JPH1068749A - 抵抗成分漏電計 - Google Patents

抵抗成分漏電計

Info

Publication number
JPH1068749A
JPH1068749A JP8245573A JP24557396A JPH1068749A JP H1068749 A JPH1068749 A JP H1068749A JP 8245573 A JP8245573 A JP 8245573A JP 24557396 A JP24557396 A JP 24557396A JP H1068749 A JPH1068749 A JP H1068749A
Authority
JP
Japan
Prior art keywords
current
resistance component
leakage current
leakage
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8245573A
Other languages
English (en)
Inventor
Takanori Aoki
孝徳 青木
Haruo Kondo
治夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP8245573A priority Critical patent/JPH1068749A/ja
Publication of JPH1068749A publication Critical patent/JPH1068749A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

(57)【要約】 (修正有) 【課題】分割型変流器で単相回路の電線を把握するだけ
で、抵抗成分漏れ電流IERが測定できる抵抗成分漏電計
を実現する。 【解決手段】交流導体を1次導体とし、2次巻線を有す
る変流器と、1次導体から、1次導体と2次巻線との間
の浮遊静電容量CSを通り、装置の内部インピーダンス
INSを通り、外部インピーダンスZOUTSを通って大地
などに流れる、浮遊電流ISを計測するIS計測回路と、
総合インピーダンス(CST+ZINS+ZOUTS)を静電容
量に十分近くするZINSと、変流器を貫通して大地へ流
れる全漏れ電流IE0を、 変流器の2次巻線の出力から
計測するIE0計測回路と、IE0計測回路の出力値とIS
計測回路の出力値とから、IE0の抵抗成分である抵抗成
分漏れ電流IERを計測するIER計測回路とを有する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本件の発明は、全漏れ電流に含ま
れる抵抗成分漏れ電流を測定する漏電計即ち抵抗成分漏
電計に係わる。更に用途について詳しく述べれば、家庭
・工場・ビルなどの単相交流電源に接続された負荷回路
の漏れ電流のうちの、真に危険な漏れ電流成分である抵
抗成分漏れ電流を、簡易かつ迅速に測定し探索するため
に用いる。例えば、本件の発明の抵抗成分漏電計を用い
れば、家庭において絶縁劣化が生じているかどうかが測
定でき、絶縁劣化箇所(地絡点)の探索ができる。また
例えば、配線や負荷電気機器やの絶縁が悪くなり地絡事
故が発生したとき、本件の発明の抵抗成分漏電計を用い
れば、地絡回路を早期に発見でき、感電など危険性のあ
る地絡点を早く除去するのに役立つ。
【0002】
【従来の技術】従来、地絡点の発見には、クランプ型漏
電計や絶縁抵抗計(メガ)やが用いられた。抵抗成分漏
電計は、当社でも試作されていたが、電圧計測の煩雑さ
も一因となって、実際には使用されなかった。
【0003】
【従来技術の問題点】メガで地絡箇所を探索するために
は必ず、被測定回路を電圧供給元から断路する必要があ
り、活線での地絡点の探索は出来なかった。被測定回路
の断路は、客先の了承を得さえすれば、回路遮断器によ
り簡単に行う事ができる。しかし、遮断器負荷側で分岐
した回路のどこが地絡箇所なのかを特定するためには、
負荷機器への配線を切り離して測定する必要があるとと
もに、地絡探索終了時には復旧する必要があり手間がか
かっていた。また、被測定回路中に例えば24時間稼働
の生産機器があるなど一時遮断による損傷が発生する場
合もかなりある。
【0004】従来用いられてきたクランプ型漏電計は、
全漏れ電流(漏れ電流の絶対値)を測定する機器であ
る。図2は漏れ電流の位相関係を示す。これらの漏れ電
流は電源電圧V1から流れる。全漏れ電流IE0は抵抗成
分漏れ電流IERと静電容量成分漏れ電流IECとのベクト
ル合成である。電源電圧V1と抵抗成分漏れ電流IER
は、複素平面上で同一方向である。静電容量成分漏れ
電流IECは、地絡が無くても生じる漏れ電流であり探索
する必要がない。地絡によって発生し、探索して取り除
く必要があるのは、抵抗成分漏れ電流IERである。漏れ
電流には抵抗成分とそれに直交する容量・リアクタンス
成分の2つがある。リアクタンス成分は、抵抗成分に比
べ十分少ない漏れ電流値であるのでここでは無視してあ
る。
【0005】従来のクランプ型漏電計は、全漏れ電流し
か測定できないので、静電容量成分漏れ電流に対して抵
抗成分漏れ電流が小さいとき、または、抵抗成分漏れ電
流に対して静電容量成分漏れ電流が大きいときは、地絡
点の探索が非常に困難であった。また、測定した漏れ電
流値が大きいとき、絶縁劣化によるものか、静電容量に
よるものかの区別ができなかった。
【0006】従来のクランプ型漏電計は、メガによる測
定で地絡があると判明した回路の漏れ電流を測定したと
き、その値の中にIER成分が存在しているかの測定はで
きなかった。言い替えると、負荷への配線をそのままに
しての測定はできなかった。測定開始前に、最初の漏れ
電流値と、負荷側電線を入れ替えたときの漏れ電流値と
を比較して、値の多いときの結線にする作業が必要であ
った。
【0007】従来当社で試作された抵抗成分漏電計で
は、全漏れ電流から静電容量成分漏れ電流の影響を除去
するために必要な電圧計測の方法として、電圧計測1と
電圧計測2との2つの方法があった。
【0008】従来の電圧計測1は、図3に例示するよう
に測定用リード線2本で電圧計測を行うものである。し
かし、活線での測定であるので、安全処置が必要であ
り、しかも、電路の被覆をむく事なく電路に電圧の測定
線を接続できる箇所は場所が限られていた。従って、電
圧の測定線を接続した後、その接続のまま電路をたどっ
て地絡点を探索する事は容易ではなかった。また、測定
用リード線を長くした場合、測定範囲は広がるけれど
も、測定用リード線がかさばり、取り扱いに注意と労力
とを要し、実用的とは言えなかった。
【0009】従来の電圧計測2は、実願平3−1142
95の電圧計測であり、図4はその原理図である。電線
2に高抵抗センサを押し当てている。RSはセンサの高
抵抗体である。ZW2は電線W2の被覆インピーダンスで
ある。ZSは内部インピーダンスである。ZH2は人間H2
のインピーダンスである。人間が電線の被覆部分にセン
サを押し当るだけで、電圧測定が行われる。
【0010】従来の電圧計測2を抵抗成分漏電計に用い
ると、位相がズレ易く、抵抗成分漏電計に必要な精度が
出なかった。その理由は、センサ以外のインピーダンス
が0に近い場合はセンサ電流は抵抗成分であるが、セン
サ以外のインピーダンスが静電容量性になり、しかも高
インピーダンス(小静電容量)になると、センサ電流の
位相は静電容量電流の方向にズレるからである。実際、
電線の絶縁被覆のインピーダンスは静電容量成分であっ
て、電線の種類によっては、小さい値の静電容量成分に
なる。また、把握して使用する人間と大地との間のイン
ピーダンスは小さな浮遊静電容量になってインピーダン
スが高くなる事がある。
【0011】従来の当社試作の抵抗成分漏電計は形状が
大きく操作性が良くなかった。
【0012】従来、変流器の出力のIE0計測には、図1
0に示すような入力回路を用いる事が多かった。しか
し、この回路で計測されるのは、IS/2+k*IE0
あり、浮遊電流ISが計測誤差となる問題点があった。
この誤差はIE0が小さいときに 顕著に現れ、90度位
相のズレた電流が混入するので、測定値およびIER,I
ECの比率の誤差が大きくなる。
【0013】
【発明の目的】本発明の目的1は、小形で取り扱いが便
利な抵抗成分漏電計を実現する事である。
【0014】本発明の目的2は、抵抗成分漏れ電流を計
測可能とし、それにより停電と配線の切り離しとをなる
べく少なくする事である。
【0015】本発明の目的3は、電圧計測が簡単である
事である。
【0016】本発明の目的4は、位相ズレの少ない、測
定精度の高い電圧計測を行う事である。
【0017】本発明の目的5は、IE0計測からISの影
響を除去する事である。
【0018】
【目的を達成するための手段及び効果】請求項1の抵抗
成分漏電計の手段は、交流導体を1次導体とし、2次巻
線を有する変流器と、1次導体から、1次導体と2次巻
線との間の浮遊静電容量CSを通り、装置の内部インピ
ーダンスZINSを通り、外部インピーダンスZOUTSを通
って大地などに流れる浮遊電流ISを計測するIS計測
回路と、総合インピーダンス(CST+ZINS+ZOUTS
を静電容量に十分近くするZINSと、変流器を貫通して
大地へ流れる全漏れ電流IE0を変流器の2次巻線の出力
から計測するIE0計測回路と、IE0計測回路の出力値と
S計測回路の出力値とからIE0の抵抗成分で ある抵
抗成分漏れ電流IERを計測するIER計測回路とを有する
事である。
【0019】請求項1の手段は抵抗成分漏電計であるの
で、目的2が達成され、停電と配線の切り離しとが少な
くなる。電圧計測に浮遊静電容量CSを用いているの
で、電圧測定用リード線が不要であり、目的3が達成さ
れ、電圧計測が簡単になる。また、総合インピーダンス
(CST+ZINS+ZOUTS)が静電容量に十分近いので、
目的4が達成され、位相ズレの少ない、高精度の電圧
計測を行う。電圧計測が簡単である事は、目的1の達成
に寄与し、小形で取り扱いが便利になる。
【0020】請求項2の抵抗成分漏電計の手段は、請求
項1における全漏れ電流IE0を計測するIE0計測回路
が、浮遊電流ISの影響を差し引く計測回路である事で
ある。これにより、目的5が達成され、IE0計測回路か
らISの影響が除去される。ま た、目的4が達成さ
れ、位相ズレの少ない高精度の電圧計測を行う事ができ
る。
【0021】請求項3の抵抗成分漏電計の手段は、請求
項1における外部インピーダンスZOUTSが配線インピー
ダンスである事である。このとき、浮遊電流ISは最大
となり、電圧計測が最も確実に行われる。従って目的4
が達成され、位相ズレの少ない精度の高い電圧測定が行
われる。
【0022】請求項4の抵抗成分漏電計の手段は、請求
項1における外部インピーダンスZOUTSが、装置に接触
する人体を通して形成される事である。これにより、人
間が装置に手でさわる事により電圧測定が自動的に行わ
れるので、目的3が達成され、電圧計測が簡単になり、
同時に目的1が達成され、小形で取り扱いが便利にな
る。
【0023】請求項5の抵抗成分漏電計の手段は、請求
項3の抵抗成分漏電計であって、変流器を分割型とし、
装置は変流器に内蔵し、装置全体を絶縁ケースで覆うと
ともに、内部インピーダンスZINSの端点に大地などに
接続する導体(アース)を該絶縁ケースから引き出した
事である。これにより、目的1が達成され、小形で取り
扱いが便利になる。
【0024】請求項6の抵抗成分漏電計の手段は、請求
項4の抵抗成分漏電計であって、変流器を分割型とし、
装置は変流器に内蔵し、装置全体を絶縁ケースで覆うと
ともに、該絶縁ケースに、内部インピーダンスZINS
端点に接続される導電部を設け、人体が導電部に接触す
れば、抵抗成分漏れ電流IERが測定できるようにした事
である。これにより、目的1が達成され、小形で取り扱
いが便利になる。
【0025】請求項7の抵抗成分漏電計の手段は、請求
項1または請求項2または請求項3または請求項4また
は請求項5または請求項6の抵抗成分漏電計であって、
浮遊電流ISを計測するIS計測回路の出力から、全漏れ
電流IE0が抵抗成分漏れ電流IERに一致するときIE0
計測波形のゼロクロス点で反転するように調整した矩形
波を得、該矩形波の切り替わり毎にIE0の計測値の符号
を反転させて得た値を、平均または積分して計測する同
期整流の方法により、抵抗成分漏れ電流IERを計測する
事である。この手段により、目的2が達成され、抵抗成
分漏れ電流を計測する事ができ、停電と配線の切り離し
とが少なくなる。
【0026】請求項8の抵抗成分漏電計の手段は、請求
項1または請求項2または請求項3または請求項4また
は請求項5または請求項6の抵抗成分漏電計であって、
浮遊電流ISを計測するIS計測回路の出力から、全漏れ
電流IE0が抵抗成分漏れ電流IERに一致するときIE0
計測波形のゼロクロス点で反転するように調整した矩形
波を得、該矩形波のゼロクロス点とIE0のゼロクロス点
との位相差と、IE0の絶対値とから、抵抗成分漏れ電流
ERを計測する事である。この手段により、目的2が達
成され、抵抗成分漏れ電流を計測する事ができ、停電と
配線の切り離しとが少なくなる。
【0027】本発明は、地絡による抵抗成分漏れ電流I
ER値を測定するため、静電容量に迷わされる事なく確実
に地絡点探索ができる。
【0028】感電の危険性は非接地極の地絡のときにあ
る。かつ、非接地極の方が、電圧が印加されている分だ
け地絡の可能性が高い。従って、地絡点探索の緊急度は
非接地極の方が、接地極の方よりも高い。本発明は、そ
の非接地極の地絡点を、停電せずに容易に探索する事が
できる。停電作業が不要であるから、客先への遮断の確
認は不要になり、配線の切り離し・復旧など停電作業を
必要とする作業も不要になり、地絡点の探索作業が大幅
に簡易になる。
【0029】本発明によっても、接地極の地絡の探索に
は停電作業が必要である。しかし、遮断器の負荷側の配
線処理のときに停電するだけで、後は非接地極と同様に
測定できる。従って、接地極の地絡の探索であっても、
停電と配線の切り離しとが従来と比べて大幅に少なくな
り、地絡点探索の作業上の効果が大きい。接地極の地絡
のときの探索方法は、遮断器を遮断し、遮断器負荷の接
地極を切り離し、非接地極だけの接続とするか、また
は、遮断器の負荷側電線を入れ換えて遮断器を投入する
かして探索する。その後の探索は非接地極の地絡検出と
同様である。遮断器部分での結線の入れ替えは、そのほ
かの箇所での配線の切り離しよりも簡単であるから、停
電時間も少なくて済む。なお、探索完了後には負荷側電
線の復旧が必要である。
【0030】商用電圧から流れる漏れ電流を探索する場
合、元のIERの測定値が0であるなら、地絡発生が接地
極であって、非接地極ではない。即ち、接地極の地絡で
あっても、接地極の地絡である事が抵抗成分漏れ電流I
ERの測定だけでわかり、遮断器をオフして負荷側を停電
し結線を入れ換えて比較して調査する手間が無くなり、
停電や配線替えやが少なくなる。
【0031】本発明により、停電や切り離しやが少なく
なり、メガによる測定やIE0測定器(クランプ型漏電
計)での問題点が解消され、地絡点を迅速にかつ簡単に
探索する抵抗成分漏電計が実現できる。
【0032】本発明の手段により、電路の全漏れ電流
(漏れ電流の絶対値)を測定するとともに、電路に直接
検出線を接続する事なく、電路の電圧の漏れ電流に対す
る位相ズレを測定する事が可能となり、被測定電路を活
線のまま、しかも容量成分漏れ電流が大きい電路でも正
確に、且つ、従来のクランプ型漏電計と全く同じ操作性
で移動容易に測定できるような抵抗成分漏電計を提供す
る事ができる。
【0033】
【実施例の説明】図1は本発明の請求項1の実施例の図
である。交流の1次導体が変流器を貫通している。電気
的説明のため、部分的に1次導体の絶縁被覆を省略して
図示してある。変流器には2次巻線が巻いてある。1次
導体と2次巻線との間に浮遊静電容量CSがある。CS
測定値はどちらの1次導体から測定してもほぼ同じ数値
なので、区別せずに図示してある。浮遊電流ISは1次
導体と2次巻線との間の浮遊静電容量CSを通って2次
巻線に流れる。また浮遊電流ISは導電部を通って外部
に流れ出すが、2次巻線から導電部までのインピーダン
スを内部インピーダンスZINSとし、導電部からアース
までのインピーダンスを外部インピーダンスZO UTSとし
ている。従って浮遊電流ISは、浮遊静電容量CSと内部
インピーダンス ZINSと外部インピーダンスZOUTS
を通り、図1ではアースに流れる。浮遊電 流ISはIS
計測回路で測定される。
【0034】図1の変流器を貫通した交流導体から大地
に向かって、抵抗成分漏れ電流IERと、静電容量成分漏
れ電流IECとが流れており、IERとIECとのベクトル和
が全漏れ電流IE0である。全漏れ電流IE0は変流器の2
次巻線に接続されたIE0計測回路で計測される。IE0
測回路の出力値とIS計測回路の出力値とが接続された
ER計測回路があり、抵抗成分漏れ電流IERが計測され
る。
【0035】図1の個別の1次導体から、変流器の2次
巻線までの浮遊静電容量がCSのとき、鵬テブナンの定
理による総合浮遊静電容量をCSTとすると、浮遊電流I
Sを 定める総合インピーダンスは(CST+ZINS+Z
OUTS)となる。CSTは、CSが既知であるから、数値範
囲を定める事ができる。ZOUTSは定まっていないが、人
体のインピーダンスであるから範囲は予想される。この
状態でZINSは総合インピ ーダンス(CST+ZINS+Z
OUTS)を静電容量に十分近くする値に設計される。
【0036】浮遊静電容量CSは小さくインピーダンス
が大であり、通常、人体インピーダンスは浮遊静電容量
Sに比べて十分小さなインピーダンスのため、人体イ
ンピ ーダンスの影響は無視できる。また、ゴム靴など
アースに対する絶縁が良いとき外部インピーダンスZ
OUTSは容量性である。従って、内部インピーダンスZ
INS のインピーダンスをCSのインピーダンスに比べて
十分小さくすれば総合インピ ーダンス(CST+ZINS
+ZOUTS)を静電容量に十分近くする値に設計できる。
【0037】なお、内部インピーダンスZINS自体を近
似的に静電容量成分にする事によっても、総合インピー
ダンス(CST+ZINS+ZOUTS)を静電容量に十分近く
する 値に、設計できる。ZINSを大きくすると、全漏
れ電流ISは、浮遊静電容量CS や人体のインピーダン
スやが異なっても変化しにくくなる。
【0038】以上、設計上無理をする事なく、簡単に、
電流ISを近似的に静電容量成分にする事ができる。
【0039】図1の浮遊電流ISを定める総合インピー
ダンスは、静電容量性になるように設計されているの
で、外部インピーダンスが変動しても、浮遊電流IS
位相ズ レを起こす事が無い。即ち目的4が達成され、
位相ズレの少ない正確な電圧測定が行われる。それによ
り、安定した抵抗成分漏れ電流の測定が可能になり、大
地静電容量CECが大きい場合でも、地絡抵抗RERが大き
い場合でも、抵抗成分漏れ電流が正確に測定できるよう
になる。
【0040】図1の抵抗成分漏電計は、クランプ型漏電
計に比べて、IS計測回路とIER計測回路とが増えてい
るが、その他の点では、クランプ型漏電計と同じであ
る。即ち、クランプ型漏電計を抵抗成分漏電計に変更す
るための追加回路と、導電性物体などとを追加・内蔵し
さえすれば、クランプ型漏電計に抵抗成分漏電計の機能
を追加する事ができる。外観上従来のクランプ漏電計と
ほぼ同じ形状・構造であって、抵抗成分漏れ電流を計測
できる抵抗成分漏電計が実現される。本発明は製品開発
の費用が少なく、製品単価が安く、小形で取り扱いが容
易である。
【0041】電圧測定については、変流器自体に既に存
在している浮遊静電容量CSを用いており、新たにセン
サを追加する必要が無く、電圧測定用のリード線を接続
する必要も無い。使用者は、電圧測定を意識しなくても
測定ができる。従って、本発明は、取り扱いが便利で小
形にできる抵抗成分漏電計である。
【0042】本発明は、抵抗成分漏電計の電圧測定にと
って重要なのは、信号の振幅ではなく、信号の位相の安
定性である事に着目した電圧計測である。即ち、外部イ
ンピーダンスが変化すると振幅が変化する浮遊電流IS
を用い、総合インピーダンスが静電容量性になるように
設計して、位相を安定化する。本発明により、電圧測定
が簡単になり、位相の安定した抵抗成分漏電計が実現で
きる。
【0043】図8も本発明の請求項1の実施例の図であ
る。床が高絶縁物の場合で、測定者が本発明の抵抗成分
漏電計を持っても、浮遊電流ISが流れない。そこで測
定者は、交流導体を被覆の上から掴む事により、浮遊電
流ISを流している。このと き、浮遊電流ISは掴んだ
交流導体の電圧に流れる。
【0044】なお、単相3線式配線では中性線が接地さ
れているので、導体の電圧の和は大地電位にほぼ等し
い。従って、浮遊電流ISは0に近くなる。このとき
は、絶縁電線の1本を被覆の上から空いた手で掴み、浮
遊電流ISを流す事によって、抵 抗成分漏れ電流の測
定を行う。なお、このとき浮遊電流ISは大地にも、掴
んだ 絶縁電線の導体にも流れる。
【0045】図5は本発明の請求項2の実施例の図であ
る。IE0計測回路の出力は、2次巻線の両端電圧の引き
算であり、図10の符号からわかるように、この引き算
によってISが除去される。
【0046】図6も本発明の請求項2の実施例の図であ
る。オペアンプの性質により、2次巻線の出力電流は等
価的に、電子回路のグランドに流れる。最初の反転増幅
回路2個の後に差動増幅回路があり、ISが除去され
る。
【0047】図7も本発明の請求項2の実施例の図であ
る。IE0計測回路は反転増幅回路であるが、導電部から
のIS除去用抵抗により、ISが除去される。
【0048】図9は本発明の請求項3の実施例の図であ
る。導体線が引き出され、アースに接続されている。即
ち、請求項1における外部インピーダンスZOUTSが導体
線による配線インピーダンスになっている。このとき、
浮遊電流ISが最大となり、最も確実な電圧計測が行わ
れ、安定した抵抗成分漏れ電流IERが得られる。即ちさ
らに精度の良い抵抗成分漏電計が実現できる。
【0049】図1は本発明の請求項4の実施例の図でも
ある。外部インピーダンスZOUTSは装置に接触する人体
を通して形成されている。人間が装置を持つだけで、ほ
とんど無意識的に電圧計測ができ、簡易・小形で操作性
の良い抵抗成分漏電計が実現できる。
【0050】図8も本発明の請求項4の実施例の図にな
っている。請求項1の外部インピーダンスZOUTSは人体
を通って形成されている。高絶縁物の上で計測するとき
も、被覆電線を被覆の上から掴めば浮遊電流ISが流
れ、電圧計測が行われるので、簡易・小形で操作性の良
い抵抗成分漏電計が実現できる。
【0051】図9は本発明の請求項5の実施例の図でも
ある。変流器は分割型である。装置は変流器に内蔵して
いる。装置全体は絶縁ケースで覆われている。絶縁ケー
スから、大地などに接続する導体を引き出している。な
お、導体線は装置内部で、内部インピーダンスZINS
端点に接続されている。本発明は図からわかるように、
小形で、従来の電圧測定用リード線を2本接続する方法
に比べると、安全で操作性が良い。
【0052】図1は本発明の請求項6の実施例の図でも
ある。請求項6では変流器は分割型である。図では、回
路説明のために装置を大きく描いてあるが、実際は小形
にでき、装置を変流器に内蔵する事ができる。装置全体
を絶縁ケースで覆い、絶縁ケースに内部インピーダンス
INSの端点に接続される導電部が設けてあり、人体が
導電部に接触すれば、浮遊電流ISが流れて、抵抗成分
漏れ電流IERが計測で きる。図のように装置を小形に
でき、電圧測定に測定用リード線を接続する必要がな
く、操作性の良い抵抗成分漏電計が実現できる。
【0053】図8も本発明の請求項6の実施例の図でも
ある。請求項6では変流器は分割型である。装置は変流
器に内蔵してある。装置全体は絶縁ケースで覆われ、絶
縁ケースに内部インピーダンスZINSの端点に接続され
る導電部が設けてあり、人体が導電部に接触すれば、I
Sが流れて、抵抗成分漏れ電流IERが測定できる。図
のように装置を小形にでき、電圧測定に測定用リード線
を接続する必要がなく、操作性の良い抵抗成分漏電計が
実現できる。
【0054】IER計測回路は、図5、図6および図7に
例示するように、IE0計測回路の出力とIS計測回路の
出力とから、抵抗成分漏れ電流IERを計測する回路であ
る。
【0055】図5は本発明の請求項7の実施例の図でも
ある。全漏れ電流IE0が抵抗成分漏れ電流IERに一致す
る状態のとき、言い替えると、変流器の漏れ電流が抵抗
成分漏れ電流IERだけで、容量成分漏れ電流IECが無い
状態のとき、IS計測回路の出力から調整によって、I
E0の0クロス点で反転する矩形波を得る。この矩形波の
反転毎に、IE0の符号を反転させて得た値を、平均また
は積分して計測する同期整流の方法により、抵抗成分漏
れ電流IERを計測する。図5では、平均または積分以降
は計測処理部で行われる。なお調整は、IE0計測回路側
で行っても、IS計測回路側で行っても、IER計測が可
能である。
【0056】本発明の請求項8の実施例の図は無いが、
漏れ電流の絶対値と、漏れ電流の位相とがわかれば、抵
抗成分漏れ電流は計算できる。全漏れ電流IE0が抵抗成
分漏れ電流IERに一致する状態のとき、言い替えると、
変流器の2次側に検出された漏れ電流が抵抗成分漏れ電
流IERだけで、容量成分漏れ電流IECが無い状態のと
き、IS計測回路の出力から調整によって、IE0の0ク
ロス点で反転する矩形波を得る。この矩形波と全漏れ電
流IE0との位相差と、IE0の絶対値とから、抵抗成分漏
れ電流が計算できる。なお調整は、IE0計測回路側で行
っても、IS計測 回路側で行っても、IER計測が可能
である。
【0057】抵抗成分漏れ電流の計測の方法には、他
に、FFTを用いる方法もある。
【0058】浮遊電流ISの計測回路の例を図5、図
6、図7に例示する。なお、浮遊電流ISは導電部に電
子回路の任意点をR,L,C等を通して接続する事によ
り、流 す事ができる。例えば電子回路の電源から抵抗
で導電部まで接続しても、浮遊電流ISを流す事ができ
る。
【0059】以上、商用電源からの漏れ電流の測定につ
いて述べてきた。しかし、本発明は、絶縁状態監視装置
により、アースと接地極との間に注入される低周波電圧
からの漏れ電流の測定にも適用できる。この場合、接地
極の地絡は、非接地極の地絡と全く同様に測定でき、遮
断器をオフして停電する必要がない。
【0060】絶縁電線から、その絶縁電線を分割型漏電
計で把握した人間を通ってアースに流れる電流は、絶縁
電線から、それを被覆の上から持った人間を通ってアー
スに流れる電流の最大値よりも小さい。中間に入る分割
型漏電計が高いインピーダンスを持っているからであ
る。
【0061】低圧電路であれば、絶縁電線を被覆の上か
ら人間が持っても安全である。人間が持つ事のできる絶
縁電線であれば、人間が分割型変流器で電線を把握して
計測しても安全である。本発明は低圧単相回路の測定器
であり、電線は一般的には絶縁電線が使用されているの
で、本発明は安全である。
【0062】なお、導電性物体を明示するか、しないか
であるが、抵抗成分漏電計においては、明示した方が便
利であろう。つまり、導電性物体を、人が意識せずにご
く自然に触れる箇所に設け、見た目にわからない形状に
するのではなくて、金属で形成するなど、見た目にもわ
かり、確実に触れる目安になる形状にする。明示しない
でおくと、使用者がIE0測定器(クランプ型漏電計)を
使い慣れている場合、使用者は、分割型変流器で1次導
体を把握したまま手を離したとき、表示が出ると期待す
るのに、抵抗成分漏電計では表示が出なくなるので、非
常にまごつくからである。それに対して、導電性物体を
明示すると、使用者に、導電性物体に触って測定すると
いう、意識が形成される。また、明示しないときには、
無意識に触れるようにするため、導電部の接触面積を増
やすよう設計しなくてはならないので、導電部が複数の
電圧端子に当たったときに悪影響が心配される。それに
対して、導電部を明示すると、使用者が導電部に意識的
に触れてくれるので、面積を少なくする事ができ、複数
の電圧端子に同時に当たる可能性が少なくなり、電圧端
子に当たったときの悪影響の可能性が少なくなる。
【図面の簡単な説明】
【図1】 本発明の請求項1、4、6の実施例の図
【図2】 漏れ電流の位相関係の図
【図3】 従来の電圧計測1の1例の図
【図4】 従来の電圧計測2の原理図
【図5】 本発明の請求項2、7の実施例の図
【図6】 本発明の請求項2の実施例の図
【図7】 本発明の請求項2の実施例の図
【図8】 本発明の請求項1、4、6の実施例の図
【図9】 本発明の請求項3、5の実施例の図
【図10】 従来の全漏れ電流IE0計測回路の説明図
【符号の説明】
EC 大地静電容量 CS 1次導体と変流器の2次巻線との間の浮遊静電容
量 CST 鵬テブナンの定理による総合浮遊容量 H2 人体 IE0 全漏れ電流 IEC 静電容量成分漏れ電流 IER 抵抗成分漏れ電流 IS 1次導体から本発明の抵抗成分漏電計を通って流
れ出す浮遊電流 k 変流器の1次電流から2次電流への変換比率 RER 地絡抵抗 RS 高抵抗センサ V1 地絡電圧 V+ 電子回路の+電源 V− 電子回路の−電源 W2 1次導体 ZH2 人間を通るインピーダンス ZINS 本発明の抵抗成分漏電計の変流器の2次巻線か
ら、導電部や、引き出し線やまでの内部インピーダンス ZS 内部インピーダンス ZOUTS 本発明の抵抗成分漏電計から浮遊電流ISが流
れ出してから、大地などに流れ込むまでの外部インピー
ダンス ZW2 一次導体の被覆インピーダンス アース 大地 計測処理部 IE0とISとから同期整流の方法で抵抗成
分漏れ電流を計測・表示する部分 大地 アース 導電部 本発明の抵抗成分漏電計から浮遊電流ISが流
れ出す部分

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 交流導体を1次導体とし、2次巻線を有
    する変流器と、1次導体から1次導体と2次巻線との間
    の浮遊静電容量CSを通り、装置の内部インピーダンス
    INSを通り外部インピーダンスZOUTSを通って大地な
    どに流れる浮 遊電流ISを計測するIS計測回路と、総
    合インピーダンス(CST+ZINS+ZOUT S)を静電容量
    に十分近くするZINSと、変流器を貫通して大地へ流れ
    る全漏れ電流IE0を変流器の2次巻線の出力から計測す
    るIE0計測回路と、IE0計測回路の出力値とIS計測回
    路の出力値とからIE0の抵抗成分である抵抗成分漏れ電
    流IE Rを計測するIER計測回路とを有する事を特徴とす
    る抵抗成分漏電計。
  2. 【請求項2】 請求項1における全漏れ電流IE0を計測
    するIE0計測回路が浮遊電流ISの影響を差し引く計測
    回路である事を特徴とする抵抗成分漏電計。
  3. 【請求項3】 請求項1における外部インピーダンスZ
    OUTSが配線インピーダンスである事を特徴とする抵抗成
    分漏電計。
  4. 【請求項4】 請求項1における外部インピーダンスZ
    OUTSが装置に接触する人体を通して形成される事を特徴
    とする抵抗成分漏電計。
  5. 【請求項5】 請求項3の抵抗成分漏電計であって、変
    流器を分割型とし、装置は変流器に内蔵し、装置全体を
    絶縁ケースで覆うとともに、内部インピーダンスZINS
    の端点に接続し、外部に大地などに接続する導体を引き
    出した事を特徴とする抵抗成分漏電計。
  6. 【請求項6】 請求項4の抵抗成分漏電計であって、変
    流器を分割型とし、装置は変流器に内蔵し、装置全体を
    絶縁ケースで覆うとともに、該絶縁ケースに内部インピ
    ーダンスZINSの端点に接続される導電部を設け、人体
    が導電部に接触すれば抵抗成分漏れ電流IERが測定でき
    るようにした事を特徴とする抵抗成分漏電計。
  7. 【請求項7】 請求項1または請求項2または請求項3
    または請求項4または請求項5または請求項6の抵抗成
    分漏電計であって、浮遊電流ISを計測するIS計測回路
    の出力から、全漏れ電流IE0が抵抗成分漏れ電流IER
    一致すると きIE0の計測波形のゼロクロス点で反転す
    るように調整した矩形波を得、該矩形波の切り替わり毎
    にIE0の計測値の符号を反転させて得た値を、平均また
    は積分して計測する同期整流の方法により、抵抗成分漏
    れ電流IERを計測する事を特徴とする抵抗成分漏電計。
  8. 【請求項8】 請求項1または請求項2または請求項3
    または請求項4または請求項5または請求項6の抵抗成
    分漏電計であって、浮遊電流ISを計測するIS計測回路
    の出力から、全漏れ電流IE0が抵抗成分漏れ電流IER
    一致すると きIE0計測波形のゼロクロス点で反転する
    ように調整した矩形波を得、該矩形波のゼロクロス点と
    E0のゼロクロス点との位相差と、IE0の絶対値とか
    ら、抵抗成分漏れ電流IERを計測する事を特徴とする抵
    抗成分漏電計。
JP8245573A 1996-08-27 1996-08-27 抵抗成分漏電計 Pending JPH1068749A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8245573A JPH1068749A (ja) 1996-08-27 1996-08-27 抵抗成分漏電計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8245573A JPH1068749A (ja) 1996-08-27 1996-08-27 抵抗成分漏電計

Publications (1)

Publication Number Publication Date
JPH1068749A true JPH1068749A (ja) 1998-03-10

Family

ID=17135738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8245573A Pending JPH1068749A (ja) 1996-08-27 1996-08-27 抵抗成分漏電計

Country Status (1)

Country Link
JP (1) JPH1068749A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040079A (ja) * 2000-07-27 2002-02-06 Tempearl Ind Co Ltd 漏電計
JP2002296311A (ja) * 2001-03-30 2002-10-09 Tempearl Ind Co Ltd 抵抗分電流検出回路
JP2009198282A (ja) * 2008-02-21 2009-09-03 Hioki Ee Corp 漏れ電流測定装置
JP2011015583A (ja) * 2009-07-06 2011-01-20 Fuji Electric Fa Components & Systems Co Ltd 漏電検出方法、漏電検出装置及び漏電遮断器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040079A (ja) * 2000-07-27 2002-02-06 Tempearl Ind Co Ltd 漏電計
JP4633890B2 (ja) * 2000-07-27 2011-02-16 テンパール工業株式会社 把握式の零相変流器を用いた実効漏電計
JP2002296311A (ja) * 2001-03-30 2002-10-09 Tempearl Ind Co Ltd 抵抗分電流検出回路
JP2009198282A (ja) * 2008-02-21 2009-09-03 Hioki Ee Corp 漏れ電流測定装置
JP2011015583A (ja) * 2009-07-06 2011-01-20 Fuji Electric Fa Components & Systems Co Ltd 漏電検出方法、漏電検出装置及び漏電遮断器

Similar Documents

Publication Publication Date Title
AU2005288465B2 (en) Leak current breaker and method
US5481198A (en) Method and device for measuring corrosion on a portion of a metallic path carrying an undetermined load current
WO2014027422A1 (ja) 交流電力測定装置及び交流電力測定方法
JP2009058234A (ja) 漏れ電流測定装置及び測定方法
CN113295970B (zh) 一种就地隔离单相接地故障的阻性相位检测方法
JP2015227884A (ja) 高圧絶縁監視方法および高圧絶縁監視装置
JPH1068749A (ja) 抵抗成分漏電計
CN114200262B (zh) 高压电缆肘形终端局部放电和暂稳态电压在线测量装置
US11942816B2 (en) Apparatus and method for detection of line to neutral back-feed voltage
CN107957568A (zh) 电压互感器二次回路多点接地快速定位仪及查找方法
Shen et al. Grounding transformer application, modeling, and simulation
JP5322391B2 (ja) 電圧位相検出用端末具
CN211263720U (zh) 一种双钳表式直流接地查找仪
CN210742369U (zh) 一种工作电压测试装置的测试电路及装置
JP5679480B2 (ja) 間接交流メガー測定器および絶縁抵抗測定方法
EP0809115A2 (en) Voltage measuring instrument and voltage measuring method using the same
CN106970325B (zh) 在高电位测量的发电机手包绝缘反接线检查装置与方法
JPH0428065Y2 (ja)
CN211979178U (zh) 一种电流互感器极性测量装置
JPH0378588B2 (ja)
JPH0454466A (ja) 接地付単相電源の中性線と接地線とを判別する装置
JPH04151570A (ja) 漏れ電流有効分の測定方法とその測定に用いる検査電流生成装置
JP2002122628A (ja) 故障点標定方法
CN116430168A (zh) 一种低压配电网断零与缺相故障诊断方法及装置
JPH04208868A (ja) 非停電絶縁診断装置