WO2014188834A1 - Method for manufacturing plating film, and plated product - Google Patents

Method for manufacturing plating film, and plated product Download PDF

Info

Publication number
WO2014188834A1
WO2014188834A1 PCT/JP2014/061239 JP2014061239W WO2014188834A1 WO 2014188834 A1 WO2014188834 A1 WO 2014188834A1 JP 2014061239 W JP2014061239 W JP 2014061239W WO 2014188834 A1 WO2014188834 A1 WO 2014188834A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
plating film
acid
organic solvent
solvent
Prior art date
Application number
PCT/JP2014/061239
Other languages
French (fr)
Japanese (ja)
Inventor
則之 斉藤
啓子 高橋
喜浩 斎藤
五十嵐 修一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2015518163A priority Critical patent/JP6103050B2/en
Publication of WO2014188834A1 publication Critical patent/WO2014188834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present technology relates to a method for manufacturing a plated film using an electrolytic plating method, and a plated product having the plated film.
  • Known methods for producing semiconductor alloys used in superconducting materials, thermoelectric conversion materials, photocatalysts, ferroelectric memories, etc. include melting methods, sputtering methods, vapor deposition methods, CVD methods, reduction methods, and aqueous plating methods. ing. Among them, the melting method is the most commonly used production method. This melting method includes, for example, a semiconductor element such as Bi (bismuth), Sb (antimony), Te (tellurium) or Se (selenium), Co (cobalt), Pb (lead), Ge (germanium), Mg (magnesium).
  • a semiconductor element such as Bi (bismuth), Sb (antimony), Te (tellurium) or Se (selenium), Co (cobalt), Pb (lead), Ge (germanium), Mg (magnesium).
  • the sputtering method, vapor deposition method and CVD method are called gas phase methods and deposit elements deposited on the object to be plated in a vacuum.
  • silica particles are added as a precipitate to a solution in which salts such as bismuth chloride, tellurium chloride, and antimony chloride are dissolved, and a reducing agent such as hydrazine or sodium borohydride is added and reacted.
  • a semiconductor element is deposited around an object.
  • the aqueous plating method is a method in which a salt or compound containing a semiconductor element such as bismuth or tellurium is dissolved in a strong acid such as nitric acid, sulfuric acid or hydrochloric acid, and these elements are deposited on the cathode by electrolytic plating.
  • Patent Document 1 The vapor phase method is described in, for example, Patent Document 1
  • the reduction method is described in, for example, Patent Document 2
  • the aqueous plating method is described in, for example, Patent Document 3.
  • a method for manufacturing a plating film includes: preparing a substrate and a plating solution in which Bi and Te are dissolved in an organic solvent as a plating solvent; and a pair of electrodes immersed in the plating solution. Forming a plating film on the substrate by applying a voltage to the substrate.
  • a plated product according to an embodiment of the present disclosure includes a substrate including one or more elements selected from the group consisting of Cu, Ag, and Al, and a plating film that is provided on the substrate and includes Bi and Te. .
  • This plated product can be obtained, for example, by immersing a substrate in a plating solution in which Bi and Te are dissolved in an organic solvent, and forming a plating film on the substrate by an electrolytic plating method.
  • a plating film with higher homogeneity can be easily manufactured without corroding the substrate.
  • the base body since the base body has conductivity, it can be manufactured by the above-described manufacturing method, so that it has excellent homogeneity and high reliability.
  • FIG. 2 is a schematic diagram before energization of a plating bath in the manufacturing process of the plating film shown in FIG. 1.
  • FIG. 3B is a schematic view during energization of the plating bath shown in FIG. 3A. It is a wave form diagram of an applied voltage (alternating current). It is a characteristic view showing the composition ratio of the plating film as an experimental example of the present disclosure.
  • Embodiment 1-1 Structure of plated product 1-2. 1. Manufacturing method of plating film Application Example 3 Example
  • FIG. 1 schematically illustrates a cross-sectional configuration of a plated product according to an embodiment of the present disclosure.
  • This plated product 10 is obtained by providing a plated film 12 on a substrate 11 as an object to be plated, and can be used, for example, as a thermoelectric conversion element that converts heat directly into electric energy.
  • the plating film 12 is formed by, for example, a non-water plating method.
  • the base 11 is mainly composed of a conductive material containing one or more elements selected from the group consisting of Cu (copper), Ag (silver), and Al (aluminum), for example.
  • the plated film 12 has, for example, a semiconductor compound (preferably soluble in an organic solvent) containing an element belonging to Groups 12, 13, 15, and 16 in the periodic table.
  • a semiconductor compound preferably soluble in an organic solvent
  • such elements include Zn (zinc), Cd (cadmium), Hg (mercury), B (boron), Al (aluminum), Ga (gallium), In (indium), Tl (thallium), P ( Phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), B (sulfur), Se (selenium), Te (tellurium) and Po (polonium).
  • Bi bismuth
  • Te tellurium
  • n-type semiconductor Bi 2 Te 3 and p-type semiconductor Bi 1.5 Sb 0.5 Te 3
  • Other examples include Bi 2 Se 3 and Se 7 Te 3 .
  • non-water plating method As a manufacturing method of the plating film 12 of the present embodiment, an electrolytic plating method using non-water plating (hereinafter referred to as non-water plating method) is preferable. This is a method using an organic solvent as a main plating solvent, and can deposit a wider variety of metals than a plating method using water as a solvent (hereinafter referred to as an aqueous plating method). This is because, in the non-water plating method, hydrogen gas derived from water or protons is not easily generated, so that even a metal having a remarkably low redox potential (for example, alkali metal and alkaline earth metal) can be deposited.
  • a metal having a remarkably low redox potential for example, alkali metal and alkaline earth metal
  • non-aqueous plating methods may deposit metals with high affinity for oxygen, such as aluminum, titanium, thallium, niobium, and vanadium, which cannot be precipitated by aqueous plating methods due to the presence of oxygen derived from water or dissolved oxygen. it can.
  • the generation of pinholes on the plating surface due to the generation of bubbles can be suppressed by selecting a solvent having low proticity as the plating solvent. This is because even when a high voltage (for example, 10 V or more) is applied, hydrogen is hardly generated at the cathode electrode.
  • the properties of the plating solvent can be controlled by mixing a plurality of organic solvents. This improves the degree of freedom in controlling the characteristics of the plating film.
  • FIG. 2 shows the flow of the manufacturing process of the plating film 12 using the non-water plating method in the present embodiment.
  • 3A and 3B are schematic diagrams showing a schematic configuration of the plating apparatus 30 for performing the non-water plating method and a state of the plating process.
  • the base 11 is prepared and the plating solution R is adjusted (step S101).
  • the plating solution R for example, one or more kinds of semiconductor elements, salts containing semiconductor elements, or compounds containing semiconductor elements are dissolved in an appropriate organic solvent as a supply source of the elements constituting the plating film 12.
  • an appropriate organic solvent as a supply source of the elements constituting the plating film 12.
  • Each of the organic solvent and the ligand may be only one kind of material or a mixture of two or more kinds. Water can be added as necessary.
  • Examples of the compound dissolved in the organic solvent include Bi (NO 3 ) 3 .5H 2 O (bismuth nitrate pentahydrate), K 2 TeO 3 (potassium tellurite), KSb (OH) 6 (pyro Potassium antimonate), C 8 H 10 K 2 O 15 Sb 2 (potassium antimonyl potassium tartrate), K 2 SeO 3 (potassium selenite), and K 2 SeO 4 (potassium selenate).
  • the semiconductor element precipitation form may be controlled by selecting the type of organic solvent as the plating solvent.
  • the greater the polarity of the plating solvent the greater the degree of ionization of the salts dissolved in the solvent. For this reason, since the ionic conductivity of a solvent becomes large and the growth rate of precipitates increases, the particle size tends to increase. For this reason, the deposit on the object to be plated tends to be a blackish film with weak adhesion.
  • the polarity of the plating solvent in the present embodiment is preferably selected so that the ion conductivity is lowered to a level at which a highly homogeneous film can be obtained.
  • the base 11 has conductivity.
  • the organic solvent as the plating solvent is suitably a highly polar organic solvent, and preferably contains a heteroatom such as N (nitrogen), S (sulfur) or O (oxygen) in the molecule. By appropriately blending this with a low polarity solvent, it can be prepared as a suitable polar mixed solvent.
  • the organic solvents listed below can be used alone or in admixture of two or more.
  • nitrogen-containing organic solvent examples include acetonitrile, N-methylpyrrolidone, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenetriamine, triethylenetetramine, Polyethyleneimine, tetramethylpropylenediamine, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -lactam, ⁇ -lactam, ⁇ -lactam, 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N- Examples include vinyl-2-pyrrolidinone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone.
  • sulfur-containing organic solvent examples include sulfolane, dimethyl sulfoxide, dimethyl sulfone, 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-1-propanol, 2,3-dimercapto-1-propanol, 3- Examples include mercapto-1,2-propanediol, 1,3-propanedithiol, thiodiglycol and the like.
  • oxygen-containing organic solvent examples include propylene carbonate, dimethyl carbonate, ethylene carbonate, methyl acetate, ethyl acetate, ⁇ -butyrolactone, dimethoxyethane, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, t- Butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, hexanetriol, 1,3 -Propanediol, 2-methyl-1,3-propanediol, 1,2-pro Diol, 1,4-butanediol, 2-methyl-1,4-butan
  • the molecular weight is adjusted by polymerizing a polymerizable monomer having a large polarity by utilizing the fact that the polarity of the whole molecule decreases as the molecular weight increases. Good.
  • preferred polymerizable monomers include glycols such as ethylene glycol, propylene glycol, and butylene glycol.
  • the plating solvent may contain a monomer of a polymerizable compound, a polymer, or a non-polymerizable compound.
  • the organic solvent is mentioned as the plating solvent.
  • water may be added to the organic solvent.
  • a highly coordinated compound is added as appropriate to the organic solvent.
  • Dissolve when a semiconductor element serving as a supply source of two or more different semiconductor elements, a salt containing a semiconductor element, and a compound containing a semiconductor element are dissolved in an organic solvent, they can be dissolved individually or mixed in the solution. Another salt may be formed, resulting in precipitation. Specifically, when bismuth nitrate pentahydrate and potassium tellurite are dissolved, the following reaction occurs to produce a white precipitate.
  • a highly coordinated compound (ligand) is blended as described above. It is also possible to take a method of dissolving the salt.
  • a highly coordinating liquid or a solid compound that dissolves in an organic solvent can be used. Suitable examples include ethanolamine, diethanolamine, triethanolamine and the like mentioned as nitrogen-containing organic solvents, and hydroxy acid.
  • Hydroxy acid is a compound having a hydroxyl group and a carboxyl group at the same time in the molecule, and is also called hydroxycarboxylic acid, oxyacid, or alcoholic acid.
  • the aliphatic hydroxy acid include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, and leucine.
  • Examples thereof include acid, mebainic acid, bantoic acid, ricinoleic acid, ricineramic acid, cerebronic acid, quinic acid, and shikimic acid.
  • aromatic hydroxy acid examples include salicylic acid, homosalicylic acid, hydroxy (methyl) benzoic acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orthoric acid, gallic acid, mandelic acid, and benzylic acid. , Atrolactic acid, merirotic acid, furoletic acid, coumaric acid, umbelic acid, caffeic acid, ferulic acid, sinapinic acid and the like.
  • crown ether or ethylenediaminetetraacetic acid (EDTA) can be used alone or in combination as a ligand.
  • blend additives such as a brightener and a supporting electrolyte
  • properties such as the brightener and the supporting electrolyte can be considered in the same manner as a commonly used aqueous plating.
  • the brightener caps the protrusions generated on the surface of the plating film to prevent concentration of electrolysis and to flatten the plating film 12.
  • organic compounds with strong adsorptivity that is, having a large polarization in the molecule, such as carboxyl group, aldehyde group, ester group, hydroxy group, thiol group, cyano group, sulfonic acid group, amide group, imide group, etc.
  • organic compound containing a functional group is exemplified. Specific examples include thiourea, coumarin, ethylene cyanohydrin, saccharin and the like.
  • organic solvent itself which is a plating solvent may exhibit the effect
  • the supporting electrolyte is for increasing the conductivity of the plating solution.
  • the supporting electrolyte is selected from salts that are easily ionized when dissolved in a plating solvent.
  • the plating solvent is an organic solvent
  • tetraalkylammonium perchlorate or tetrafluoroborate is often used. Specific examples include ammonium perchlorate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetramethylammonium tetrafluoroborate, and tetraethylammonium tetrafluoroborate.
  • a metal halide or a metal nitrate is often used. Specific examples include sodium chloride, lithium chloride, sodium nitrate, lithium nitrate, sodium perchlorate, and lithium perchlorate.
  • the plating solution R is put into a plating bath 31 (FIG. 3A) provided with an anode electrode 32 and a cathode electrode 33 to which the substrate 11 is attached, and the plating solution R is adjusted to a predetermined temperature while stirring (step).
  • the anode electrode 32 may be a soluble electrode serving as a semiconductor element supply source or an insoluble electrode that only exhibits conductivity.
  • the temperature of the plating solution R can be arbitrarily set within a range in which the plating solution R exhibits the required fluidity and does not cause electrolyte precipitation or deposition.
  • the temperature of the plating solution can be set high by using a high boiling point organic solvent, molten salt, ionic liquid, or the like as the plating solvent.
  • the metal used for the electrode may act as a catalyst and accelerate the decomposition and polymerization of the organic solvent, select an organic solvent according to the electrode material used and perform the plating operation at an appropriate temperature. Is desirable.
  • the crystal grain size of the deposited semiconductor element may vary depending on the type and temperature of the plating solvent. These appear, for example, as fine irregularities on the surface of the plating film or color differences. Although these differ depending on the type of metal to be plated, the particle size can be adjusted to some extent by controlling the waveform of the applied voltage. Although both a DC voltage and an AC voltage can be used as the applied voltage, it is preferable to use an AC voltage with many controllable parameters for the above reasons.
  • AC voltage can be applied by setting an arbitrary voltage waveform.
  • the voltage waveform can take the form of, for example, a rectangular wave, a sine wave, or a triangular wave.
  • FIG. 4 shows the waveform of the applied voltage.
  • the cathode electrode 33 does not always need to be a negative ( ⁇ ) voltage, and can be switched to a positive (+) voltage within a range where the deposited metal remains. By this operation, it is possible to dissolve portions that tend to cause electric field concentration such as protrusions. Utilizing this property, it becomes possible to improve the flatness (specularity and glossiness) of the surface of the plating film 12 and to increase the thickness of the plating film 12.
  • the thickness of the diffusion layer of the plating solution R formed on the surface of the plating film 12 is reduced to about 1/10 of the DC voltage with an AC voltage.
  • the diffusion layer is a solution layer having a concentration different from that of the plating solution R generated on the electrode surface, and is usually about several ⁇ m to several tens of ⁇ m, and is several hundred ⁇ m when thick.
  • the plating film is formed at a high current density several hundred to several thousand times that of the DC voltage, and the generation rate of crystal nuclei exceeds the growth rate. It is considered that fine crystals can be formed.
  • water is not necessarily completely excluded as a plating solvent, and in some cases, water can be added to an organic solvent.
  • the moisture contained in the organic solvent, which is the plating solvent, or the crystal water contained in the salt exhibits the same effect as that obtained by adding water.
  • a plating solution R in which a strong hydrophobic compound is dissolved as an electrolyte component is prepared and a plating operation is performed, it is necessary to manage the amount of water in the plating solution R.
  • the amount of moisture contained in the state of the plating solution is preferably not more than the volume of the organic solvent. More preferably, the amount of water in the plating solution is 10% or less.
  • a strongly hydrophobic compound is used, a solvent dehydrated by a dehydration treatment is used. In this case, the plating operation is preferably performed in a dry box substituted with nitrogen or argon.
  • a voltage is applied between a pair of electrodes (anode electrode 32 and cathode electrode 33) immersed in a non-aqueous plating solution R in which Bi and Te are dissolved in an organic solvent. Then, the plating film 12 is formed on the substrate 11. For this reason, the plating film 12 excellent in homogeneity containing Bi and Te having a desired composition ratio can be easily produced.
  • non-aqueous plating method it is possible to deposit a wider variety of metals than plating using water as a solvent (aqueous plating). This is because non-water plating hardly generates hydrogen gas derived from water or protons, so that even a metal with a remarkably low redox potential (for example, alkali metal and alkaline earth metal) can be deposited. Furthermore, in non-aqueous plating, metals having high affinity with oxygen, such as Al, Ti, Tl, Nb, and V, which cannot be precipitated by aqueous plating due to oxygen derived from water or dissolved oxygen, can be deposited.
  • the non-aqueous plating method by selecting a low protic solvent as the plating solvent, it is possible to suppress the generation of hydrogen at the cathode electrode even when a high voltage (for example, 10 V or more) is applied. The generation of pinholes on the surface can be suppressed. Furthermore, the property of the plating solvent can be controlled by mixing a plurality of organic solvents. This makes it possible to accurately produce the plating film 12 having various characteristics. Further, since a strong acid is not used as a plating solvent unlike the aqueous plating method, the plating film 12 can be formed even on the substrate 11 made of a material corroded by the strong acid.
  • the melting method has problems, for example, that the material needs to be heated to a temperature higher than the melting point, and that it is necessary to work in an inert gas or vacuum to prevent oxidation. .
  • tellurium, antimony, selenium, etc. having a high vapor pressure may evaporate, and the composition may change, or depending on the stirring state at the time of melting.
  • the plating film 12 having high adhesion to the base 11 and excellent compositional homogeneity even on the base 11 exhibiting corrosiveness to acids. It can be easily produced at room temperature in an air atmosphere.
  • the plated product 10 provided with the plated film 12 described in the embodiment can be used for a thermoelectric conversion element, for example.
  • Bi 2 Te 3 -based semiconductors are well known as thermoelectric conversion materials. They are materials for Seebeck elements that generate electricity using temperature differences, and the opposite phenomenon. It is used for Peltier element materials where cooling and heat generation occur.
  • a characteristic of Bi 2 Te 3 series semiconductors is that high thermoelectric conversion efficiency can be obtained in the region of several tens to 300 ° C. where the operating temperature range is relatively low. Because of this property, in recent years, it has attracted attention as a Seebeck element for small-scale power generation (energy harvesting) using waste heat that has been low in utility value and discarded to the outside world.
  • a ⁇ -type element structure is generally formed by combining an n-type and a p-type semiconductor (for example, edited by Ryo Sakata, “Thermoelectric Conversion Engineering-Fundamentals and Applications, (See Realize Co., Ltd., 1997.)
  • Bi 2 Te 3 semiconductors often use Bi 2 Te 3 as an n-type semiconductor and Bi 1.5 Sb 0.5 Te 3 as a p-type semiconductor.
  • a method of forming an n-type and a p-type by selecting an appropriate composition from a Bi 2 Te 3 —Sb 2 Te 3 —Bi 2 Se 3 solid solution.
  • the organic solvent the semiconductor element in the case, such further Sb and Se be applied to the heat generating element due to Seebeck effect Preferable to control the composition of the n-type semiconductor and p-type semiconductor by adding in.
  • the metal salt of the metal salt and Se and Sb which dissolves in an organic solvent for example, above KSb (OH) 6, C 8 H 10 K 2 O 15 Sb 2 , K 2 SeO 3 , K 2 SeO 4, etc. These may be added as appropriate to obtain a plating film having a desired composition by the non-aqueous plating method shown in this embodiment. Can do.
  • Example> Examples of the present disclosure will be specifically described below, but the present technology is not limited only to these examples.
  • a platinum plate that is an insoluble electrode was used for the anode electrode 32.
  • the applied voltage was set to the values shown in Table 1 for each parameter shown in FIG. 4 in the AC waveform of FIG.
  • a plated film 12 having silver gloss was obtained.
  • TeO 3 2 ⁇ is more easily electrolyzed at higher frequencies, and as a result, the deposition ratio of tellurium element is increased.
  • the ratio of the deposited elements can also be adjusted by controlling the waveform of the AC voltage.
  • the present disclosure has been described with reference to the embodiment and examples, the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the shape is not limited to plate shape, It can set arbitrarily. In order to make the film formation more uniform, an operation such as rotation or swinging of the object to be plated can be performed.
  • a glass container was used as the plating tank this time, the shape of the container is arbitrary, and it is desirable to perform the plating operation while maintaining an appropriate distance between the anode electrode and the cathode electrode so as to obtain the highest homogeneity.
  • the stirring of the plating solution is not limited to the rotor, and various methods such as a rotor blade, pump circulation, or bubbling can be used.
  • this technique can take the following structures. (1) Providing a substrate and a plating solution in which Bi and Te are dissolved in an organic solvent as a plating solvent; Forming a plating film on the substrate by applying a voltage between a pair of electrodes immersed in the plating solution. (2) The method for producing a plating film according to the above (1), wherein a solution obtained by dissolving at least one of Sb and Se in the organic solvent is used as the plating solution. (3) Bi (NO 3 ) 3 .5H 2 O and K 2 TeO 3 are dissolved in the organic solvent as the plating solution. The method for producing a plating film according to the above (1) or (2).
  • KSb (OH) 6 As the plating solution, at least one of KSb (OH) 6 , C 8 H 10 K 2 O 15 Sb 2 , K 2 SeO 3 , and K 2 SeO 4 is further dissolved in the organic solvent (1) To (3).
  • One or more of water, ethanolamine, diethanolamine, triethanolamine, hydroxy acid, crown ether and ethylenediaminetetraacetic acid (EDTA) are further added to the plating solution. Any one of (1) to (4) above The manufacturing method of the plating film as described in 2.
  • (6) The method for producing a plating film according to any one of (1) to (5), wherein an alternating voltage is applied as the voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

 Provided is a method for manufacturing a plating film having excellent mass-productivity and high uniformity. This method for manufacturing a plating film includes readying a substrate and a plating solution in which Bi and Te are dissolved in an organic solvent functioning as a plating solvent, and applying a voltage between a pair of electrodes immersed in the plating solution and thereby forming a plating film on the substrate.

Description

メッキ膜の製造方法およびメッキ製品Plating film manufacturing method and plated product
 本技術は、電解メッキ法を用いたメッキ膜の製造方法、およびこのメッキ膜を有するメッキ製品に関する。 The present technology relates to a method for manufacturing a plated film using an electrolytic plating method, and a plated product having the plated film.
 超伝導材料、熱電変換材料、光触媒、または強誘電体メモリなどで使われる半導体合金の製造方法としては、溶融法、スパッタ法、蒸着法、CVD法、還元法、または水性メッキ法などが知られている。それらのうち溶融法は最も一般的に用いられている製造方法である。この溶融法は、例えば、Bi(ビスマス),Sb(アンチモン),Te(テルル)あるいはSe(セレン)などの半導体元素と、Co(コバルト),Pb(鉛),Ge(ゲルマニウム),Mg(マグネシウム),Ti(チタン),Ni(ニッケル),Sn(スズ)あるいはZr(ジルコニウム)などの金属元素とを溶融状態で混合したものを冷却過程で結晶化させたのち、所望の形状に加工するものである。スパッタ法、蒸着法およびCVD法は気相法とよばれ、真空中で気化させた元素を被メッキ物上に堆積させるものである。還元法は塩化ビスマス、塩化テルル、塩化アンチモンなどの塩類を溶かした溶液に、被析出物としてシリカ粒子などを加え、ヒドラジンや水素化ホウ素ナトリウムなどの還元剤を加えて反応させることにより、被析出物の周りに半導体元素を析出させる方法である。水性メッキ法は硝酸、硫酸、塩酸などの強酸にビスマスやテルルなどの半導体元素を含む塩類や化合物を溶解し、電解メッキによってカソード上にこれらの元素を析出させる方法である。 Known methods for producing semiconductor alloys used in superconducting materials, thermoelectric conversion materials, photocatalysts, ferroelectric memories, etc. include melting methods, sputtering methods, vapor deposition methods, CVD methods, reduction methods, and aqueous plating methods. ing. Among them, the melting method is the most commonly used production method. This melting method includes, for example, a semiconductor element such as Bi (bismuth), Sb (antimony), Te (tellurium) or Se (selenium), Co (cobalt), Pb (lead), Ge (germanium), Mg (magnesium). ), Ti (titanium), Ni (nickel), Sn (tin) or Zr (zirconium) and other metal elements mixed in a molten state, crystallized in the cooling process, and then processed into a desired shape It is. The sputtering method, vapor deposition method and CVD method are called gas phase methods and deposit elements deposited on the object to be plated in a vacuum. In the reduction method, silica particles are added as a precipitate to a solution in which salts such as bismuth chloride, tellurium chloride, and antimony chloride are dissolved, and a reducing agent such as hydrazine or sodium borohydride is added and reacted. In this method, a semiconductor element is deposited around an object. The aqueous plating method is a method in which a salt or compound containing a semiconductor element such as bismuth or tellurium is dissolved in a strong acid such as nitric acid, sulfuric acid or hydrochloric acid, and these elements are deposited on the cathode by electrolytic plating.
 気相法については例えば特許文献1に、還元法については例えば特許文献2に、水性メッキ法については例えば特許文献3にそれぞれ記載されている。 The vapor phase method is described in, for example, Patent Document 1, the reduction method is described in, for example, Patent Document 2, and the aqueous plating method is described in, for example, Patent Document 3.
国際公開第2008/056466号公報International Publication No. 2008/056466 特開2010-10366号公報JP 2010-10366 A 特開平10-70317号公報JP-A-10-70317
 しかしながら、最近では、特殊な装置を用いず、かつ、煩雑な手順を経ることなく、組成比や膜の均質性に関して高精度の制御が可能なメッキ膜の製造方法が望まれつつある。 However, recently, there is a demand for a method for producing a plating film that can control the composition ratio and the film homogeneity with high accuracy without using a special apparatus and through complicated procedures.
 したがって、高い均質性を有するメッキ膜を簡便に製造可能なメッキ膜の製造方法、および量産性に優れ、高い信頼性を有するメッキ製品を提供することが望ましい。 Therefore, it is desirable to provide a plating film manufacturing method capable of easily manufacturing a plating film having high homogeneity and a plated product having high mass productivity and high reliability.
 本開示の一実施形態としてのメッキ膜の製造方法は、基板とメッキ溶媒としての有機溶剤にBiおよびTeを溶解させたメッキ溶液とを用意することと、メッキ溶液に浸漬された一対の電極間に電圧を印加することにより基板上にメッキ膜を形成することとを含むものである。 According to an embodiment of the present disclosure, a method for manufacturing a plating film includes: preparing a substrate and a plating solution in which Bi and Te are dissolved in an organic solvent as a plating solvent; and a pair of electrodes immersed in the plating solution. Forming a plating film on the substrate by applying a voltage to the substrate.
 本開示の一実施形態としてのメッキ製品は、Cu,AgおよびAlからなる群から選択される1以上の元素を含む基板と、その基板上に設けられ、BiおよびTeを含むメッキ膜とを有する。このメッキ製品は、例えば、有機溶剤にBiおよびTeを溶解させたメッキ溶液に基板を浸漬し、電解メッキ法によりその基板上にメッキ膜を形成することで得られる。 A plated product according to an embodiment of the present disclosure includes a substrate including one or more elements selected from the group consisting of Cu, Ag, and Al, and a plating film that is provided on the substrate and includes Bi and Te. . This plated product can be obtained, for example, by immersing a substrate in a plating solution in which Bi and Te are dissolved in an organic solvent, and forming a plating film on the substrate by an electrolytic plating method.
 本開示の一実施形態としてのメッキ膜の製造方法によれば、基板を腐食することなく、より均質性の高いメッキ膜を間便に製造することができる。また、本開示の一実施形態としてのメッキ製品によれば、基体が導電性を有するので上記の製造方法により製造可能であるので、均質性に優れ、高い信頼性を有する。 According to the method for manufacturing a plating film as an embodiment of the present disclosure, a plating film with higher homogeneity can be easily manufactured without corroding the substrate. Moreover, according to the plated product as one embodiment of the present disclosure, since the base body has conductivity, it can be manufactured by the above-described manufacturing method, so that it has excellent homogeneity and high reliability.
本開示の一実施の形態としてのメッキ製品の断面構成を表す概略図である。It is the schematic showing the cross-sectional structure of the plating product as one embodiment of this indication. 図1に示したメッキ膜の製造方法を表す流れ図である。It is a flowchart showing the manufacturing method of the plating film shown in FIG. 図1に示したメッキ膜の製造工程におけるメッキ浴の通電前の模式図である。FIG. 2 is a schematic diagram before energization of a plating bath in the manufacturing process of the plating film shown in FIG. 1. 図3Aに示したメッキ浴の通電中の模式図である。FIG. 3B is a schematic view during energization of the plating bath shown in FIG. 3A. 印加電圧(交流)の波形図である。It is a wave form diagram of an applied voltage (alternating current). 本開示の実験例としてのメッキ膜の組成比を表す特性図である。It is a characteristic view showing the composition ratio of the plating film as an experimental example of the present disclosure.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
  1-1.メッキ製品の構成
  1-2.メッキ膜の製造方法
2.適用例
3.実施例
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. 1. Embodiment 1-1. Structure of plated product 1-2. 1. Manufacturing method of plating film Application Example 3 Example
<1.実施の形態>
(1-1.メッキ製品の構成)
 図1は、本開示の一実施の形態に係るメッキ製品の断面構成を模式的に表したものである。このメッキ製品10は、被メッキ物としての基体11の上にメッキ膜12が設けられたものであり、例えば熱を直接電気エネルギーに変換する熱電変換素子に用いることができる。メッキ膜12は例えば非水メッキ法により成膜される。
<1. Embodiment>
(1-1. Structure of plated product)
FIG. 1 schematically illustrates a cross-sectional configuration of a plated product according to an embodiment of the present disclosure. This plated product 10 is obtained by providing a plated film 12 on a substrate 11 as an object to be plated, and can be used, for example, as a thermoelectric conversion element that converts heat directly into electric energy. The plating film 12 is formed by, for example, a non-water plating method.
 基体11は、例えば、Cu(銅),Ag(銀)およびAl(アルミニウム)からなる群から選択される1以上の元素を含む導電性材料を主成分とする。 The base 11 is mainly composed of a conductive material containing one or more elements selected from the group consisting of Cu (copper), Ag (silver), and Al (aluminum), for example.
 一方、メッキ膜12は、例えば、周期律表における12族,13族,15族および16族に属する元素を含む半導体化合物(有機溶媒に可溶なものが好ましい)を有する。そのような元素としては、例えばZn(亜鉛),Cd(カドミウム),Hg(水銀),B(硼素),Al(アルミニウム),Ga(ガリウム),In(インジウム),Tl(タリウム),P(リン),As(ヒ素),Sb(アンチモン),Bi(ビスマス),B(硫黄),Se(セレン),Te(テルル)およびPo(ポロニウム)が挙げられる。より具体的には、例えばBi(ビスマス)およびTe(テルル)を含む半導体化合物として、n型半導体のBiTeやp型半導体のBi1.5 Sb0.5 Teがある。その他、BiSeやSeTeなども挙げられる。 On the other hand, the plated film 12 has, for example, a semiconductor compound (preferably soluble in an organic solvent) containing an element belonging to Groups 12, 13, 15, and 16 in the periodic table. Examples of such elements include Zn (zinc), Cd (cadmium), Hg (mercury), B (boron), Al (aluminum), Ga (gallium), In (indium), Tl (thallium), P ( Phosphorus), As (arsenic), Sb (antimony), Bi (bismuth), B (sulfur), Se (selenium), Te (tellurium) and Po (polonium). More specifically, for example, as a semiconductor compound containing Bi (bismuth) and Te (tellurium), there are n-type semiconductor Bi 2 Te 3 and p-type semiconductor Bi 1.5 Sb 0.5 Te 3 . Other examples include Bi 2 Se 3 and Se 7 Te 3 .
(1-2.メッキ膜の製造方法)
 本実施の形態のメッキ膜12の製造方法としては、非水メッキを用いる電解メッキ法(以下、非水メッキ法という。)が好ましい。これは、主たるメッキ溶媒として有機溶剤を用いる手法であり、溶媒として水を用いるメッキ法(以下、水性メッキ法という。)よりも広範囲の種類金属を析出させることができる。これは、非水メッキ法では水またはプロトンに由来する水素ガスが発生しにくいので、酸化還元電位の著しく卑な金属(例えばアルカリ金属およびアルカリ土類金属)でも析出させることができるからである。さらに、非水メッキ法では、水に由来する酸素や溶存酸素の存在により水性メッキ法では析出させられないアルミニウム,チタン,タリウム,ニオブ,バナジウム等の酸素と親和性が高い金属も析出させることができる。また、非水メッキ法では、メッキ溶媒としてプロトン性が低い溶媒を選択することにより、気泡の発生によるメッキ面へのピンホール発生を抑えることができる。高電圧(例えば10V以上)を印加してもカソード電極における水素の発生が起こりにくいからである。さらに、非水メッキ法では、複数の有機溶剤を混合することによりメッキ溶媒の性質を制御することができる。これにより、メッキ膜の特性を制御するあたり、その自由度が向上する。
(1-2. Manufacturing method of plating film)
As a manufacturing method of the plating film 12 of the present embodiment, an electrolytic plating method using non-water plating (hereinafter referred to as non-water plating method) is preferable. This is a method using an organic solvent as a main plating solvent, and can deposit a wider variety of metals than a plating method using water as a solvent (hereinafter referred to as an aqueous plating method). This is because, in the non-water plating method, hydrogen gas derived from water or protons is not easily generated, so that even a metal having a remarkably low redox potential (for example, alkali metal and alkaline earth metal) can be deposited. In addition, non-aqueous plating methods may deposit metals with high affinity for oxygen, such as aluminum, titanium, thallium, niobium, and vanadium, which cannot be precipitated by aqueous plating methods due to the presence of oxygen derived from water or dissolved oxygen. it can. In the non-aqueous plating method, the generation of pinholes on the plating surface due to the generation of bubbles can be suppressed by selecting a solvent having low proticity as the plating solvent. This is because even when a high voltage (for example, 10 V or more) is applied, hydrogen is hardly generated at the cathode electrode. Furthermore, in the non-aqueous plating method, the properties of the plating solvent can be controlled by mixing a plurality of organic solvents. This improves the degree of freedom in controlling the characteristics of the plating film.
 図2は、本実施の形態における非水メッキ法を用いたメッキ膜12の製造工程の流れを表したものである。また、図3A,3Bは、この非水メッキ法を行うためのメッキ装置30の概略構成、およびメッキ処理を様子を表す模式図である。 FIG. 2 shows the flow of the manufacturing process of the plating film 12 using the non-water plating method in the present embodiment. 3A and 3B are schematic diagrams showing a schematic configuration of the plating apparatus 30 for performing the non-water plating method and a state of the plating process.
 まず、基体11を用意すると共に、メッキ溶液Rを調整する(ステップS101)。メッキ溶液Rの調製においては、メッキ膜12を構成する上記した元素の供給源として、例えば1種以上の半導体元素、半導体元素を含む塩類、または半導体元素を含む化合物を適切な有機溶剤に溶解させる。有機溶剤および配位子は、それぞれ1種類の材料のみでもよいし、2種以上を混合したものであっても構わない。必要に応じて水を添加することもできる。 First, the base 11 is prepared and the plating solution R is adjusted (step S101). In the preparation of the plating solution R, for example, one or more kinds of semiconductor elements, salts containing semiconductor elements, or compounds containing semiconductor elements are dissolved in an appropriate organic solvent as a supply source of the elements constituting the plating film 12. . Each of the organic solvent and the ligand may be only one kind of material or a mixture of two or more kinds. Water can be added as necessary.
 有機溶剤に溶解させる化合物としては、例えば、Bi(NO・5HO(硝酸ビスマス・五水和物),KTeOを(亜テルル酸カリウム),KSb(OH)6(ピロアンチモン酸カリウム),C10 15 Sb(酒石酸アンチモニルカリウム),KSeO(亜セレン酸カリウム),およびKSeO4(セレン酸カリウム)などが挙げられる。 Examples of the compound dissolved in the organic solvent include Bi (NO 3 ) 3 .5H 2 O (bismuth nitrate pentahydrate), K 2 TeO 3 (potassium tellurite), KSb (OH) 6 (pyro Potassium antimonate), C 8 H 10 K 2 O 15 Sb 2 (potassium antimonyl potassium tartrate), K 2 SeO 3 (potassium selenite), and K 2 SeO 4 (potassium selenate).
 メッキ溶媒としての有機溶剤の種類を選択することによって、半導体元素の析出形態を制御できる場合がある。一般に、メッキ溶媒の極性が大きくなるほど溶媒内で溶解している塩類の電離度は大きくなる。このため、溶媒のイオン伝導度が大きくなり、析出物の成長速度が上がるために、粒径も大きくなる傾向がある。このため、被メッキ物上の析出物は密着力の弱い、黒味を帯びた膜になりやすい。本実施の形態におけるメッキ溶媒の極性は、均質性の高い膜が得られるレベルまでイオン伝導性を下げるよう、選択することが好ましい。その際、メッキ溶液Rに用いる半導体元素、半導体元素を含む塩類、半導体元素を含む化合物、メッキ溶液Rの温度、印加電圧の波形を組み合わせた条件において析出形態を観察するとよい。なお、本技術では、電解メッキ法によって被メッキ物(基体11)上にメッキ膜を形成するため、基体11は導電性を有する。 The semiconductor element precipitation form may be controlled by selecting the type of organic solvent as the plating solvent. In general, the greater the polarity of the plating solvent, the greater the degree of ionization of the salts dissolved in the solvent. For this reason, since the ionic conductivity of a solvent becomes large and the growth rate of precipitates increases, the particle size tends to increase. For this reason, the deposit on the object to be plated tends to be a blackish film with weak adhesion. The polarity of the plating solvent in the present embodiment is preferably selected so that the ion conductivity is lowered to a level at which a highly homogeneous film can be obtained. At this time, it is preferable to observe the form of precipitation under conditions combining the semiconductor element used in the plating solution R, the salt containing the semiconductor element, the compound containing the semiconductor element, the temperature of the plating solution R, and the waveform of the applied voltage. In this technique, since the plating film is formed on the object to be plated (base 11) by the electrolytic plating method, the base 11 has conductivity.
 メッキ溶媒としての有機溶剤は、高極性の有機溶剤が適当であり、分子内にN(窒素),S(硫黄),O(酸素)等のヘテロ原子を含むものが好ましい。これを適宜、低極性の溶媒と配合することで、適当な極性の混合溶媒として調製することができる。メッキ溶媒に溶解させる半導体元素、半導体元素を含む塩類、半導体元素を含む化合物の種類に応じて、例えば以下に挙げる有機溶剤を単独、または2種以上を混合して用いることができる。 The organic solvent as the plating solvent is suitably a highly polar organic solvent, and preferably contains a heteroatom such as N (nitrogen), S (sulfur) or O (oxygen) in the molecule. By appropriately blending this with a low polarity solvent, it can be prepared as a suitable polar mixed solvent. Depending on the type of the semiconductor element dissolved in the plating solvent, the salt containing the semiconductor element, and the type of the compound containing the semiconductor element, for example, the organic solvents listed below can be used alone or in admixture of two or more.
 含窒素有機溶剤としては、例えば、アセトニトリル、N-メチルピロリドン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミン、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、β-ラクタム、γ-ラクタム、δ-ラクタム、2-ピロリジノン、N-メチル-2-ピロリジノン、N-ビニル-2-ピロリジノン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン等が挙げられる。 Examples of the nitrogen-containing organic solvent include acetonitrile, N-methylpyrrolidone, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenetriamine, triethylenetetramine, Polyethyleneimine, tetramethylpropylenediamine, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, β-lactam, γ-lactam, δ-lactam, 2-pyrrolidinone, N-methyl-2-pyrrolidinone, N- Examples include vinyl-2-pyrrolidinone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone.
 含硫黄有機溶剤としては、例えば、スルホラン、ジメチルスルホキシド、ジメチルスルホン、2-メルカプトエタノール、3-メルカプト-1-プロパノール、3-メルカプト-1-プロパノール、2,3-ジメルカプト-1-プロパノール、3-メルカプト-1,2-プロパンジオール、1,3-プロパンジチオール、チオジグリコール等が挙げられる。 Examples of the sulfur-containing organic solvent include sulfolane, dimethyl sulfoxide, dimethyl sulfone, 2-mercaptoethanol, 3-mercapto-1-propanol, 3-mercapto-1-propanol, 2,3-dimercapto-1-propanol, 3- Examples include mercapto-1,2-propanediol, 1,3-propanedithiol, thiodiglycol and the like.
 含酸素有機溶剤としては、例えば、プロピレンカーボネート、ジメチルカーボネート、エチレンカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、ジメトキシエタン、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、ヘキサントリオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、グリセロール、2,3-ブタンジオール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチルエーテル、テトラヒドロフラン、アセトン、メチルエチルケトン等が挙げられる。但し、プロトンを遊離しやすい酸性の溶媒は陰極上で水素を発生する原因となるため、使用を避けることが望ましい。 Examples of the oxygen-containing organic solvent include propylene carbonate, dimethyl carbonate, ethylene carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, dimethoxyethane, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, t- Butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, hexanetriol, 1,3 -Propanediol, 2-methyl-1,3-propanediol, 1,2-pro Diol, 1,4-butanediol, 2-methyl-1,4-butanediol, 1,3-butanediol, 1,2-butanediol, glycerol, 2,3-butanediol, diethylene glycol monomethyl ether, diethylene glycol monoethyl Examples include ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, diethyl ether, tetrahydrofuran, acetone, and methyl ethyl ketone. However, it is desirable to avoid using an acidic solvent that easily liberates protons because it causes hydrogen to be generated on the cathode.
 また、メッキ溶媒としては、分子量が大きくなると分子全体としての極性が低下することを利用して、極性の大きな重合性モノマーを重合させることにより分子量を調整し、極性を制御したものを用いてもよい。なお、加熱や電圧印加等のメッキ操作によって分解や重合を起こすものは避けることが望ましい。このことから、好ましい重合性モノマーとしては、エチレングリコール,プロピレンングリコール,ブチレングリコール等のグリコール類が挙げられる。このように、メッキ溶媒には重合性化合物の単量体あるいは重合体または非重合性化合物を含んでいてもよい。 In addition, as a plating solvent, the molecular weight is adjusted by polymerizing a polymerizable monomer having a large polarity by utilizing the fact that the polarity of the whole molecule decreases as the molecular weight increases. Good. In addition, it is desirable to avoid the thing which decomposes | disassembles and superposes | polymerizes by plating operation, such as a heating and voltage application. For this reason, preferred polymerizable monomers include glycols such as ethylene glycol, propylene glycol, and butylene glycol. Thus, the plating solvent may contain a monomer of a polymerizable compound, a polymer, or a non-polymerizable compound.
 以上、メッキ溶媒として有機溶剤を挙げたが、機能性化合物の溶解性によっては上記有機溶剤に水を添加して用いてもよい。 As mentioned above, the organic solvent is mentioned as the plating solvent. However, depending on the solubility of the functional compound, water may be added to the organic solvent.
 メッキ膜12を構成する元素をメッキ溶剤に溶解させた際、溶液中でのイオンの組み換え等によって沈殿を生じる場合は、適宜、高配位性の化合物(配位子)を添加し有機溶剤に溶解させる。例えば、2種以上の異なる半導体元素の供給源となる半導体元素、半導体元素を含む塩類、半導体元素を含む化合物、を有機溶媒に溶解する場合、個別には溶解しても、混合すると溶液中で別の塩を形成し、沈殿を生じる場合がある。具体的には、硝酸ビスマス・五水和物と亜テルル酸カリウムを溶解したとき、下記の反応を起こして白色の沈殿を生じる。
Bi(NO33・5H2O + K2TeO3 → 6K+ + 6NO3 - + Bi2(TeO33
この場合、使用する有機溶媒を変える、2種類以上の有機溶媒を混合する、あるいは水を添加する、などの方法のほか、上述したように高配位性の化合物(配位子)を配合して塩を溶解させる方法を取ることもできる。配位子としては上記した有機溶媒の中でも特に極性が大きなもののほか、高配位性の液体または個体の化合物で有機溶媒に溶解するもの、などを用いることができる。好適に用いられるものとしては、含窒素有機溶剤として挙げたエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのほか、ヒドロキシ酸なども挙げることができる。
When the elements constituting the plating film 12 are dissolved in the plating solvent, if precipitation occurs due to recombination of ions in the solution, a highly coordinated compound (ligand) is added as appropriate to the organic solvent. Dissolve. For example, when a semiconductor element serving as a supply source of two or more different semiconductor elements, a salt containing a semiconductor element, and a compound containing a semiconductor element are dissolved in an organic solvent, they can be dissolved individually or mixed in the solution. Another salt may be formed, resulting in precipitation. Specifically, when bismuth nitrate pentahydrate and potassium tellurite are dissolved, the following reaction occurs to produce a white precipitate.
Bi (NO 3 ) 3 · 5H 2 O + K 2 TeO 3 → 6K + + 6NO 3 + Bi 2 (TeO 3 ) 3
In this case, in addition to the method of changing the organic solvent to be used, mixing two or more kinds of organic solvents, or adding water, a highly coordinated compound (ligand) is blended as described above. It is also possible to take a method of dissolving the salt. As the ligand, in addition to the above-mentioned organic solvents having a particularly high polarity, a highly coordinating liquid or a solid compound that dissolves in an organic solvent can be used. Suitable examples include ethanolamine, diethanolamine, triethanolamine and the like mentioned as nitrogen-containing organic solvents, and hydroxy acid.
 ヒドロキシ酸とは、分子内に水酸基とカルボキシル基を同時に有する化合物のことであり、ヒドロキシカルボン酸、オキシ酸、アルコール酸とも呼ばれる。脂肪族ヒドロキシ酸としては、例えば、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバイン酸、バントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、シキミ酸などを挙げることができる。芳香族ヒドロキシ酸としては、例えば、サリチル酸、ホモサリチル酸、ヒドロキシ(メチル)安息香酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸、アトロラクチン酸、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、シナピン酸などを挙げることができる。 Hydroxy acid is a compound having a hydroxyl group and a carboxyl group at the same time in the molecule, and is also called hydroxycarboxylic acid, oxyacid, or alcoholic acid. Examples of the aliphatic hydroxy acid include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, and leucine. Examples thereof include acid, mebainic acid, bantoic acid, ricinoleic acid, ricineramic acid, cerebronic acid, quinic acid, and shikimic acid. Examples of the aromatic hydroxy acid include salicylic acid, homosalicylic acid, hydroxy (methyl) benzoic acid, vanillic acid, syringic acid, pyrocatechuic acid, resorcylic acid, protocatechuic acid, gentisic acid, orthoric acid, gallic acid, mandelic acid, and benzylic acid. , Atrolactic acid, merirotic acid, furoletic acid, coumaric acid, umbelic acid, caffeic acid, ferulic acid, sinapinic acid and the like.
 このほか、配位子として、クラウンエーテルやエチレンジアミン四酢酸(EDTA)を単独で、あるいは混合して用いることもできる。 In addition, crown ether or ethylenediaminetetraacetic acid (EDTA) can be used alone or in combination as a ligand.
 なお、メッキ液には、光沢剤、支持電解質などの添加物を配合しても構わない。光沢剤および支持電解質等の性質は、一般的に用いられている水性メッキと同じように考えることができる。光沢剤はメッキ膜の表面に生じる突起部をキャップして電解集中を防ぎ、メッキ膜12を平坦化するものである。一般的に吸着性の強い、即ち分子内に大きな分極を持つ有機化合物、例えば、カルボキシル基,アルデヒド基,エステル基、ヒドロキシ基,チオール基,シアノ基,スルホン酸基,アミド基,イミド基等の官能基を含む有機化合物が挙げられる。具体的には、チオ尿素,クマリン,エチレンシアノヒドリン,サッカリン等が挙げられる。なお、メッキ溶媒である有機溶剤そのものが光沢剤としての作用を発現する場合もある。 In addition, you may mix | blend additives, such as a brightener and a supporting electrolyte, with a plating solution. Properties such as the brightener and the supporting electrolyte can be considered in the same manner as a commonly used aqueous plating. The brightener caps the protrusions generated on the surface of the plating film to prevent concentration of electrolysis and to flatten the plating film 12. Generally, organic compounds with strong adsorptivity, that is, having a large polarization in the molecule, such as carboxyl group, aldehyde group, ester group, hydroxy group, thiol group, cyano group, sulfonic acid group, amide group, imide group, etc. An organic compound containing a functional group is exemplified. Specific examples include thiourea, coumarin, ethylene cyanohydrin, saccharin and the like. In addition, the organic solvent itself which is a plating solvent may exhibit the effect | action as a brightener.
 支持電解質はメッキ液の導電性を高めるためのものである。支持電解質はメッキ溶媒に溶解させた際に電離しやすい塩類から選ばれる。メッキ溶媒が有機溶剤の場合には、テトラアルキルアンモニウムの過塩素酸塩あるいはテトラフルオロほう酸塩等が用いられることが多い。具体的には、過塩素酸アンモニウム,過塩素酸テトラメチルアンモニウム,過塩素酸テトラエチルアンモニウム,テトラフルオロほう酸テトラメチルアンモニウムまたはテトラフルオロほう酸テトラエチルアンモニウム等が挙げられる。メッキ溶媒が水を含む場合には、金属ハロゲン化物や金属の硝酸塩等が用いられることが多い。具体的には、塩化ナトリウム,塩化リチウム,硝酸ナトリウム,硝酸リチウム,過塩素酸ナトリウムまたは過塩素酸リチウム等が挙げられる。 The supporting electrolyte is for increasing the conductivity of the plating solution. The supporting electrolyte is selected from salts that are easily ionized when dissolved in a plating solvent. When the plating solvent is an organic solvent, tetraalkylammonium perchlorate or tetrafluoroborate is often used. Specific examples include ammonium perchlorate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetramethylammonium tetrafluoroborate, and tetraethylammonium tetrafluoroborate. When the plating solvent contains water, a metal halide or a metal nitrate is often used. Specific examples include sodium chloride, lithium chloride, sodium nitrate, lithium nitrate, sodium perchlorate, and lithium perchlorate.
 続いて、メッキ液Rを、アノード電極32と基体11を取り付けたカソード電極33とが設けられたメッキ浴31(図3A)に入れ、攪拌しながらメッキ液Rを所定の温度に調整する(ステップS102)。なお、アノード電極32は、半導体元素の供給源となる溶解性の電極であっても、導電性を示すだけの非溶解性の電極であっても構わない。ここで、メッキ液Rの温度はメッキ液Rが必要な流動性を示し、電解質の沈殿や析出を起こさない範囲で任意に設定することができる。メッキ液Rは温度を高く設定するほどイオン伝導性が上昇するため、カソード電極33上でのメッキ金属の析出速度が大きくなる。非水メッキ法の場合には、メッキ溶媒として高沸点の有機溶剤、溶融塩あるいはイオン性液体等を用いることによりメッキ液の温度を高く設定することができる。ただし、高温にすることによって有機溶剤と電極との間で酸化還元反応等が加速され、電極が変質する場合がある。また、電極に用いた金属が触媒として作用し、有機溶剤の分解や重合を加速する場合があるため、使用する電極材料に応じた有機溶剤を選択し、適正な温度下でメッキ操作を行うことが望ましい。 Subsequently, the plating solution R is put into a plating bath 31 (FIG. 3A) provided with an anode electrode 32 and a cathode electrode 33 to which the substrate 11 is attached, and the plating solution R is adjusted to a predetermined temperature while stirring (step). S102). Note that the anode electrode 32 may be a soluble electrode serving as a semiconductor element supply source or an insoluble electrode that only exhibits conductivity. Here, the temperature of the plating solution R can be arbitrarily set within a range in which the plating solution R exhibits the required fluidity and does not cause electrolyte precipitation or deposition. Since the ionic conductivity of the plating solution R increases as the temperature is set higher, the deposition rate of the plating metal on the cathode electrode 33 increases. In the case of the non-aqueous plating method, the temperature of the plating solution can be set high by using a high boiling point organic solvent, molten salt, ionic liquid, or the like as the plating solvent. However, when the temperature is raised, an oxidation-reduction reaction or the like is accelerated between the organic solvent and the electrode, and the electrode may be altered. In addition, since the metal used for the electrode may act as a catalyst and accelerate the decomposition and polymerization of the organic solvent, select an organic solvent according to the electrode material used and perform the plating operation at an appropriate temperature. Is desirable.
 次に、アノード電極32およびカソード電極33の間に所定の電圧を印加することにより、図3Bに示したようにカソード電極33に取り付けられた基体11上に半導体元素等を析出させ、メッキ膜12を得る(ステップS103)。ここで、メッキ膜の表面では前述のように、析出する半導体元素の結晶粒径がメッキ溶媒の種類や温度によって変化する場合がある。これらは例えば、メッキ膜の表面の微細な凹凸や、色の違いとなって現れる。これらはメッキする金属の種類によって異なるが、印加電圧の波形を制御することによって、ある程度は粒径を調整することができる。印加電圧は直流電圧および交流電圧の両方を用いることができるが、上記理由のため、制御可能なパラメータが多い交流電圧を用いることが好ましい。 Next, by applying a predetermined voltage between the anode electrode 32 and the cathode electrode 33, a semiconductor element or the like is deposited on the base 11 attached to the cathode electrode 33 as shown in FIG. Is obtained (step S103). Here, on the surface of the plating film, as described above, the crystal grain size of the deposited semiconductor element may vary depending on the type and temperature of the plating solvent. These appear, for example, as fine irregularities on the surface of the plating film or color differences. Although these differ depending on the type of metal to be plated, the particle size can be adjusted to some extent by controlling the waveform of the applied voltage. Although both a DC voltage and an AC voltage can be used as the applied voltage, it is preferable to use an AC voltage with many controllable parameters for the above reasons.
 交流電圧は任意の電圧波形を設定して印加することができる。電圧波形は、例えば矩形波,サイン波または三角波などの形態をとることができる。図4は印加電圧の波形を表したものである。カソード電極33は常時マイナス(-)電圧である必要はなく、析出した金属が残存する範囲内においてプラス(+)電圧に切り替えることができる。この操作により、突起部等の電界集中を起こしやすい部位を溶解することができる。この性質を利用してメッキ膜12の表面の平坦性(鏡面性および光沢度)を向上させたり、メッキ膜12を厚膜化したりすることができるようになる。 AC voltage can be applied by setting an arbitrary voltage waveform. The voltage waveform can take the form of, for example, a rectangular wave, a sine wave, or a triangular wave. FIG. 4 shows the waveform of the applied voltage. The cathode electrode 33 does not always need to be a negative (−) voltage, and can be switched to a positive (+) voltage within a range where the deposited metal remains. By this operation, it is possible to dissolve portions that tend to cause electric field concentration such as protrusions. Utilizing this property, it becomes possible to improve the flatness (specularity and glossiness) of the surface of the plating film 12 and to increase the thickness of the plating film 12.
 なお、交流電圧ではメッキ膜12の表面に形成されるメッキ液Rの拡散層の厚さが直流電圧の1/10程度に薄くなると考えられている。拡散層とは電極表面に生じる、メッキ液Rとは濃度の異なる溶液層で、通常は数μmから数十μm程度、厚い場合は数百μmとなる。交流電圧の印加によってこの拡散層が薄くなることにより、直流電圧の数百~数千倍の高電流密度でメッキ膜の形成が行われるようになり、結晶核の生成速度が成長速度を上回ることが多くなり、微細な結晶を形成することができると考えられている。 Note that it is considered that the thickness of the diffusion layer of the plating solution R formed on the surface of the plating film 12 is reduced to about 1/10 of the DC voltage with an AC voltage. The diffusion layer is a solution layer having a concentration different from that of the plating solution R generated on the electrode surface, and is usually about several μm to several tens of μm, and is several hundred μm when thick. By thinning this diffusion layer by applying an AC voltage, the plating film is formed at a high current density several hundred to several thousand times that of the DC voltage, and the generation rate of crystal nuclei exceeds the growth rate. It is considered that fine crystals can be formed.
 以上の操作により、図1に示したメッキ製品10が得られる。 Through the above operation, the plated product 10 shown in FIG. 1 is obtained.
 なお、メッキ溶媒として水は必ずしも完全に排除されるものではなく、場合によっては有機溶剤に水を添加することも可能である。メッキ溶媒である有機溶剤に含まれている湿気や塩類に含まれている結晶水が、水を添加したものと同様の効果を示す場合もある。但し、電解質成分として強い疎水性の化合物を溶解したメッキ液Rを調製し、メッキ操作を行う場合には、メッキ液R中の水分量を管理する必要がある。メッキ液の状態において含まれる水分量は、有機溶剤の体積以下であることが好ましい。より好ましくは、メッキ液中の水分量は10%以下である。強い疎水性の化合物を用いる場合には、無水化処理によって脱水した溶媒を用いる。この場合、メッキ操作も窒素やアルゴンによって置換されたドライボックス中で行うことが好ましい。 It should be noted that water is not necessarily completely excluded as a plating solvent, and in some cases, water can be added to an organic solvent. In some cases, the moisture contained in the organic solvent, which is the plating solvent, or the crystal water contained in the salt exhibits the same effect as that obtained by adding water. However, when a plating solution R in which a strong hydrophobic compound is dissolved as an electrolyte component is prepared and a plating operation is performed, it is necessary to manage the amount of water in the plating solution R. The amount of moisture contained in the state of the plating solution is preferably not more than the volume of the organic solvent. More preferably, the amount of water in the plating solution is 10% or less. When a strongly hydrophobic compound is used, a solvent dehydrated by a dehydration treatment is used. In this case, the plating operation is preferably performed in a dry box substituted with nitrogen or argon.
 このように、本実施の形態によれば、有機溶剤にBiおよびTeを溶解させた非水のメッキ溶液Rに浸漬された一対の電極(アノード電極32およびカソード電極33)の間に電圧を印加し、基板11上にメッキ膜12を形成するようにした。このため、所望の組成比を有するBiおよびTeを含有する均質性に優れたメッキ膜12を簡便に作製することができる。 Thus, according to this embodiment, a voltage is applied between a pair of electrodes (anode electrode 32 and cathode electrode 33) immersed in a non-aqueous plating solution R in which Bi and Te are dissolved in an organic solvent. Then, the plating film 12 is formed on the substrate 11. For this reason, the plating film 12 excellent in homogeneity containing Bi and Te having a desired composition ratio can be easily produced.
 この非水メッキ法では、溶媒として水を用いるメッキ(水性メッキ)よりも広範囲の種類金属を析出させることができる。これは、非水メッキでは水またはプロトンに由来する水素ガスが発生しにくいため、酸化還元電位の著しく卑な金属(例えばアルカリ金属およびアルカリ土類金属)でも析出させることができるためである。さらに、非水メッキでは、水に由来する酸素や溶存酸素のために水性メッキでは析出させられないAl,Ti,Tl,Nb,V等の酸素と親和性が高い金属も析出させることができる。 In this non-aqueous plating method, it is possible to deposit a wider variety of metals than plating using water as a solvent (aqueous plating). This is because non-water plating hardly generates hydrogen gas derived from water or protons, so that even a metal with a remarkably low redox potential (for example, alkali metal and alkaline earth metal) can be deposited. Furthermore, in non-aqueous plating, metals having high affinity with oxygen, such as Al, Ti, Tl, Nb, and V, which cannot be precipitated by aqueous plating due to oxygen derived from water or dissolved oxygen, can be deposited.
 また、非水メッキ法では、メッキ溶媒としてプロトン性が低い溶媒を選択することによって、高電圧(例えば10V以上)を印加してもカソード電極における水素の発生を抑制できるため、気泡の発生によるメッキ面へのピンホール発生を抑えることができる。さらに、複数の有機溶剤を混合することにより、メッキ溶媒の性質を制御することができる。これによって、様々な特性を有するメッキ膜12を精度良く作製することが可能になる。また、水性メッキ法のように強酸をメッキ溶媒として用いないので、強酸によって腐食する材質からなる基体11上であってもメッキ膜12を形成できる。 Further, in the non-aqueous plating method, by selecting a low protic solvent as the plating solvent, it is possible to suppress the generation of hydrogen at the cathode electrode even when a high voltage (for example, 10 V or more) is applied. The generation of pinholes on the surface can be suppressed. Furthermore, the property of the plating solvent can be controlled by mixing a plurality of organic solvents. This makes it possible to accurately produce the plating film 12 having various characteristics. Further, since a strong acid is not used as a plating solvent unlike the aqueous plating method, the plating film 12 can be formed even on the substrate 11 made of a material corroded by the strong acid.
 ところが、他のメッキ膜の製造方法では、以下の問題点が懸念される。具体的には、溶融法には例えば、材料を融点以上の高温に加熱する必要があること、酸化を防止するため不活性気体中または真空中で作業を行う必要があることなどの問題がある。溶融法では、さらに、溶融状態での操作を要することから、蒸気圧の高いテルル、アンチモン、セレンなどが蒸発してしまい、組成が変化してしまう場合があることや、溶融時の撹拌状態によっては組成が不均一になること、などの問題もある。また、気相法の場合、それを行う装置が高価であることに加え、ミクロン単位の厚膜を均一組成で作るのが困難であるほか、膜に内部応力が蓄積しやすいという問題がある。還元法の場合、溶液が接触する全ての場所で反応が起こるため、目的とする被メッキ物の上だけに成膜を行うことが困難であるという問題がある。水性メッキ法の場合、強酸をメッキ溶媒として用いるため、強酸によって腐食する部材へのメッキが困難である。超臨界法においては400℃以上の高温と数十MPaの高圧を必要とするため、オートクレーブなどの特殊な装置を必要とする。 However, there are concerns about the following problems in other plating film manufacturing methods. Specifically, the melting method has problems, for example, that the material needs to be heated to a temperature higher than the melting point, and that it is necessary to work in an inert gas or vacuum to prevent oxidation. . In the melting method, since operation in a molten state is further required, tellurium, antimony, selenium, etc. having a high vapor pressure may evaporate, and the composition may change, or depending on the stirring state at the time of melting. Have problems such as non-uniform composition. In addition, in the case of the vapor phase method, in addition to an expensive apparatus for performing it, there are problems that it is difficult to form a thick film of a micron unit with a uniform composition and that internal stress tends to accumulate in the film. In the case of the reduction method, there is a problem that it is difficult to form a film only on an object to be plated because a reaction occurs in all places where the solution comes into contact. In the case of the aqueous plating method, since a strong acid is used as a plating solvent, it is difficult to plate a member corroded by the strong acid. In the supercritical method, a high temperature of 400 ° C. or higher and a high pressure of several tens of MPa are required, so a special apparatus such as an autoclave is required.
 これらに対し本実施の形態によれば、上述の理由により、酸に対し腐食性を呈する基体11上であっても、基体11に対する密着性が高く、組成の均質性にも優れるメッキ膜12を、空気雰囲気中において室温下で簡便に製造することができる。 On the other hand, according to the present embodiment, for the reasons described above, the plating film 12 having high adhesion to the base 11 and excellent compositional homogeneity even on the base 11 exhibiting corrosiveness to acids. It can be easily produced at room temperature in an air atmosphere.
<2.適用例>
 表記実施の形態において説明したメッキ膜12を設けたメッキ製品10は、先に述べたように、例えば熱電変換素子に用いることができる。
<2. Application example>
As described above, the plated product 10 provided with the plated film 12 described in the embodiment can be used for a thermoelectric conversion element, for example.
 BiTe系半導体は熱電変換材料として良く知られており、温度差を利用して発電するゼーベック素子の材料、およびこれとは逆の現象を利用した、電力を加えることにより素子の両端で冷却と発熱とが生ずるペルチェ素子材料に用いられる。BiTe系半導体の特徴として、使用温度範囲が比較的低い数十℃から300℃の領域で高い熱電変換効率が得られることが挙げられる。この性質から、従来利用価値が低く外界に捨てられていた排熱を利用した小規模発電(エネルギーハーベスト)用のゼーベック素子として近年注目されている。 Bi 2 Te 3 -based semiconductors are well known as thermoelectric conversion materials. They are materials for Seebeck elements that generate electricity using temperature differences, and the opposite phenomenon. It is used for Peltier element materials where cooling and heat generation occur. A characteristic of Bi 2 Te 3 series semiconductors is that high thermoelectric conversion efficiency can be obtained in the region of several tens to 300 ° C. where the operating temperature range is relatively low. Because of this property, in recent years, it has attracted attention as a Seebeck element for small-scale power generation (energy harvesting) using waste heat that has been low in utility value and discarded to the outside world.
 半導体材料を熱電変換素子へ応用する際には、一般的にn型とp型半導体を組み合わせたπ型素子構造を形成する場合が多い(例えば坂田亮 編“熱電変換工学-基礎と応用-、(株)リアライズ社、1997年を参照。)。BiTe系半導体では、n型半導体としてBiTe,p型半導体としてBi1.5 Sb0.5 Teが用いられる場合が多い。一般的には、BiTe-SbTe-BiSe系固溶体から適切な組成を選択してn型およびp型をそれぞれ形成する手法が知られている。後述の実施例としては、エチレングリコールとγブチロラクトン非水溶液からBiTe系半導体の非水メッキ法による生成を示した。しかし、ゼーベック効果による熱発電素子へ応用する場合、さらにSbやSeなどの半導体元素をその有機溶剤中に添加することでn型半導体およびp型半導体の組成を制御するとよい。有機溶剤に溶解するSbの金属塩およびSeの金属塩としては、例えば、上述したKSb(OH),C10 15 Sb,KSeO,およびKSeO4などが挙げられる。これらを適宜添加し、本実施の形態で示した非水メッキ法により所望の組成のメッキ膜を得ることができる。 When a semiconductor material is applied to a thermoelectric conversion element, a π-type element structure is generally formed by combining an n-type and a p-type semiconductor (for example, edited by Ryo Sakata, “Thermoelectric Conversion Engineering-Fundamentals and Applications, (See Realize Co., Ltd., 1997.) Bi 2 Te 3 semiconductors often use Bi 2 Te 3 as an n-type semiconductor and Bi 1.5 Sb 0.5 Te 3 as a p-type semiconductor. There is known a method of forming an n-type and a p-type by selecting an appropriate composition from a Bi 2 Te 3 —Sb 2 Te 3 —Bi 2 Se 3 solid solution. from glycol and γ-butyrolactone nonaqueous solution showed generated by Bi 2 Te 3 based non aqueous plating of the semiconductor. However, the organic solvent the semiconductor element in the case, such further Sb and Se be applied to the heat generating element due to Seebeck effect Preferable to control the composition of the n-type semiconductor and p-type semiconductor by adding in. As the metal salt of the metal salt and Se and Sb which dissolves in an organic solvent, for example, above KSb (OH) 6, C 8 H 10 K 2 O 15 Sb 2 , K 2 SeO 3 , K 2 SeO 4, etc. These may be added as appropriate to obtain a plating film having a desired composition by the non-aqueous plating method shown in this embodiment. Can do.
<3.実施例>
 以下、本開示の実施例具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
<3. Example>
Examples of the present disclosure will be specifically described below, but the present technology is not limited only to these examples.
(実験例1-1~1-3)
 エチレングリコール(メッキ溶媒)100mlに硝酸ビスマス・五水和物1.9g、亜テルル酸カリウム1.0gを入れ、室温で撹拌した。白色沈殿が生じたところでトリエタノールアミン2.0gを加えて撹拌し、完全に溶解してメッキ液とした。このメッキ液を、アノード電極32(白金板、64mm×64mm)およびカソード電極33(銅板、64mm×64mm)を取り付けたガラス製の容器に入れ、室温において回転子で撹拌した。ここで、基体11としてのカソード電極33の上に直接、メッキを行う方法を取った。アノード電極32には非溶解性電極である白金板を用いた。印加する電圧は、図4の交流波形において、図4に示した各パラメータを表1に示した数値に設定した。実験例1-1~1-3の条件下、それぞれ室温で30分間に亘って電圧を印加した結果、銀光沢を有するメッキ膜12を得た。
(Experimental Examples 1-1 to 1-3)
In 100 ml of ethylene glycol (plating solvent), 1.9 g of bismuth nitrate pentahydrate and 1.0 g of potassium tellurite were added and stirred at room temperature. When white precipitate was formed, 2.0 g of triethanolamine was added and stirred, and completely dissolved to obtain a plating solution. This plating solution was put in a glass container equipped with an anode electrode 32 (platinum plate, 64 mm × 64 mm) and a cathode electrode 33 (copper plate, 64 mm × 64 mm), and stirred with a rotor at room temperature. Here, a method of plating directly on the cathode electrode 33 as the substrate 11 was taken. A platinum plate that is an insoluble electrode was used for the anode electrode 32. The applied voltage was set to the values shown in Table 1 for each parameter shown in FIG. 4 in the AC waveform of FIG. As a result of applying a voltage for 30 minutes at room temperature under the conditions of Experimental Examples 1-1 to 1-3, a plated film 12 having silver gloss was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このようにして得られたメッキ膜12の元素比率(組成比)を測定した。測定は、日立SEM-EDXIII(S-3000)を使用して次のように行った。メッキ膜12を設けたカソード電極33である銅板を金切り鋏で7mm角の試料片に切り出し、その試料片を、SEM(走査型電子顕微鏡)用カーボン両面テープを用いてステンレス鋼製30mmφの試料台に貼り付けた。これをSEMの試料ステージに固定して電圧印加し、15kV,46μAの条件で電子ビームを照射した。WD=15mm,50倍にてフォーカスおよび非点を合わせ、最表面のSEM像を観察した。その後EDX(エネルギー分散型X線分析)にて0.4mm×0.4mmの面分析を行い、取り込んだスペクトルの定量分析を行った。この結果を表2および図5に示す。ビスマスおよびテルルの組成比は原子数濃度比 [atom%]で示した。 The element ratio (composition ratio) of the plating film 12 thus obtained was measured. Measurement was performed using Hitachi SEM-EDXIII (S-3000) as follows. A copper plate as the cathode electrode 33 provided with the plating film 12 is cut into a 7 mm square sample piece with a gold cutter and the sample piece is made of a stainless steel 30 mmφ sample using a carbon double-sided tape for SEM (scanning electron microscope). Pasted on the table. This was fixed to an SEM sample stage, applied with a voltage, and irradiated with an electron beam under the conditions of 15 kV and 46 μA. The focus and astigmatism were adjusted at WD = 15 mm, 50 ×, and the SEM image on the outermost surface was observed. Thereafter, a surface analysis of 0.4 mm × 0.4 mm was performed by EDX (energy dispersive X-ray analysis), and the captured spectrum was quantitatively analyzed. The results are shown in Table 2 and FIG. The composition ratio of bismuth and tellurium is indicated by atomic number concentration ratio [atom%].
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2ならびに図5の結果から、交流電圧の周波数が大きくなるほど、メッキ膜12におけるテルルの存在比率が増大することがわかる。これは、次のように説明することができる。すなわち、メッキ溶液中において、硝酸ビスマスはBi3+ (カチオン)として遊離しやすいため、カソード電極33上で電子(e-)を受け取ってビスマス元素として析出しやすい。これに対し、亜テルル酸カリウムはTeO 2-(アニオン)として遊離しやすいため、カソード電極33上でテルル元素としては析出しにくくなる。ところが交流電圧の周波数が上がるに従い、拡散層の膜厚が薄くなり電流密度が大きくなる。このため、高周波数ほどTeO 2- が電気分解されやすくなり、結果的にテルル元素の析出比率が増大したものと考えられる。このように、交流電圧の波形を制御することによっても、析出する元素の比率を調整することができることが確認できた。 From the results of Tables 1 and 2 and FIG. 5, it can be seen that the higher the frequency of the AC voltage, the higher the ratio of tellurium present in the plating film 12. This can be explained as follows. That is, in the plating solution, bismuth nitrate is likely to be liberated as Bi 3+ (cation), so that it receives electrons (e −) on the cathode electrode 33 and easily precipitates as a bismuth element. In contrast, potassium tellurite is likely to be liberated as TeO 3 2− (anion), and thus it is difficult to deposit as tellurium element on the cathode electrode 33. However, as the frequency of the AC voltage increases, the thickness of the diffusion layer decreases and the current density increases. For this reason, it is considered that TeO 3 2− is more easily electrolyzed at higher frequencies, and as a result, the deposition ratio of tellurium element is increased. Thus, it has been confirmed that the ratio of the deposited elements can also be adjusted by controlling the waveform of the AC voltage.
 以上、実施の形態および実施例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。例えばカソード電極上に取り付ける被メッキ物としての基体11について、その形状は板状に限定されず任意に設定されうる。また、成膜をより均質化させるため、被メッキ物に回転や揺動を加えるなどの操作を行うこともできる。メッキ槽として今回はガラス容器を用いたが、容器の形状は任意であり、最も高い均質性が得られるよう、アノード電極とカソード電極との間を適当な距離に保ってメッキ操作することが望ましい。メッキ液の攪拌も回転子に限らず、回転翼、ポンプ循環あるいはバブリング等の様々な方法を用いることができる。 Although the present disclosure has been described with reference to the embodiment and examples, the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible. For example, about the base | substrate 11 as a to-be-plated object attached on a cathode electrode, the shape is not limited to plate shape, It can set arbitrarily. In order to make the film formation more uniform, an operation such as rotation or swinging of the object to be plated can be performed. Although a glass container was used as the plating tank this time, the shape of the container is arbitrary, and it is desirable to perform the plating operation while maintaining an appropriate distance between the anode electrode and the cathode electrode so as to obtain the highest homogeneity. . The stirring of the plating solution is not limited to the rotor, and various methods such as a rotor blade, pump circulation, or bubbling can be used.
 また、本技術は以下のような構成を取り得るものである。
(1)
 基体と、メッキ溶媒としての有機溶剤にBiおよびTeを溶解させたメッキ溶液とを用意することと、
 前記メッキ溶液に浸漬された一対の電極間に電圧を印加することにより、前記基体上にメッキ膜を形成することと
 を含む
 メッキ膜の製造方法。
(2)
 前記メッキ溶液として、SbおよびSeのうちの少なくとも一方を前記有機溶剤に溶解させたものを用いる
 上記(1)記載のメッキ膜の製造方法。
(3)
 前記メッキ溶液として、前記有機溶剤にBi(NO・5HOおよびKTeOを溶解させる
 上記(1)または(2)に記載のメッキ膜の製造方法。
(4)
 前記メッキ溶液として、前記有機溶剤に
 KSb(OH),C10 15 Sb,KSeO,およびKSeO4のうちの1種以上をさらに溶解させる
 上記(1)から(3)のいずれか1に記載のメッキ膜の製造方法。
(5)
 前記メッキ溶液に、水、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ヒドロキシ酸、クラウンエーテルおよびエチレンジアミン四酢酸(EDTA)のうちの1種以上をさらに添加する
 上記(1)から(4)のいずれか1に記載のメッキ膜の製造方法。
(6)
 前記電圧として交流電圧を印加する
 上記(1)から(5)のいずれか1に記載のメッキ膜の製造方法。
(7)
 Cu,AgおよびAlからなる群から選択される1以上の元素を含む基体と、
 前記基体上に設けられ、BiおよびTeを含むメッキ膜と
 を有するメッキ製品。
(8)
 前記メッキ膜は、SbおよびSeのうちの少なくとも一方を含む
上記(7)記載のメッキ製品。
Moreover, this technique can take the following structures.
(1)
Providing a substrate and a plating solution in which Bi and Te are dissolved in an organic solvent as a plating solvent;
Forming a plating film on the substrate by applying a voltage between a pair of electrodes immersed in the plating solution.
(2)
The method for producing a plating film according to the above (1), wherein a solution obtained by dissolving at least one of Sb and Se in the organic solvent is used as the plating solution.
(3)
Bi (NO 3 ) 3 .5H 2 O and K 2 TeO 3 are dissolved in the organic solvent as the plating solution. The method for producing a plating film according to the above (1) or (2).
(4)
As the plating solution, at least one of KSb (OH) 6 , C 8 H 10 K 2 O 15 Sb 2 , K 2 SeO 3 , and K 2 SeO 4 is further dissolved in the organic solvent (1) To (3). The method for producing a plating film according to any one of (3).
(5)
One or more of water, ethanolamine, diethanolamine, triethanolamine, hydroxy acid, crown ether and ethylenediaminetetraacetic acid (EDTA) are further added to the plating solution. Any one of (1) to (4) above The manufacturing method of the plating film as described in 2.
(6)
The method for producing a plating film according to any one of (1) to (5), wherein an alternating voltage is applied as the voltage.
(7)
A substrate containing one or more elements selected from the group consisting of Cu, Ag and Al;
A plating product provided on the substrate and having a plating film containing Bi and Te.
(8)
The plating product according to (7), wherein the plating film includes at least one of Sb and Se.
 本出願は、日本国特許庁において2013年5月20日に出願された日本特許出願番号2013-106460号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2013-106460 filed on May 20, 2013 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (8)

  1.  基体と、メッキ溶媒としての有機溶剤にBi(ビスマス)およびTe(テルル)を溶解させたメッキ溶液とを用意することと、
     前記メッキ溶液に浸漬された一対の電極間に電圧を印加することにより、前記基体上にメッキ膜を形成することと
     を含む
     メッキ膜の製造方法。
    Providing a base and a plating solution in which Bi (bismuth) and Te (tellurium) are dissolved in an organic solvent as a plating solvent;
    Forming a plating film on the substrate by applying a voltage between a pair of electrodes immersed in the plating solution.
  2.  前記メッキ溶液として、Sb(アンチモン)およびSe(セレン)のうちの少なくとも一方を前記有機溶剤に溶解させたものを用いる
     請求項1記載のメッキ膜の製造方法。
    The method for producing a plating film according to claim 1, wherein a solution obtained by dissolving at least one of Sb (antimony) and Se (selenium) in the organic solvent is used as the plating solution.
  3.  前記メッキ溶液として、前記有機溶剤にBi(NO・5HOおよびKTeOを溶解させる
     請求項1記載のメッキ膜の製造方法。
    The method for producing a plating film according to claim 1, wherein Bi (NO 3 ) 3 .5H 2 O and K 2 TeO 3 are dissolved in the organic solvent as the plating solution.
  4.  前記メッキ溶液として、前記有機溶剤にKSb(OH),C10 15 Sb,KSeO,およびKSeO4のうちの1種以上をさらに溶解させる
     請求項2記載のメッキ膜の製造方法。
    3. The plating solution further comprising at least one of KSb (OH) 6 , C 8 H 10 K 2 O 15 Sb 2 , K 2 SeO 3 , and K 2 SeO 4 dissolved in the organic solvent. Manufacturing method of plating film.
  5.  前記メッキ溶液に、水、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ヒドロキシ酸、クラウンエーテルおよびエチレンジアミン四酢酸(EDTA)のうちの1種以上をさらに添加する
     請求項1記載のメッキ膜の製造方法。
    The method for producing a plating film according to claim 1, wherein at least one of water, ethanolamine, diethanolamine, triethanolamine, hydroxy acid, crown ether, and ethylenediaminetetraacetic acid (EDTA) is further added to the plating solution.
  6. 前記電圧として交流電圧を印加する
     請求項1記載のメッキ膜の製造方法。
    The method for manufacturing a plating film according to claim 1, wherein an alternating voltage is applied as the voltage.
  7.  Cu,AgおよびAlからなる群から選択される1以上の元素を含む基体と、
     前記基体上に設けられ、BiおよびTeを含むメッキ膜と
     を有するメッキ製品。
    A substrate containing one or more elements selected from the group consisting of Cu, Ag and Al;
    A plating product provided on the substrate and having a plating film containing Bi and Te.
  8.  前記メッキ膜は、SbおよびSeのうちの少なくとも一方を含む
     請求項7記載のメッキ製品。
    The plated product according to claim 7, wherein the plated film includes at least one of Sb and Se.
PCT/JP2014/061239 2013-05-20 2014-04-22 Method for manufacturing plating film, and plated product WO2014188834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518163A JP6103050B2 (en) 2013-05-20 2014-04-22 Manufacturing method of plating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106460 2013-05-20
JP2013-106460 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188834A1 true WO2014188834A1 (en) 2014-11-27

Family

ID=51933398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061239 WO2014188834A1 (en) 2013-05-20 2014-04-22 Method for manufacturing plating film, and plated product

Country Status (2)

Country Link
JP (1) JP6103050B2 (en)
WO (1) WO2014188834A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050400A (en) * 2015-09-02 2017-03-09 学校法人神奈川大学 Manufacturing method of flexible thermoelectric conversion member
EP3293290A3 (en) * 2016-09-13 2018-04-11 Leibnitz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. Electrolytes for the electrochemical deposition of thermoelectric materials
CN117051455A (en) * 2023-10-11 2023-11-14 宁波德洲精密电子有限公司 Tinning and photoresist removing process method for IC lead frame
WO2024100783A1 (en) * 2022-11-09 2024-05-16 国立大学法人東北大学 Electrolyte for electrolytic plating of solid ionic membrane, and method for producing solid ionic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271995A (en) * 1992-03-26 1993-10-19 Imura Japan Kk Manufacture of bismuth-tellurium series alloy thin film
JPH1070317A (en) * 1996-08-26 1998-03-10 Citizen Watch Co Ltd Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor
JP2007525598A (en) * 2004-02-26 2007-09-06 アトテック・ドイチュラント・ゲーエムベーハー Bathes, systems, and methods for electroplating zinc-nickel ternary alloys and higher ternary alloys and articles electroplated so
JP2011521105A (en) * 2008-05-14 2011-07-21 エクスタリック コーポレイション Coated article and associated method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663110B2 (en) * 1988-09-22 1994-08-17 上村工業株式会社 Bismuth-tin alloy electroplating bath
JP2001262391A (en) * 2000-03-14 2001-09-26 Ishihara Chem Co Ltd Tin-copper based alloy plating bath and electronic parts having coating film formed with the same
JP4524483B2 (en) * 2004-04-28 2010-08-18 石原薬品株式会社 Tin or tin alloy plating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271995A (en) * 1992-03-26 1993-10-19 Imura Japan Kk Manufacture of bismuth-tellurium series alloy thin film
JPH1070317A (en) * 1996-08-26 1998-03-10 Citizen Watch Co Ltd Manufacture of bismuth-antimony-tellurium compound thermoelectric semiconductor
JP2007525598A (en) * 2004-02-26 2007-09-06 アトテック・ドイチュラント・ゲーエムベーハー Bathes, systems, and methods for electroplating zinc-nickel ternary alloys and higher ternary alloys and articles electroplated so
JP2011521105A (en) * 2008-05-14 2011-07-21 エクスタリック コーポレイション Coated article and associated method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050400A (en) * 2015-09-02 2017-03-09 学校法人神奈川大学 Manufacturing method of flexible thermoelectric conversion member
EP3293290A3 (en) * 2016-09-13 2018-04-11 Leibnitz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. Electrolytes for the electrochemical deposition of thermoelectric materials
WO2024100783A1 (en) * 2022-11-09 2024-05-16 国立大学法人東北大学 Electrolyte for electrolytic plating of solid ionic membrane, and method for producing solid ionic device
CN117051455A (en) * 2023-10-11 2023-11-14 宁波德洲精密电子有限公司 Tinning and photoresist removing process method for IC lead frame
CN117051455B (en) * 2023-10-11 2024-01-09 宁波德洲精密电子有限公司 Tinning and photoresist removing process method for IC lead frame

Also Published As

Publication number Publication date
JPWO2014188834A1 (en) 2017-02-23
JP6103050B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
Lee et al. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting
Meng et al. Tuning Zn‐ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes
Vijayakumar et al. Electrodeposition of Ni–Co–Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution
Yang Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications
US7507321B2 (en) Efficient gallium thin film electroplating methods and chemistries
JP6103050B2 (en) Manufacturing method of plating film
JPWO2017154743A1 (en) Catalyst and use thereof
JP2006512764A (en) Method for producing a thin film of compound I-III-VI by promoting incorporation of element III into the film
Pareek et al. Nanostructure Zn–Cu co-doped CdS chalcogenide electrodes for opto-electric-power and H2 generation
Wang et al. Effects of supporting electrolyte on galvanic deposition of Cu2O crystals
Malaquias et al. One-step electrodeposition of metal precursors from a deep eutectic solvent for Cu (In, Ga) Se2 thin film solar cells
Anicai et al. Electrodeposition of lead selenide films from ionic liquids based on choline chloride
CN105226117A (en) The method of copper indium gallium sulphur solar battery film material is prepared in a kind of bipotential step method electro-deposition after cure annealing
Luo et al. Revealing the Reaction Mechanism of Lead Anodes in the Manganese Electrowinning Process
El Khouja et al. Bulk and surface characteristics of co-electrodeposited Cu2FeSnS4 thin films sulfurized at different annealing temperatures
Liu et al. Synthesis of Cu2O crystals by galvanic deposition technique
Wang et al. Green recycling of spent Li-ion battery cathodes via deep-eutectic solvents
JP6471688B2 (en) Manufacturing method of plating film
Obayashi et al. Preparation of the electrochemically precipitated Mn-Al LDHs and their electrochemical behaviors
Jeong et al. Effect of electrolyte on cycle performances of the electrodeposited Sn–O–C composite anode of lithium secondary batteries
US20130327652A1 (en) Plating baths and methods for electroplating selenium and selenium alloys
CN103003475B (en) Preparation is applicable to the method for the absorbing membrane of photovoltaic cell
Yang et al. Galvanic synthesis of copper selenides Cu 2− x Se and CuSe in alkaline sodium selenosulfate aqueous solution
Tu et al. Fundamental understanding on selenium electrochemistry: from electrolytic cell to advanced energy storage
JP2012216647A (en) Semiconductor layer manufacturing method and solar cell manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801444

Country of ref document: EP

Kind code of ref document: A1