前記添加
元素が0.001原子%〜20原子%含有するSi系材料となす熱
電変換材料の製造方法。
7. An Si-rich layer mainly composed of a Si layer or Si, and an additive element rich mainly composed of one or more additional elements for forming Si into a P-type semiconductor or an N-type semiconductor on a substrate or a film. A method for producing a thermoelectric conversion material in which a layered structure is formed, and the entire composition of the formed laminate is a Si-based material containing 0.001 atomic% to 20 atomic% of the additive element.
【請求項8】 請求項1において、積層後の積層体に熱処
理を施す熱電変換材料の製造方法。
8. The method for producing a thermoelectric conversion material according to claim 1, wherein a heat treatment is performed on the laminated body after lamination.
JP11063099A 1999-03-10 1999-03-10 Thermoelectric converting material and manufacture or the same Pending JP2000261046A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11063099A JP2000261046A (en) 1999-03-10 1999-03-10 Thermoelectric converting material and manufacture or the same
AU29415/00A AU752619B2 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
EP00908000A EP1083610A4 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
CNB008005028A CN100385694C (en) 1999-03-10 2000-03-10 thermoelectric conversion material and method of producing same
US09/674,978 US7002071B1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
CA002331533A CA2331533A1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same
KR10-2000-7012611A KR100419488B1 (en) 1999-03-10 2000-03-10 Thermoelectric conversion material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11063099A JP2000261046A (en) 1999-03-10 1999-03-10 Thermoelectric converting material and manufacture or the same

Publications (1)

Publication Number Publication Date
JP2000261046A true JP2000261046A (en) 2000-09-22

Family

ID=13219523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063099A Pending JP2000261046A (en) 1999-03-10 1999-03-10 Thermoelectric converting material and manufacture or the same

Country Status (1)

Country Link
JP (1) JP2000261046A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527517A (en) * 2008-07-11 2011-10-27 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ SiGe matrix nanocomposite materials with improved thermoelectric figure of merit
KR101568118B1 (en) * 2013-12-30 2015-11-11 한국세라믹기술원 Method of manufacturing free-standing thin film for thermoelectric applications
KR20180057798A (en) 2016-11-22 2018-05-31 한국기술교육대학교 산학협력단 Thermoelectric thin film nanocomposites
JP2018142564A (en) * 2017-02-27 2018-09-13 株式会社日立製作所 Thermoelectric conversion material and manufacturing method of the same
CN110892537A (en) * 2017-08-15 2020-03-17 三菱综合材料株式会社 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527517A (en) * 2008-07-11 2011-10-27 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ SiGe matrix nanocomposite materials with improved thermoelectric figure of merit
KR101568118B1 (en) * 2013-12-30 2015-11-11 한국세라믹기술원 Method of manufacturing free-standing thin film for thermoelectric applications
KR20180057798A (en) 2016-11-22 2018-05-31 한국기술교육대학교 산학협력단 Thermoelectric thin film nanocomposites
JP2018142564A (en) * 2017-02-27 2018-09-13 株式会社日立製作所 Thermoelectric conversion material and manufacturing method of the same
CN110892537A (en) * 2017-08-15 2020-03-17 三菱综合材料株式会社 Magnesium-based thermoelectric conversion material, magnesium-based thermoelectric conversion element, and method for producing magnesium-based thermoelectric conversion material
CN110892537B (en) * 2017-08-15 2023-11-07 三菱综合材料株式会社 Magnesium thermoelectric conversion material, magnesium thermoelectric conversion element, and method for producing magnesium thermoelectric conversion material

Similar Documents

Publication Publication Date Title
JP4399757B2 (en) Thermoelectric conversion material and manufacturing method thereof
KR100419488B1 (en) Thermoelectric conversion material and method of producing the same
US8716589B2 (en) Doped lead tellurides for thermoelectric applications
KR101087355B1 (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
US7728218B2 (en) High efficiency thermoelectric power generation using Zintl-type materials
US6525260B2 (en) Thermoelectric conversion material, and method for manufacturing same
JP5468554B2 (en) Semiconductor materials containing doped tin telluride for thermoelectric applications
JP2012521648A (en) Self-organized thermoelectric material
US7560053B2 (en) Thermoelectric material having a rhombohedral crystal structure
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
Wang et al. Synthesis process and thermoelectric properties of n-type tin selenide thin films
JP4374578B2 (en) Thermoelectric material and manufacturing method thereof
Zhao et al. Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering
JP4504523B2 (en) Thermoelectric material and manufacturing method thereof
JP6768556B2 (en) Thermoelectric conversion material and its manufacturing method
Zhang et al. Realizing n-type gete through suppressing the formation of cation vacancies and bi-doping
JP2000261046A (en) Thermoelectric converting material and manufacture or the same
JP2001135868A (en) Thermoelectric conversion element
Kajikawa et al. Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements
EP4215633A1 (en) Thermoelectric material, method for producing same, and thermoelectric power generation element
EP4212476A1 (en) Thermoelectric material, method for proudcing same, and thermoelectric power generation element
JPH11135840A (en) Thermoelectric converting material
JP4900819B2 (en) Thermoelectric material and manufacturing method thereof
JP2000261044A (en) Thermoelectric conversion material and its manufacture
JP2000261043A (en) Thermoelectric conversion material and its manufacture