JPH1066864A - Method for recovering complex adsorbing chemical substance - Google Patents

Method for recovering complex adsorbing chemical substance

Info

Publication number
JPH1066864A
JPH1066864A JP8226216A JP22621696A JPH1066864A JP H1066864 A JPH1066864 A JP H1066864A JP 8226216 A JP8226216 A JP 8226216A JP 22621696 A JP22621696 A JP 22621696A JP H1066864 A JPH1066864 A JP H1066864A
Authority
JP
Japan
Prior art keywords
complex
adsorbed
chemical substance
adsorbent
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8226216A
Other languages
Japanese (ja)
Inventor
Kenji Seki
建司 関
Kazuaki Mori
和亮 森
Satoshi Takamizawa
聡 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8226216A priority Critical patent/JPH1066864A/en
Publication of JPH1066864A publication Critical patent/JPH1066864A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a process in which a substance adsorbed by an organometallic complex is recovered easily and promptly by contacting and reacting the complex with a decomposing reagent which decomposes the complex in the recovery of an adsorbed chemical substance from an organometallic complex having one-dimensional channel structure which adsorbed the substance. SOLUTION: A container main body 1 has a section 3 which received an adsorbent 4 composed mainly of an organometallic complex and a section 6 filled with a decomposing reagent 13 which reacts with the complex 4. The sections 3, 6 are partitioned by a partition member 11 having holes 12, and thin film layers 14 are fixed to them. A gaseous adsorption chemical substance is adsorbed by the adsorbent through an introduction port 7, the port 7 is closed after sufficient adsorption, a discharge opening 5 is opened, and a piston 9 is pushed to increase the pressure in the section 6. The thin film 14 is broken by the pressure, and the reagent 13 is contacted promptly with the adsorbent 4. In this way, the adsorbent 4 is decomposed quickly to release the adsorbed gaseous substance, and the gas is discharged promptly from the discharge opening 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チャンネル構造を
有する有機金属錯体に常温で気体の物質を吸着させ、次
いで、吸着させた前記化学物質を回収する方法に関する
ものである。
The present invention relates to a method for adsorbing a gaseous substance at room temperature to an organometallic complex having a channel structure, and then recovering the adsorbed chemical substance.

【0002】[0002]

【従来の技術】活性炭、ゼオライト、シリカゲル等は化
学物質の吸着剤として知られているが、これらの吸着剤
に吸着された物質を回収するには、周知のように、物質
を吸着した吸着剤の加熱、減圧、またはこれらの操作を
組み合わせによるしかなく、時間とエネルギーを必要と
するものであった。
2. Description of the Related Art Activated carbon, zeolite, silica gel and the like are known as adsorbents for chemical substances. In order to recover the substances adsorbed by these adsorbents, it is well known that adsorbents adsorbing substances are used. Heating, decompression, or a combination of these operations, which required time and energy.

【0003】[0003]

【発明が解決しようとする課題】本発明は、化学物質、
好ましくは常温で気体の物質を1次元チャンネル構造を
有する有機金属錯体に吸着させ、吸着された物質を容
易、かつ迅速に回収する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a chemical substance,
It is an object of the present invention to provide a method for adsorbing a gaseous substance, preferably at room temperature, to an organometallic complex having a one-dimensional channel structure and recovering the adsorbed substance easily and quickly.

【0004】[0004]

【課題を解決するための手段】本発明の錯体吸着物質の
回収方法は、化学物質を吸着した1次元チャンネル構造
を有する有機金属錯体より前記吸着化学物質を回収する
方法であって、前記有機金属錯体にこれを分解する分解
試薬と接触させ、反応させることを特徴とするものであ
る。1次元チャンネル構造を有する有機金属錯体は、そ
のチャンネル構造中に化学物質を吸着する機能を有し、
単位体積当たりの吸着量は極めて大きく、常温で気体の
物質の吸着剤として優れたものである。発明者は、この
吸着剤である金属錯体にこれを分解する第2の化学物質
を接触させると、錯体が急速に分解して、吸着物質を脱
着・放出することを見いだし、本発明を完成した。
The method of recovering a complex adsorbed substance according to the present invention is a method of recovering the adsorbed chemical substance from an organometallic complex having a one-dimensional channel structure in which a chemical substance is adsorbed, wherein The complex is brought into contact with a decomposing reagent for decomposing the complex and reacted. An organometallic complex having a one-dimensional channel structure has a function of adsorbing a chemical substance in the channel structure,
The amount of adsorption per unit volume is extremely large, and is excellent as an adsorbent for a substance that is a gas at normal temperature. The inventor has found that when the metal complex as the adsorbent is brought into contact with a second chemical substance that decomposes the metal complex, the complex is rapidly decomposed, and the adsorbed substance is desorbed and released, and the present invention has been completed. .

【0005】ここに1次元チャンネル構造とは、金属イ
オンと有機配位子がつくる立体構造に基づく空間が規則
的に、1次元的に連続して形成されていることをいう。
Here, the one-dimensional channel structure means that a space based on a three-dimensional structure formed by a metal ion and an organic ligand is regularly and continuously formed one-dimensionally.

【0006】本発明において使用できる1次元チャンネ
ル構造を有する有機金属錯体としては、分子内の点対称
位置に配置された2個のカルボキシル基を有するジカル
ボン酸と金属イオンにより形成される錯体であることが
好ましい。ここに、「剛直」とは、例えば炭素炭素の一
重結合の存在による自由回転により配位可能な原子の位
置が幾何学的に変化しないことを言う。これらの錯体
は、それらが有する1次元チャンネル構造に基づき多く
の化学物質を吸着する能力を有するとともに、分解試薬
との接触により急速に分解して吸着している化学物質を
放出する性能を有している。
The organometallic complex having a one-dimensional channel structure that can be used in the present invention is a complex formed by a dicarboxylic acid having two carboxyl groups and a metal ion arranged at point symmetric positions in a molecule. Is preferred. Here, “rigid” means that the position of a coordinable atom does not change geometrically due to free rotation due to the presence of a carbon-carbon single bond, for example. These complexes have the ability to adsorb many chemicals based on their one-dimensional channel structure, and have the ability to rapidly decompose and release adsorbed chemicals upon contact with a decomposition reagent. ing.

【0007】本発明において吸着剤である有機金属錯体
と反応する第2の化学物質は、水または酸もしくはアル
カリの水溶液であることが好ましい。これらの第2の化
学物質は、吸着剤である有機金属錯体と迅速に反応し、
安価であるとともに火災を引き起こす心配もない。
In the present invention, the second chemical substance which reacts with the organometallic complex as the adsorbent is preferably water or an aqueous solution of an acid or alkali. These second chemicals react rapidly with the organometallic complex that is the adsorbent,
It is inexpensive and does not cause a fire.

【0008】吸着剤に吸着された化学物質が常温で気体
である場合でかつ水溶性でない場合には、吸着剤の迅速
な分解と同時に吸着されている気体が急速に開放され
る。本発明に好適な錯体は、単位体積当たりの吸着量が
多いため、飽和に近い状態の金属錯体に分解試薬を接触
させると急速に多量のガスが発生する。この特性を利用
すると、航空機や船舶に装備する救命胴衣、救命筏、緊
急酸素供給装置等にも利用することが可能である。ま
た、有機金属錯体のチャンネル構造、錯体構成成分等を
選択して吸着化学物質の選択性を限定すると、特定の化
学物質の吸着と、これを迅速に回収するシステムを構築
することも可能である。
When the chemical substance adsorbed by the adsorbent is a gas at room temperature and is not water-soluble, the adsorbed gas is rapidly released simultaneously with the rapid decomposition of the adsorbent. Since the complex suitable for the present invention has a large amount of adsorption per unit volume, when a decomposition reagent is brought into contact with a metal complex in a state close to saturation, a large amount of gas is rapidly generated. If this characteristic is used, it can also be used for a life jacket, a life raft, an emergency oxygen supply device, etc. equipped on an aircraft or a ship. In addition, if the channel structure of the organometallic complex, the component of the complex, and the like are selected to limit the selectivity of the adsorbed chemical substance, it is possible to construct a system for adsorbing a specific chemical substance and quickly recovering it. .

【0009】[0009]

【発明の実施の形態】本発明の1次元チャンネル構造を
有する有機金属錯体に吸着される化学物質の種類は錯体
の有するチャンネル構造に基づく空隙の大きさにより決
定されるが、窒素、酸素、一酸化炭素、炭酸ガスの他、
アルゴン、ネオン、キセノン、クリプトン等の希ガス、
アンモニア、トリメチルアミン等のアミン類、アセトア
ルデヒド等のアルデヒド類、メタン、エタン等の炭化水
素類、エチレン、アセチレン等の不飽和炭化水素類、ト
ルエンやアニリン等の芳香族化合物、アセトン等のケト
ン類、3フッ化メタン、4フッ化メタンを含むフロン
類、塩化メチル、臭化メチル等のハロゲン化合物などの
有機化合物が吸着可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The type of chemical substance adsorbed on the organometallic complex having a one-dimensional channel structure of the present invention is determined by the size of a void based on the channel structure of the complex. In addition to carbon oxide and carbon dioxide,
Rare gases such as argon, neon, xenon, krypton,
Amines such as ammonia and trimethylamine; aldehydes such as acetaldehyde; hydrocarbons such as methane and ethane; unsaturated hydrocarbons such as ethylene and acetylene; aromatic compounds such as toluene and aniline; ketones such as acetone; Organic compounds such as fluorinated methane, fluorocarbons including tetrafluoromethane, and halogen compounds such as methyl chloride and methyl bromide can be adsorbed.

【0010】本発明において使用できる1次元チャンネ
ル構造を有する有機金属錯体としては、分子内の点対称
位置に配置された2個のカルボキシル基を有するジカル
ボン酸と金属イオンにより形成される錯体であることが
好ましく、この錯体は、有機配位子の溶液と原料である
金属塩の溶液を混合、反応させることにより得られる。
The organometallic complex having a one-dimensional channel structure that can be used in the present invention is a complex formed by a dicarboxylic acid having two carboxyl groups and a metal ion arranged at point symmetric positions in a molecule. This complex is preferably obtained by mixing and reacting a solution of an organic ligand and a solution of a metal salt as a raw material.

【0011】前述の1次元チャンネル構造を有する有機
金属錯体はX線回折のパターンの解析より、1次元チャ
ンネル構造を有していることが確認できる。例えば前述
の錯体としてテレフタル酸銅を例にとって説明すると、
銅は平面4配位であり、2個の銅イオンをテレフタル酸
4分子が90°ごとに囲むようにして配置し、カルボキ
シル基の2個の酸素原子はそれぞれ別の銅イオンに配位
している。即ち、テレフタル酸分子は格子状に配列し、
その格子点に2個の銅イオンが存在する。そして、銅イ
オンとジカルボン酸より形成される層が積層された形で
結晶が構成されている。その結果、格子が積層されて1
次元チャンネルが形成される。
From the analysis of the X-ray diffraction pattern, it can be confirmed that the above-mentioned organometallic complex having a one-dimensional channel structure has a one-dimensional channel structure. For example, as an example of the above-described complex, copper terephthalate will be described.
Copper is four-coordinate in a plane, and two copper ions are arranged so that four molecules of terephthalic acid surround every 90 °, and two oxygen atoms of a carboxyl group are coordinated to different copper ions, respectively. That is, terephthalic acid molecules are arranged in a lattice,
There are two copper ions at that lattice point. And the crystal | crystallization is comprised in the form in which the layer formed from a copper ion and a dicarboxylic acid was laminated | stacked. As a result, the lattice is stacked and 1
A dimensional channel is formed.

【0012】本発明の有機金属錯体を構成する有機配位
子である、分子内の点対称位置に配置された2個のカル
ボキシル基を有するジカルボン酸としては、テレフタル
酸、フマル酸、1,4−トランス−シクロヘキサンジカ
ルボン酸、4,4’−ビフェニルジカルボン酸が例示さ
れる。また、金属イオンとしては、銅イオン、クロムイ
オン、モリブデンイオン、ロジウムイオン、パラジウム
イオン、タングステンイオン等が例示でき、前記ジカル
ボン酸と組み合わせて錯体が形成される。
The dicarboxylic acids having two carboxyl groups arranged at point symmetric positions in the molecule, which are organic ligands constituting the organometallic complex of the present invention, include terephthalic acid, fumaric acid, 1,4 -Trans-cyclohexanedicarboxylic acid and 4,4'-biphenyldicarboxylic acid are exemplified. Examples of the metal ion include a copper ion, a chromium ion, a molybdenum ion, a rhodium ion, a palladium ion, a tungsten ion and the like, and a complex is formed in combination with the dicarboxylic acid.

【0013】これらの有機金属錯体の製造は、有機配位
子の溶液と原料の金属塩の溶液を準備してこれらを混合
し、反応させることにより行う。使用される溶剤は有機
配位子、金属イオンと反応したり錯体を形成するもので
なければ特に制限されない。また、金属イオンの対イオ
ンもその金属塩の溶剤への溶解性、生成する錯体の1次
元チャンネル構造の形成を阻害するものでなければ特に
限定されない。上述の錯体の製造においては、ジカルボ
ン酸の溶液に有機酸を添加してpHを調整することが好
ましく、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸
等が使用できる。これらの分解試薬の水溶液の濃度は特
に制限はないが、分解を確実に行なうために1重量%以
上であることが好ましい。
The production of these organometallic complexes is carried out by preparing a solution of an organic ligand and a solution of a metal salt as a raw material, mixing these and reacting them. The solvent used is not particularly limited as long as it does not react with an organic ligand or a metal ion or form a complex. The counter ion of the metal ion is not particularly limited as long as it does not inhibit the solubility of the metal salt in the solvent and the formation of the one-dimensional channel structure of the resulting complex. In the production of the above-mentioned complex, it is preferable to adjust the pH by adding an organic acid to a solution of dicarboxylic acid, and formic acid, acetic acid, trifluoroacetic acid, propionic acid and the like can be used. The concentration of the aqueous solution of these decomposition reagents is not particularly limited, but is preferably 1% by weight or more in order to ensure the decomposition.

【0014】有機金属錯体に吸着された前述の吸着化学
物質を回収する方法において、前記有機金属錯体と反応
させる第2の化学物質としては、水、アルカリもしくは
酸の水溶液が好ましく、アルカリ水溶液としては、水酸
化ナトリウム、水酸化カリウム等のアルカリ金属の水酸
化物を含む無機系のアルカリ、テトラメチルアンモニウ
ムヒドロキシド等の有機系アルカリの水溶液の使用が好
ましく、酸の水溶液としては、塩酸、硝酸、過塩素酸、
塩素酸等の無機酸、ベンゼンスルホン酸、トルエンスル
ホン酸、トリフルオロ酢酸等の有機酸の水溶液の使用が
好ましい。
In the method of recovering the above-mentioned adsorbed chemical substance adsorbed on the organometallic complex, the second chemical substance to be reacted with the organometallic complex is preferably an aqueous solution of water, an alkali or an acid. It is preferable to use an aqueous solution of an inorganic alkali containing a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide or an organic alkali such as tetramethylammonium hydroxide.As the aqueous solution of an acid, hydrochloric acid, nitric acid, Perchloric acid,
It is preferable to use an aqueous solution of an inorganic acid such as chloric acid or the like, or an organic acid such as benzenesulfonic acid, toluenesulfonic acid or trifluoroacetic acid.

【0015】本発明の吸着化学物質回収方法に使用する
装置の実験的モデルを図1に示し、これに基づいて本発
明を説明する。ここでは吸着化学物質として常温で気体
の物質を使用した例を示す。容器本体1は有機金属錯体
を主成分として構成される吸着剤4を収納した区画3と
に有機金属錯体4と反応する分解試薬13を充填した区
画6とが備えられ、区画3と区画6は隔壁部材11によ
り仕切られ、隔壁部材11には孔12が複数設けられて
いるとともに分解試薬13に対して安定な薄膜層14が
装着されている。容器1の区画3の側には気体状の化学
物質導入口7、回収ガス排出口5が備えられている。急
激な回収ガスの発生を考慮すると容器1は耐圧性を有
し、回収ガス排出口5は口径が大きいほうが好ましい。
第2の化学物質収納区画6にはピストン9が備えられて
いる。
FIG. 1 shows an experimental model of an apparatus used in the method for recovering adsorbed chemical substances according to the present invention, and the present invention will be described based on the experimental model. Here, an example in which a gaseous substance at normal temperature is used as the adsorption chemical substance will be described. The container body 1 is provided with a compartment 3 containing an adsorbent 4 composed mainly of an organometallic complex, and a compartment 6 filled with a decomposition reagent 13 that reacts with the organometallic complex 4. The partition member 11 is partitioned, and the partition member 11 has a plurality of holes 12 and a thin film layer 14 that is stable with respect to the decomposition reagent 13. On the side of the compartment 3 of the container 1, a gaseous chemical substance inlet 7 and a recovered gas outlet 5 are provided. Considering the sudden generation of the recovered gas, it is preferable that the container 1 has pressure resistance and the recovered gas discharge port 5 has a large diameter.
The second chemical storage compartment 6 is provided with a piston 9.

【0016】気体状の吸着化学物質は導入口7を通じて
区画3に収納された吸着剤4に吸着され、吸着が十分に
行なわれたのちに導入口7を閉鎖し、排出口5を開き、
ピストン9を押して区画6の内圧を上昇させ、この圧力
で薄膜14を破り、区画6内に収容されている錯体分解
試薬13を迅速に吸着剤4に接触させる。吸着剤は迅速
に分解して、吸着された気体状物質を放出するため、そ
の気体は排出口5より急速に排出される。
The gaseous adsorbed chemical substance is adsorbed by the adsorbent 4 stored in the compartment 3 through the inlet 7 and after the adsorption is sufficiently performed, the inlet 7 is closed and the outlet 5 is opened.
The piston 9 is pushed to increase the internal pressure of the compartment 6, which breaks the thin film 14 and causes the complex-decomposing reagent 13 contained in the compartment 6 to quickly contact the adsorbent 4. Since the adsorbent decomposes rapidly and releases the adsorbed gaseous substance, the gas is rapidly discharged from the outlet 5.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。 (有機金属錯体製造例1)メタノール100cm3 、ギ
酸14cm3 の混合溶媒に1,4−トランス−シクロヘ
キサンジカルボン酸2.53gを溶解し、常温に冷却す
る。得られた1,4−トランス−シクロヘキサンジカル
ボン酸溶液に、攪拌下に、ギ酸銅3.3gをメタノール
100cm3 に溶解した溶液を滴下し、得られた溶液を
室温にて一夜静置した。この静置溶液中に生成した固体
を水、エタノールにて十分洗浄し、100℃にて4時間
乾燥した。得られた固形物をX線回折等により分析した
結果、金属錯体は1,4−トランス−シクロヘキサンジ
カルボン酸銅であり、比表面積は480m2 /g、細孔
径は4.7Åであった。
Embodiments of the present invention will be described below. (Organometallic complex prepared in Example 1) methanol 100 cm 3, a mixed solvent of formic acid 14cm 3 1,4 trans - dissolving cyclohexanedicarboxylic acid 2.53 g, and cooled to room temperature. To the obtained 1,4-trans-cyclohexanedicarboxylic acid solution, a solution in which 3.3 g of copper formate was dissolved in 100 cm 3 of methanol was added dropwise with stirring, and the obtained solution was allowed to stand at room temperature overnight. The solid formed in the standing solution was sufficiently washed with water and ethanol, and dried at 100 ° C. for 4 hours. As a result of analyzing the obtained solid by X-ray diffraction or the like, the metal complex was copper 1,4-trans-cyclohexanedicarboxylate, the specific surface area was 480 m 2 / g, and the pore diameter was 4.7 °.

【0018】(有機金属錯体製造例2)ジメチルホルム
アミド(DMF)90cm3 、ギ酸0.5cm3 の混合
溶媒にビフェニルジカルボン酸0.25gを溶解した。
室温下においてこの溶液にギ酸銅0.5gをメタノール
25cm3 に溶解した溶液を攪拌しつつ滴下し、得られ
た溶液を室温にて一夜静置した。この静置溶液中に生成
した固体を水、エタノールにて十分洗浄し、100℃に
て4時間乾燥した。得られた固形物をX線回折等により
分析した結果、有機金属錯体はビフェニルジカルボン酸
銅であり、比表面積は1200m2 /g、細孔径は7.
8Åであった。
[0018] (organometallic complex Production Example 2) dimethylformamide (DMF) 90cm 3, was dissolved biphenyl dicarboxylic acid 0.25g in a mixed solvent of formic acid 0.5 cm 3.
At room temperature, a solution of 0.5 g of copper formate dissolved in 25 cm 3 of methanol was added dropwise to this solution with stirring, and the resulting solution was allowed to stand at room temperature overnight. The solid formed in the standing solution was sufficiently washed with water and ethanol, and dried at 100 ° C. for 4 hours. The obtained solid was analyzed by X-ray diffraction or the like, and as a result, the organometallic complex was copper biphenyldicarboxylate, the specific surface area was 1200 m 2 / g, and the pore size was 7.
It was 8Å.

【0019】(有機金属錯体製造例3)フマル酸1.2
gをメタノール100cm3 とギ酸12cm3 の溶液に
溶解し、このフマル酸溶液を常温に冷却後、攪拌しつつ
ギ酸銅3.38gをメタノール100cm3 に溶解した
溶液を滴下し、室温にて1日間静置した。生成した沈殿
物を吸引濾過し、洗浄後120℃にて4時間乾燥した。
得られた結晶は1.37gであって、X線回折等により
分析した結果、この結晶はフマル酸銅であり、その比表
面積は450g/cm3 、細孔径は5.4Åであった。
(Production example 3 of organometallic complex) fumaric acid 1.2
The g was dissolved in a solution of methanol 100 cm 3 and formic acid 12cm 3, after cooling the fumaric acid solution to room temperature, the stirring Gisando 3.38g was added dropwise a solution of methanol 100 cm 3, 1 day at room temperature It was left still. The precipitate formed was filtered by suction, washed and dried at 120 ° C. for 4 hours.
The obtained crystals weighed 1.37 g and were analyzed by X-ray diffraction or the like. As a result, the crystals were copper fumarate, the specific surface area was 450 g / cm 3 , and the pore diameter was 5.4 °.

【0020】(ガス吸着特性の測定)製造例で得られた
有機金属錯体のうちフマル酸銅について吸着化学物質と
して炭酸ガスを使用し、下記の方法によりその単位体積
当たり、単位重量当たりの吸着特性を測定した。有機金
属錯体を、圧力10〜2Torr、温度110℃の条件
で1時間真空乾燥し、次いでチャンバー内を測定温度で
ある25℃に調整し、炭酸ガスを段階的に導入し、各圧
力における重量変化率をマイクロ天秤CAHN−200
0(CAHN社製)を使用して測定した。この重量変化
量より吸着量を算出した。なお、単位体積当たりの吸着
量は、錯体のかさ密度を測定し、これに基づいて換算し
て求めた。測定結果について、25℃における吸着等温
線を図2に示した。
(Measurement of Gas Adsorption Characteristics) Among the organometallic complexes obtained in the production examples, copper fumarate is used as an adsorption chemical substance with carbon dioxide gas, and the adsorption characteristics per unit volume and unit weight are determined by the following method. Was measured. The organometallic complex is vacuum-dried for 1 hour under the conditions of a pressure of 10 to 2 Torr and a temperature of 110 ° C. Then, the inside of the chamber is adjusted to a measurement temperature of 25 ° C., carbon dioxide gas is introduced stepwise, and the weight change at each pressure is changed. The micro balance CAHN-200
0 (manufactured by CAHN). The adsorption amount was calculated from the weight change amount. The adsorption amount per unit volume was determined by measuring the bulk density of the complex and converting it based on the measured bulk density. FIG. 2 shows the adsorption isotherm at 25 ° C. for the measurement results.

【0021】(炭酸ガス回収試験)有機金属錯体製造例
3にて得られたフマル酸銅を、粉末状態、およびバイン
ダーを使用して顆粒状に成形した状態の2種の状態で、
圧力10kg/cm2 の圧力下で炭酸ガスを吸着させ、
その後この炭酸ガスを吸着したフマル酸銅に5mlの水
を注いだところ、フマル酸銅は直ちに分解し、炭酸ガス
の発生が認められた。
(Carbon dioxide recovery test) The copper fumarate obtained in Production Example 3 of an organometallic complex was divided into two types, a powder state and a state of being formed into granules using a binder.
Carbon dioxide gas is adsorbed under a pressure of 10 kg / cm 2 ,
Thereafter, when 5 ml of water was poured into the copper fumarate to which the carbon dioxide gas was adsorbed, the copper fumarate was immediately decomposed, and generation of carbon dioxide gas was recognized.

【0022】前述のフマル酸銅について吸着される炭酸
ガスの量を計算すると以下のようになる。 (i)フマル酸銅の粉末は、かさ密度は0.7g/cm
3 であり、これを容量100mlの容器に充填し、10
kg/cm2 の圧力下で炭酸ガスを吸着させると、錯体
1gについては88Nmlのガスが吸着されるから、1
00ml容器に充填される炭酸ガス量は以下のとおりで
ある。 錯体に吸着されるガス: 88×0.7×100=6200Nml 空隙に圧縮されて収納されるガス:10×100×0.65(空隙率) = 650Nml 従って、この容器に収容されるガスの総量は、 6200+650=6850Nml であり、空隙体積で換算すると、 6850/(100×0.65)=105(kg/cm
2 )の圧力による貯蔵に相当する。 (ii)前述のフマル酸銅を顆粒状に成形したものは、
顆粒としてのかさ密度は1.1g/cm3 、容器への充
填率は70%であり、同様に計算すると、 錯体に吸着されるガス: 88×1.1×100=9680Nml 空隙に圧縮されて収納されるガス:10×100×0.3= 300Nml 容器に収容されるガスの総量: 9980Nml 空隙体積で換算した圧力: 330kg/cm2 となり、ボンベに高圧で充填したものと同等以上のガス
を貯蔵しうることが明らかである。
The amount of carbon dioxide adsorbed on the above-mentioned copper fumarate is calculated as follows. (I) The powder of copper fumarate has a bulk density of 0.7 g / cm.
3 , which was filled into a 100 ml container,
When carbon dioxide gas is adsorbed under a pressure of kg / cm 2 , 88 Nml of gas is adsorbed for 1 g of the complex.
The amount of carbon dioxide gas filled in the 00 ml container is as follows. Gas adsorbed by the complex: 88 × 0.7 × 100 = 6200 Nml Gas compressed and stored in the void: 10 × 100 × 0.65 (porosity) = 650 Nml Therefore, the total amount of gas stored in this container Is 6200 + 650 = 6850 Nml, which is calculated as 6850 / (100 × 0.65) = 105 (kg / cm)
2 ) Equivalent to pressure storage. (Ii) The above-mentioned copper fumarate formed into granules is as follows:
The bulk density of the granules is 1.1 g / cm 3 , the filling rate in the container is 70%, and the gas adsorbed on the complex is calculated as follows: 88 × 1.1 × 100 = 9680 Nml Gas to be stored: 10 × 100 × 0.3 = 300 Nml Total amount of gas to be stored in the container: 9980 Nml Pressure converted to void volume: 330 kg / cm 2 . It is clear that it can be stored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に使用しうるガス収納容器の実験
的モデル図
FIG. 1 is an experimental model diagram of a gas storage container that can be used for carrying out the present invention.

【図2】25℃におけるフマル酸銅の単位体積当たりの
炭酸ガスの吸着等温線を示したグラフ
FIG. 2 is a graph showing an adsorption isotherm of carbon dioxide gas per unit volume of copper fumarate at 25 ° C.

【図3】25℃におけるフマル酸銅の単位重量当たりの
炭酸ガスの吸着等温線を示したグラフ
FIG. 3 is a graph showing an adsorption isotherm of carbon dioxide gas per unit weight of copper fumarate at 25 ° C.

【符号の説明】[Explanation of symbols]

1 容器本体 3 第1の区画 4 化学物質吸着剤 6 第2の区画 11 隔壁部材 13 分解試薬 DESCRIPTION OF SYMBOLS 1 Container main body 3 1st section 4 Chemical adsorbent 6 2nd section 11 Partition member 13 Decomposition reagent

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学物質を吸着した1次元チャンネル構
造を有する有機金属錯体を含む吸着剤より前記吸着化学
物質を回収する方法であって、前記吸着剤を前記有機金
属錯体と反応して分解する分解試薬と反応させることを
特徴とする錯体吸着化学物質の回収方法。
1. A method for recovering an adsorbed chemical substance from an adsorbent containing an organic metal complex having a one-dimensional channel structure in which the chemical substance is adsorbed, wherein the adsorbent is decomposed by reacting with the organic metal complex. A method for recovering a complex-adsorbed chemical substance, which is reacted with a decomposition reagent.
【請求項2】 前記1次元チャンネル構造を有する有機
金属錯体は、分子内の点対称位置に配置された2個のカ
ルボキシル基を有するジカルボン酸と金属イオンにより
形成される錯体である請求項1に記載の錯体吸着化学物
質の回収方法。
2. The method according to claim 1, wherein the organometallic complex having a one-dimensional channel structure is a complex formed by a dicarboxylic acid having two carboxyl groups arranged at point symmetry positions in a molecule and a metal ion. The method for recovering a complex-adsorbed chemical substance described in the above.
【請求項3】 前記有機金属錯体と反応する分解試薬が
水、又は酸もしくはアルカリの水溶液である請求項1ま
たは2に記載の錯体吸着化学物質の回収方法。
3. The method for recovering a complex-adsorbed chemical substance according to claim 1, wherein the decomposition reagent that reacts with the organometallic complex is water or an aqueous solution of an acid or an alkali.
JP8226216A 1996-08-28 1996-08-28 Method for recovering complex adsorbing chemical substance Pending JPH1066864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8226216A JPH1066864A (en) 1996-08-28 1996-08-28 Method for recovering complex adsorbing chemical substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8226216A JPH1066864A (en) 1996-08-28 1996-08-28 Method for recovering complex adsorbing chemical substance

Publications (1)

Publication Number Publication Date
JPH1066864A true JPH1066864A (en) 1998-03-10

Family

ID=16841722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8226216A Pending JPH1066864A (en) 1996-08-28 1996-08-28 Method for recovering complex adsorbing chemical substance

Country Status (1)

Country Link
JP (1) JPH1066864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512200A (en) * 2002-12-26 2006-04-13 大陽日酸株式会社 Method and system for supplying high purity fluid
CN114644760A (en) * 2020-12-19 2022-06-21 北京工业大学 Preparation and gas separation application of copper-based microporous metal organic framework material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512200A (en) * 2002-12-26 2006-04-13 大陽日酸株式会社 Method and system for supplying high purity fluid
CN114644760A (en) * 2020-12-19 2022-06-21 北京工业大学 Preparation and gas separation application of copper-based microporous metal organic framework material

Similar Documents

Publication Publication Date Title
Li et al. Advances of metal‐organic frameworks in energy and environmental applications
JP4258608B2 (en) Three-dimensional metal complex, adsorbent and separation material
Nemiwal et al. Metal organic frameworks as water harvester from air: Hydrolytic stability and adsorption isotherms
TWI312292B (en) Purification of hydride gases
Gandara-Loe et al. Understanding the opportunities of metal–organic frameworks (MOFs) for CO 2 capture and gas-phase CO 2 conversion processes: a comprehensive overview
US9127025B2 (en) Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
JP2003342260A (en) Three-dimensional metal complex, adsorbing material and separating material
JP5705010B2 (en) Metal complex and separation material comprising the same
JP3566655B2 (en) Manufacturing method of gas adsorbent
Mondal et al. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation
WO2017155475A1 (en) Silver-decorated metal-organic framework for olefin/alkane separation
Jia et al. (CH3) 2NH‐assisted synthesis of high‐purity Ni‐HKUST‐1 for the adsorption of CO2, CH4, and N2
CN111944160A (en) Oxalic acid functionalized microporous coordination polymer material and preparation method and application thereof
JP3746321B2 (en) Gas storage organometallic complex, method for producing the same, gas storage device, and automobile equipped with gas storage device
Wang et al. Two isostructural metal–organic frameworks with unique nickel clusters for C 2 H 2/C 2 H 6/C 2 H 4 mixture separation
JPH1066865A (en) Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator
Motkuri et al. Metal organic frameworks-synthesis and applications
JPH1066864A (en) Method for recovering complex adsorbing chemical substance
US20110126708A1 (en) Gas Adsorbents Based on Microporous Coordination Polymers
EP3684502A1 (en) Chromium-based metal-organic frameworks for water adsorption-related applications and gas storage
Wang et al. Porous organic cages for gas separations
Lin et al. Efficient separation of xylene isomers by using a robust calcium-based metal–organic framework through a synergetic thermodynamically and kinetically controlled mechanism
JP4204535B2 (en) High pressure carbon dioxide generator
JP6578704B2 (en) Porous coordination polymer
Zhang et al. A copper-based metal–organic framework with a suitable pore environment for effective ethylene purification