JPH1066865A - Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator - Google Patents

Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator

Info

Publication number
JPH1066865A
JPH1066865A JP8226218A JP22621896A JPH1066865A JP H1066865 A JPH1066865 A JP H1066865A JP 8226218 A JP8226218 A JP 8226218A JP 22621896 A JP22621896 A JP 22621896A JP H1066865 A JPH1066865 A JP H1066865A
Authority
JP
Japan
Prior art keywords
flame
retardant gas
organometallic complex
retardant
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8226218A
Other languages
Japanese (ja)
Inventor
Kenji Seki
建司 関
Kazuaki Mori
和亮 森
Satoshi Takamizawa
聡 高見澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8226218A priority Critical patent/JPH1066865A/en
Publication of JPH1066865A publication Critical patent/JPH1066865A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable easy, prompt recovery of adsorbed flame-retardant gas when the gas is adsorbed and stored by using a flame-retardant gas storing agent containing an organometallic complex which has one-dimensional channel structure and can adsorb and store the gas. SOLUTION: A flame-retardant gas storing agent is prepared from an organometallic complex which has one-dimensional channel structure and can adsorb and store flame retardant gas. A complex which is formed from a dicarboxylic acid having two carboxylic groups arranged at point-symmetrical positions in the molecule and a metal ion is named as the organometallic complex, and it is preferable to have a narrow hole diameter of 3-20Å of a void based on the channel structure. When such a storing agent is applied to a high pressure flame retardant gas generator, the flame-retardant gas, after being adsorbed by an adsorbent 4 in a section 3, breaks a thin film 14 by the increase of the pressure in the section 6 to contact a reagent 13 with the adsorbent 4 so that the adsorbent 4 is decomposed quickly to release the flame-retardant gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チャンネル構造を
有する有機金属錯体を使用し、加圧下にて難燃性ガスを
接触させ、吸着させて貯蔵する難燃性ガスの貯蔵剤、前
記難燃性ガス貯蔵剤を使用した難燃性ガス貯蔵方法、並
びに高圧難燃性ガス発生装置に関するものである。本発
明は特に炭酸ガスに好適なガス貯蔵剤とガス貯蔵方法、
並びに高圧炭酸ガス発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flame-retardant gas storage agent which uses an organometallic complex having a channel structure, contacts and adsorbs a flame-retardant gas under pressure, and stores the flame-retardant gas. The present invention relates to a flame-retardant gas storage method using a volatile gas storage agent, and a high-pressure flame-retardant gas generator. The present invention is a gas storage agent and a gas storage method particularly suitable for carbon dioxide,
And a high pressure carbon dioxide gas generator.

【0002】本発明に好適な錯体を使用した難燃性ガス
貯蔵剤は、単位体積当たりの難燃性ガスの吸着量が多い
ため、飽和に近い吸着状態の金属錯体に分解試薬を接触
させると急速に多量の難燃性ガスが発生する。この特性
を利用すると、短時間に大量の難燃性ガスを発生させる
必要のある用途、装置に使用することが出来、特に吸着
難燃性ガスとして炭酸ガスを使用した場合には、航空機
や船舶に装備する救命胴衣、救命筏、脱出装置やゴムボ
ートの気体充填装置、または消火装置等、炭酸ガスの化
学的性質を生かした用途や気体としての特性を生かした
用途に利用することが可能である。
Since a flame retardant gas storage agent using a complex suitable for the present invention has a large amount of adsorbed flame retardant gas per unit volume, when a decomposition reagent is brought into contact with a metal complex in an almost saturated adsorption state. A large amount of flame retardant gas is generated rapidly. By utilizing this property, it can be used for applications and equipment that need to generate a large amount of flame-retardant gas in a short period of time. It can be used for applications that make use of the chemical properties of carbon dioxide gas and applications that make use of the characteristics as a gas, such as life jackets, life raft, escape devices, gas filling devices for rubber boats, or fire extinguishing devices equipped on .

【0003】[0003]

【従来の技術】活性炭、ゼオライト、シリカゲル等は化
学物質の吸着剤として知られており、炭酸ガス等の難燃
性ガスも吸着することが出来る。また、ガスを貯蔵する
方法としては、高圧でボンベに充填する方法が使用され
ていた。
2. Description of the Related Art Activated carbon, zeolite, silica gel and the like are known as adsorbents for chemical substances, and can also adsorb flame-retardant gases such as carbon dioxide. Further, as a method of storing gas, a method of filling a cylinder at high pressure has been used.

【0004】[0004]

【発明が解決しようとする課題】しかし、活性炭、ゼオ
ライト、シリカゲル等の従来の吸着剤は難燃性ガスの吸
着量が少なく、また、いったん吸着された難燃性ガスを
脱着し、回収するには、周知のように、難燃性ガスを吸
着した吸着剤の加熱、減圧、またはこれらの操作を組み
合わせによるしかなく、時間とエネルギーを必要とする
ものであり、貯蔵剤として使用するのは困難であった。
また、難燃性ガス貯蔵・運搬方法として唯一実用化され
ているボンベに充填する方法ではボンベの重量が重く運
搬が困難であった。本発明は、難燃性ガスを1次元チャ
ンネル構造を有する有機金属錯体に吸着させて貯蔵する
難燃性ガス貯蔵剤、これを利用した難燃性ガス貯蔵方
法、並びに吸着された難燃性ガスを容易、かつ迅速に回
収する高圧難燃性ガス発生装置を提供することにある。
However, conventional adsorbents such as activated carbon, zeolite, and silica gel have a small amount of adsorbed flame-retardant gas, and are not suitable for desorbing and recovering the flame-retardant gas once adsorbed. As is well known, heating, decompression, or a combination of these operations of an adsorbent that has adsorbed a flame-retardant gas requires time and energy, and is difficult to use as a storage agent. Met.
In addition, the method of filling a cylinder, which is the only practical method for storing and transporting a flame-retardant gas, has been difficult due to the heavy weight of the cylinder. The present invention relates to a flame-retardant gas storage agent for adsorbing and storing a flame-retardant gas on an organometallic complex having a one-dimensional channel structure, a flame-retardant gas storage method using the same, and an adsorbed flame-retardant gas To provide a high-pressure flame-retardant gas generator for easily and quickly recovering gas.

【0005】特に本発明の1次元チャンネル構造を有す
る有機金属錯体に吸着される化学物質の種類は窒素、酸
素、炭酸ガスの他、アルゴン、ネオン、キセノン、クリ
プトン等の希ガス、3フッ化メタン、4フッ化メタンを
含むフロン類、塩化メチル、臭化メチル等のハロゲン化
合物などの有機化合物を含む難燃性ガスの吸着貯蔵に適
する。
[0005] In particular, the types of chemical substances adsorbed on the organometallic complex having a one-dimensional channel structure of the present invention include nitrogen, oxygen, carbon dioxide, and rare gases such as argon, neon, xenon, and krypton. Suitable for adsorption storage of flame-retardant gas containing organic compounds such as fluorocarbons including methane tetrafluoride, halogen compounds such as methyl chloride and methyl bromide.

【0006】[0006]

【課題を解決するための手段】本願請求項1に記載の発
明は、1次元チャンネル構造を有し、難燃性ガスを吸着
貯蔵しうる有機金属錯体を含む難燃性ガス貯蔵剤に関す
るものである。1次元チャンネル構造を有する有機金属
錯体は、前記チャンネル構造に基づく細孔を有するた
め、この細孔に難燃性ガスを多量に吸着する能力を有
し、難燃性ガス貯蔵剤として使用することが出来る。本
発明にかかる難燃性ガス吸着剤は特に炭酸ガスの吸着剤
として好適である。炭酸ガスが大量に吸着される理由は
明確ではないが、炭酸ガスの分子サイズと1次元チャン
ネル構造に基づく空隙のサイズとが吸着に適した関係に
あることなどによるものと考えられる。
The invention described in claim 1 of the present application relates to a flame-retardant gas storage agent having an one-dimensional channel structure and containing an organometallic complex capable of adsorbing and storing a flame-retardant gas. is there. Since the organometallic complex having a one-dimensional channel structure has pores based on the channel structure, the organometallic complex has a capability of adsorbing a large amount of a flame-retardant gas into these pores and is used as a flame-retardant gas storage agent. Can be done. The flame-retardant gas adsorbent according to the present invention is particularly suitable as an adsorbent for carbon dioxide gas. The reason why a large amount of carbon dioxide is adsorbed is not clear, but it is considered that the molecular size of the carbon dioxide and the size of the void based on the one-dimensional channel structure have a relationship suitable for the adsorption.

【0007】ここに1次元チャンネル構造とは金属イオ
ンとこれに配位する有機配位子によりつくられる結晶格
子の空間が1次元的に連続して形成される連続した空間
を言う。
Here, the one-dimensional channel structure refers to a continuous space in which a space of a crystal lattice formed by a metal ion and an organic ligand coordinated thereto is continuously formed one-dimensionally.

【0008】本発明の難燃性ガス貯蔵方法に使用する前
記1次元チャンネル構造を有する有機金属錯体は、分子
内の点対称位置に配置された2個のカルボキシル基を有
するジカルボン酸と金属イオンにより形成される錯体で
あることが好ましい。少なくともこれらの錯体は、1次
元のチャンネル構造を形成し、難燃性ガス、特に炭酸ガ
スを多量に吸着する能力を有する。
The organometallic complex having a one-dimensional channel structure used in the method for storing a flame-retardant gas of the present invention comprises a dicarboxylic acid having two carboxyl groups and a metal ion arranged at point symmetry positions in a molecule. Preferably, the complex is formed. At least these complexes form a one-dimensional channel structure and have the ability to adsorb large amounts of flame retardant gases, especially carbon dioxide.

【0009】前記有機金属錯体は、そのチャンネル構造
に基づく空隙の3〜20Åの細孔径を有するものである
ことが好ましい。3Å以下の場合は難燃性ガス分子を収
容するには小さすぎて難燃性ガスの吸着量が低下し、2
0Å以上になると空隙が大きすぎて、やはり吸着量が低
下する。
The organometallic complex preferably has a pore diameter of 3 to 20 ° based on the channel structure. If it is less than 3 mm, it is too small to contain the flame-retardant gas molecules, and the amount of adsorbed flame-retardant gas decreases,
If it is 0 ° or more, the gap is too large, and the amount of adsorption also decreases.

【0010】本発明は難燃性ガス貯蔵方法、特に好まし
くは炭酸難燃性ガス貯蔵方法にも関するものであり、そ
の貯蔵方法は、難燃性ガスを加圧状態にて1次元チャン
ネル構造を有する有機金属錯体を含む貯蔵剤と接触させ
て前記難燃性ガス貯蔵剤に吸着させることを特徴とする
ものである。この方法によれば、ボンベに充填するより
も低圧で金属錯体のチャンネル構造に基づく空隙に難燃
性ガスを大量に吸着貯蔵することが可能であって、しか
もその吸着量は活性炭などより遙かに多量である。従っ
て、本発明によれば従来のボンベよりも軽量の貯蔵装置
を製作することが出来、運搬も容易となる。
[0010] The present invention also relates to a method for storing a flame-retardant gas, particularly preferably a method for storing a flame-retardant carbon dioxide gas. And contacting it with a storage agent containing an organometallic complex to cause adsorption to said flame-retardant gas storage agent. According to this method, it is possible to adsorb and store a large amount of the flame-retardant gas in the void based on the channel structure of the metal complex at a lower pressure than filling the cylinder, and the amount of adsorption is far greater than that of activated carbon or the like. In large quantities. Therefore, according to the present invention, a storage device that is lighter than a conventional cylinder can be manufactured, and transportation becomes easy.

【0011】本発明はまた高圧難燃性ガス、特に好まし
くは炭酸ガスの発生装置にも関するものであり、本願請
求項7記載の発明である高圧難燃性ガス発生装置は、容
器内に1次元チャンネル構造を有する有機金属錯体を含
む難燃性ガス貯蔵剤を収容した第1の区画、及び前記有
機金属錯体と反応し、分解する分解試薬を収容した第2
の区画を備え、第1の区画と第2の区画は隔壁部材によ
り分離されており、外部よりの操作により前記隔壁の分
離作用を解除して前記難燃性ガス貯蔵剤と分解試薬を接
触させ、有機金属錯体を分解することによって有機金属
に吸着貯蔵された難燃性ガスを脱着させることにより高
圧の難燃性ガスを発生させることが可能であるという特
徴を有する。
The present invention also relates to an apparatus for generating a high-pressure flame-retardant gas, particularly preferably a carbon dioxide gas. A first compartment containing a flame retardant gas storage agent containing an organometallic complex having a three-dimensional channel structure, and a second compartment containing a decomposition reagent that reacts with and decomposes the organometallic complex.
The first section and the second section are separated by a partition member, and the separating action of the partition is released by an external operation to bring the flame-retardant gas storage agent into contact with a decomposition reagent. It is characterized in that a high-pressure flame-retardant gas can be generated by desorbing the flame-retardant gas adsorbed and stored in the organic metal by decomposing the organic metal complex.

【0012】1次元チャンネル構造を有する有機金属錯
体、特に請求項2に記載の錯体は大量の難燃性ガスを吸
着させることが出来、この難燃性ガスを吸着した錯体を
分解すると、吸着されていた難燃性ガスが放出され、か
つ吸着されている難燃性ガス量が多いために密閉系にて
錯体と分解試薬とを反応させると脱着する難燃性ガスは
高圧となる。なお、隔壁の分離作用を解除するとは、隔
壁の一部または全部の破壊、移動等により、隔壁により
分離した難燃性ガス貯蔵剤と分解試薬を接触させること
を意味する。また、高圧とは同じ難燃性ガスをボンベに
充填する場合に使用する程度以上の圧力を意味する。
The organometallic complex having a one-dimensional channel structure, in particular, the complex according to claim 2 can adsorb a large amount of a flame-retardant gas, and when the complex adsorbing the flame-retardant gas is decomposed, it is adsorbed. Since the flame-retardant gas that has been released is released and the amount of adsorbed flame-retardant gas is large, when the complex reacts with the decomposition reagent in a closed system, the pressure of the decomposed flame-retardant gas becomes high. Canceling the partitioning action of the partition means that the flame-retardant gas storage agent separated by the partition and the decomposition reagent are brought into contact with each other by destruction or movement of a part or all of the partition. The high pressure means a pressure higher than the pressure used when filling the same flame-retardant gas into a cylinder.

【0013】上述の高圧難燃性ガスの発生装置におい
て、前記有機金属錯体と反応する第2の化学物質(分解
試薬)は水または酸もしくはアルカリの水溶液であるこ
とが好ましい。これらの分解試薬は有機金属錯体と反応
して迅速にこれを分解する性能を有すると共に、火災の
危険性もなく、安価である。
In the above-described apparatus for generating a high-pressure flame-retardant gas, it is preferable that the second chemical substance (decomposing reagent) that reacts with the organometallic complex is water or an aqueous solution of an acid or an alkali. These decomposing reagents have the ability to react with the organometallic complex to decompose it promptly, have no risk of fire, and are inexpensive.

【0014】本願請求項7、8に記載の高圧難燃性ガス
発生装置に使用する難燃性ガスとしては、難燃性ガス貯
蔵剤に大量に貯蔵され、水に対する溶解度が低いために
水系の分解試薬を使用して難燃性ガス貯蔵剤を分解して
も、ほぼ100%が高圧難燃性ガスとなる等の理由によ
り、炭酸ガスが好適である。
The flame-retardant gas used in the high-pressure flame-retardant gas generator according to claims 7 and 8 of the present invention is stored in a large amount in a flame-retardant gas storage agent and has a low solubility in water. Even if a flame retardant gas storage agent is decomposed using a decomposition reagent, carbon dioxide is suitable because, for example, almost 100% is high-pressure flame retardant gas.

【0015】[0015]

【発明の実施の形態】本発明において使用できる1次元
チャンネル構造を有する有機金属錯体は、請求項2に記
載の、分子内の点対称位置に配置された2個のカルボキ
シル基を有するジカルボン酸と金属イオンにより形成さ
れる錯体であることが好ましく、これらの錯体は、有機
配位子の溶液と原料である金属塩の溶液を混合、反応さ
せることにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The organometallic complex having a one-dimensional channel structure which can be used in the present invention comprises a dicarboxylic acid having two carboxyl groups arranged at point symmetric positions in a molecule as described in claim 2. Complexes formed by metal ions are preferable. These complexes are obtained by mixing and reacting a solution of an organic ligand with a solution of a metal salt as a raw material.

【0016】前述の有機金属錯体はX線回折のパターン
の解析より、1次元チャンネル構造を有していることが
わかる。本発明の難燃性ガス貯蔵剤を構成する錯体の例
としてテレフタル酸銅を例にとって説明すると、銅は平
面4配位であり、2個の銅イオンをテレフタル酸4分子
が90°ごとに囲むようにして配置し、テレフタル酸の
カルボキシル基の2個の酸素原子はそれぞれ別の銅イオ
ンに配位している。即ち、テレフタル酸分子は格子状に
配列し、その格子点に2個の銅イオンが存在する。そし
て、銅イオンとジカルボン酸より形成される層が積層さ
れた形で結晶が構成されている。その結果、格子が積層
されて1次元チャンネルが形成される。
Analysis of the X-ray diffraction pattern shows that the above-mentioned organometallic complex has a one-dimensional channel structure. Taking copper terephthalate as an example of a complex constituting the flame-retardant gas storage agent of the present invention, copper has a four-plane coordination, and two copper ions surround four copper molecules with every 90 °. The two oxygen atoms of the carboxyl group of terephthalic acid are coordinated to different copper ions. That is, terephthalic acid molecules are arranged in a lattice, and two copper ions exist at the lattice points. And the crystal | crystallization is comprised in the form in which the layer formed from a copper ion and a dicarboxylic acid was laminated | stacked. As a result, the lattices are stacked to form a one-dimensional channel.

【0017】錯体を構成する有機配位子である、分子内
の点対称位置に配置された2個のカルボキシル基を有す
るジカルボン酸としては、テレフタル酸、フマル酸、
1,4−トランス−シクロヘキサンジカルボン酸、4,
4’−ビフェニルジカルボン酸が例示される。また、金
属イオンとしては、銅イオン、クロムイオン、モリブデ
ンイオン、ロジウムイオン、パラジウムイオン、タング
ステンイオン、が例示でき、前記ジカルボン酸と組み合
わせて錯体が形成される。
The dicarboxylic acids having two carboxyl groups arranged at point symmetry positions in the molecule, which are organic ligands constituting the complex, include terephthalic acid, fumaric acid,
1,4-trans-cyclohexanedicarboxylic acid, 4,
4'-biphenyldicarboxylic acid is exemplified. Examples of the metal ion include a copper ion, a chromium ion, a molybdenum ion, a rhodium ion, a palladium ion, and a tungsten ion, and a complex is formed in combination with the dicarboxylic acid.

【0018】これらの有機金属錯体の製造は、有機配位
子の溶液と原料の金属塩の溶液を準備してこれらを混合
し、反応させることにより行う。使用される溶剤は有機
配位子、金属イオンと反応したり錯体を形成するもので
なければ特に制限されない。また、金属イオンの対イオ
ンもその金属塩の溶剤への溶解性、生成する錯体の1次
元チャンネル構造の形成を阻害するものでなければ特に
限定されない。有機金属錯体の製造においては、ジカル
ボン酸の溶液に有機酸を添加してpHを調整することが
好ましく、ギ酸、酢酸、トリフルオロ酢酸、プロピオン
酸等が使用できる。これらの分解試薬の水溶液の濃度は
特に制限はないが、分解を確実に行なうために1重量%
以上であることが好ましい。
The production of these organometallic complexes is carried out by preparing a solution of an organic ligand and a solution of a metal salt as a raw material, mixing these and reacting them. The solvent used is not particularly limited as long as it does not react with an organic ligand or a metal ion or form a complex. The counter ion of the metal ion is not particularly limited as long as it does not inhibit the solubility of the metal salt in the solvent and the formation of the one-dimensional channel structure of the resulting complex. In the production of the organometallic complex, it is preferable to adjust the pH by adding an organic acid to a solution of the dicarboxylic acid, and formic acid, acetic acid, trifluoroacetic acid, propionic acid and the like can be used. The concentration of the aqueous solution of these decomposing reagents is not particularly limited, but is preferably 1% by weight to ensure the decomposition.
It is preferable that it is above.

【0019】本発明に好適な上述の有機金属錯体は、粉
体のまま使用することも可能であるが、適当なバインダ
ーを使用して顆粒状、ペレット状等に成形して使用に供
してもよく、他の不織布等の基材に固着して使用しても
よい。粉末、顆粒等にて使用する場合には適当な収納容
器、袋等の器材に収納した形態で供することが好まし
い。
The above-mentioned organometallic complex suitable for the present invention can be used as it is as a powder, but it can be used after being formed into granules or pellets using a suitable binder. It may be used by being fixed to a substrate such as another nonwoven fabric. When used in the form of powder, granules, etc., it is preferable to provide them in a form stored in a suitable storage container, bag or other equipment.

【0020】有機金属錯体に吸着された前述の吸着化学
物質を回収する方法において、前記有機金属錯体と反応
させる第2の化学物質としては、水、アルカリもしくは
酸の水溶液が好ましく、アルカリ水溶液としては、水酸
化ナトリウム、水酸化カリウム等のアルカリ金属の水酸
化物を含む無機系のアルカリ、テトラメチルアンモニウ
ムヒドロキシド等の有機系アルカリの水溶液の使用が好
ましく、酸の水溶液としては、塩酸、硝酸、過塩素酸、
塩素酸等の無機酸、ベンゼンスルホン酸、トルエンスル
ホン酸、トリフルオロ酢酸等の有機酸の水溶液の使用が
好ましい。これらの溶液の濃度は錯体を分解するもので
あれば特に制限はない。
In the method for recovering the above-mentioned adsorbed chemical substance adsorbed on the organometallic complex, the second chemical substance to be reacted with the organometallic complex is preferably an aqueous solution of water, an alkali or an acid. It is preferable to use an aqueous solution of an inorganic alkali containing a hydroxide of an alkali metal such as sodium hydroxide or potassium hydroxide or an organic alkali such as tetramethylammonium hydroxide.As the aqueous solution of an acid, hydrochloric acid, nitric acid, Perchloric acid,
It is preferable to use an aqueous solution of an inorganic acid such as chloric acid or the like, or an organic acid such as benzenesulfonic acid, toluenesulfonic acid or trifluoroacetic acid. The concentration of these solutions is not particularly limited as long as it decomposes the complex.

【0021】高圧難燃性ガス発生装置の実験的モデルを
図9に示し、これに基づいて本発明を説明する。容器本
体1は有機金属錯体を主成分として構成される難燃性ガ
ス貯蔵剤4を収納した第1の区画3とに有機金属錯体4
と反応する分解試薬13を充填した第2の区画6とが備
えられ、区画3と区画6は隔壁部材11により仕切ら
れ、隔壁部材11には孔12が複数設けられているとと
もに分解試薬13に対して安定な薄膜層14が装着され
ている。容器1の区画3の側には難燃性ガス導入口7、
回収難燃性ガス排出口5が備えられている。急激な回収
難燃性ガスの発生を考慮すると容器1は耐圧性を有し、
回収難燃性ガス排出口5は口径が大きいほうが好まし
い。分解試薬を収容する第2の区画6にはピストン9が
備えられている。
An experimental model of the high-pressure flame-retardant gas generator is shown in FIG. 9, based on which the present invention will be described. The container body 1 has a first compartment 3 containing a flame-retardant gas storage agent 4 composed mainly of an organometallic complex, and the first compartment 3.
And a second compartment 6 filled with a decomposition reagent 13 that reacts with the decomposition reagent 13. The compartment 3 and the compartment 6 are separated by a partition member 11. A stable thin film layer 14 is mounted. On the side of the compartment 3 of the container 1, a flame-retardant gas inlet 7,
A recovery flame-retardant gas outlet 5 is provided. In consideration of the sudden generation of recovered flame-retardant gas, the container 1 has pressure resistance,
The recovered flame-retardant gas discharge port 5 preferably has a large diameter. The second compartment 6 containing the decomposition reagent is provided with a piston 9.

【0022】難燃性ガスは導入口7を通じて区画3に収
納された吸着剤4に吸着され、吸着が十分に行なわれた
のちに導入口7を閉鎖し、排出口5を開き、ピストン9
を押して区画6の内圧を上昇させ、この圧力で薄膜14
を破り、区画6内に収容されている錯体分解試薬13を
迅速に吸着剤4に接触させる。吸着剤は迅速に分解し
て、吸着された難燃性ガスを放出するため、その難燃性
ガスは排出口5より急速に排出される。
The flame-retardant gas is adsorbed by the adsorbent 4 contained in the compartment 3 through the inlet 7 and, after the adsorption is sufficiently performed, the inlet 7 is closed, the outlet 5 is opened, and the piston 9 is opened.
To increase the internal pressure of the compartment 6, and at this pressure,
And the complexing reagent 13 contained in the compartment 6 is brought into contact with the adsorbent 4 quickly. Since the adsorbent decomposes rapidly and releases the adsorbed flame-retardant gas, the flame-retardant gas is rapidly discharged from the outlet 5.

【0023】隔壁部材11の分離機能を解除する方法と
しては上記の方法以外に、隔壁部材自体を抜き取る方法
等も使用できる。また、図9では区画3、6は1個づつ
を組み合わせた1組が記載されているが、複数組を設け
てもよい。
As a method for releasing the separating function of the partition member 11, in addition to the above method, a method of extracting the partition member itself can be used. Further, in FIG. 9, one set in which the sections 3 and 6 are combined one by one is described, but a plurality of sets may be provided.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。 (有機金属錯体製造例1)メタノール100cm3 、ギ
酸14cm3 の混合溶媒に1,4−トランス−シクロヘ
キサンジカルボン酸2.53gを溶解し、常温に冷却す
る。得られた1,4−トランス−シクロヘキサンジカル
ボン酸溶液に、攪拌下に、ギ酸銅3.3gをメタノール
100cm3 に溶解した溶液を滴下し、得られた溶液を
室温にて一夜静置した。この静置溶液中に生成した固体
を水、エタノールにて十分洗浄し、100℃にて4時間
乾燥した。得られた固形物をX線回折等により分析した
結果、金属錯体は1,4−トランス−シクロヘキサンジ
カルボン酸銅であり、比表面積は480m2 /g、細孔
径は4.7Åであった。
Embodiments of the present invention will be described below. (Organometallic complex prepared in Example 1) methanol 100 cm 3, a mixed solvent of formic acid 14cm 3 1,4 trans - dissolving cyclohexanedicarboxylic acid 2.53 g, and cooled to room temperature. To the obtained 1,4-trans-cyclohexanedicarboxylic acid solution, a solution in which 3.3 g of copper formate was dissolved in 100 cm 3 of methanol was added dropwise with stirring, and the obtained solution was allowed to stand at room temperature overnight. The solid formed in the standing solution was sufficiently washed with water and ethanol, and dried at 100 ° C. for 4 hours. As a result of analyzing the obtained solid by X-ray diffraction or the like, the metal complex was copper 1,4-trans-cyclohexanedicarboxylate, the specific surface area was 480 m 2 / g, and the pore diameter was 4.7 °.

【0025】(有機金属錯体製造例2)ジメチルホルム
アミド(DMF)90cm3 、ギ酸0.5cm3 の混合
溶媒に4,4’−ビフェニルジカルボン酸0.25gを
溶解した。室温下においてこの溶液にギ酸銅0.5gを
メタノール25cm3 に溶解した溶液を攪拌しつつ滴下
し、得られた溶液を室温にて一夜静置した。この静置溶
液中に生成した固体を水、エタノールにて十分洗浄し、
100℃にて4時間乾燥した。得られた固形物をX線回
折等により分析した結果、有機金属錯体は4,4’−ビ
フェニルジカルボン酸銅であり、比表面積は1200m
2 /g、細孔径は7.8Åであった。
[0025] (organometallic complex Production Example 2) dimethylformamide (DMF) 90cm 3, was dissolved in a mixed solvent of formic acid 0.5 cm 3 4,4'-biphenyl dicarboxylic acid 0.25 g. At room temperature, a solution of 0.5 g of copper formate dissolved in 25 cm 3 of methanol was added dropwise to this solution with stirring, and the resulting solution was allowed to stand at room temperature overnight. The solid generated in the standing solution is sufficiently washed with water and ethanol,
Dried at 100 ° C. for 4 hours. As a result of analyzing the obtained solid by X-ray diffraction or the like, the organometallic complex was copper 4,4′-biphenyldicarboxylate, and the specific surface area was 1200 m.
2 / g and the pore diameter was 7.8 °.

【0026】(有機金属錯体製造例3)フマル酸1.2
gをメタノール100cm3 とギ酸12cm3 の溶液に
溶解し、このフマル酸溶液を常温に冷却後、攪拌しつつ
ギ酸銅3.38gをメタノール100cm3 に溶解した
溶液を滴下し、室温にて1日間静置した。生成した沈殿
物を吸引濾過し、洗浄後120℃にて4時間乾燥した。
得られた結晶は1.37gであって、X線回折等により
分析した結果、この結晶はフマル酸銅であり、その比表
面積は450m2 /g、細孔径は5.4Åであった。
(Production example 3 of organometallic complex) fumaric acid 1.2
The g was dissolved in a solution of methanol 100 cm 3 and formic acid 12cm 3, after cooling the fumaric acid solution to room temperature, the stirring Gisando 3.38g was added dropwise a solution of methanol 100 cm 3, 1 day at room temperature It was left still. The precipitate formed was filtered by suction, washed and dried at 120 ° C. for 4 hours.
The obtained crystal weighed 1.37 g and was analyzed by X-ray diffraction or the like. As a result, the crystal was copper fumarate, the specific surface area was 450 m 2 / g, and the pore diameter was 5.4 °.

【0027】(有機金属錯体製造例4)メタノール80
0cm3 とギ酸30cm3 の混合溶液にテレフタル酸
1.2gを溶解し、これを室温に冷却した。室温にて攪
拌下にギ酸銅3.0gをメタノール150cm3 に溶解
した溶液を滴下し、室温にて2日間静置した。生成した
沈殿物を吸引濾過し、洗浄後120°にて4時間乾燥
し、2.1gの結晶を得た。X線回折等により分析した
結果、この結晶はテレフタル酸銅であり、その比表面積
は220m2 /g、細孔径は6.0Åであった。
(Production Example 4 of Organometallic Complex) Methanol 80
1.2 g of terephthalic acid was dissolved in a mixed solution of 0 cm 3 and formic acid 30 cm 3 , and this was cooled to room temperature. A solution of 3.0 g of copper formate dissolved in 150 cm 3 of methanol was added dropwise with stirring at room temperature, and the mixture was allowed to stand at room temperature for 2 days. The precipitate formed was filtered by suction, washed and dried at 120 ° for 4 hours to obtain 2.1 g of crystals. As a result of analysis by X-ray diffraction or the like, this crystal was copper terephthalate, the specific surface area was 220 m 2 / g, and the pore diameter was 6.0 °.

【0028】(ガス吸着特性の測定)製造例で得られた
それぞれの有機金属錯体について吸着難燃性ガスとして
炭酸ガスを使用し、下記の方法によりその単位体積当た
り、単位重量当たりの吸着特性を測定した。有機金属錯
体を、圧力10〜2Torr、温度110℃の条件で1
時間真空乾燥し、次いでチャンバー内を測定温度である
25℃に調整し、炭酸ガスを段階的に導入し、各圧力に
おける重量変化率をマイクロ天秤CAHN−2000
(CAHN社製)を使用して測定した。この重量変化量
より吸着量を算出した。なお、単位体積当たりの吸着量
は、錯体のかさ密度を測定し、これに基づいて換算して
求めた。
(Measurement of Gas Adsorption Characteristics) For each of the organometallic complexes obtained in the production examples, carbon dioxide gas was used as the adsorption flame-retardant gas, and the adsorption characteristics per unit volume and unit weight were determined by the following method. It was measured. The organometallic complex is prepared under the conditions of a pressure of 10 to 2 Torr and a temperature of 110 ° C.
The inside of the chamber was adjusted to a measurement temperature of 25 ° C., carbon dioxide gas was introduced stepwise, and the rate of weight change at each pressure was measured using a microbalance CAHN-2000.
(Manufactured by CAHN). The adsorption amount was calculated from the weight change amount. The adsorption amount per unit volume was determined by measuring the bulk density of the complex and converting it based on the measured bulk density.

【0029】測定結果は単位体積当たり、単位重量当た
りの吸着等温線を図1から図8に示した。比較例として
活性炭M−30(大阪ガス(株)製)の単位体積当たり
の炭酸ガスの吸着等温線を図3中に併せて示した。いず
れも活性炭よりも多量の炭酸ガスを吸着することが明ら
かである。
As the measurement results, adsorption isotherms per unit volume and per unit weight are shown in FIGS. As a comparative example, the adsorption isotherm of carbon dioxide gas per unit volume of activated carbon M-30 (manufactured by Osaka Gas Co., Ltd.) is also shown in FIG. It is clear that all of them adsorb a larger amount of carbon dioxide gas than activated carbon.

【0030】(炭酸ガス回収試験)有機金属錯体製造例
3にて得られたフマル酸銅を、粉末状態、およびバイン
ダーを使用して顆粒状に成形した状態の2種の状態で、
圧力10kg/cm2 の圧力下で炭酸ガスを吸着させ、
その後この炭酸ガスを吸着したフマル酸銅に5mlの水
を注いだところ、フマル酸銅は直ちに分解し、炭酸ガス
の発生が認められた。
(Carbon Dioxide Gas Recovery Test) The copper fumarate obtained in Production Example 3 of an organometallic complex was prepared in two states, a powder state and a state of being formed into granules using a binder.
Carbon dioxide gas is adsorbed under a pressure of 10 kg / cm 2 ,
Thereafter, when 5 ml of water was poured into the copper fumarate to which the carbon dioxide gas was adsorbed, the copper fumarate was immediately decomposed, and generation of carbon dioxide gas was recognized.

【0031】前述のフマル酸銅について吸着される炭酸
ガスの量を計算すると以下のようになる。 (i)フマル酸銅の粉末は、かさ密度は0.7g/cm
3 であり、これを容量100mlの容器に充填し、10
kg/cm2 の圧力下で炭酸ガスを吸着させると、錯体
1gについては88Nmlのガスが吸着されるから、1
00ml容器に充填される炭酸ガス量は以下のとおりで
ある。 錯体に吸着されるガス: 88×0.7×100=6200Nml 空隙に圧縮されて収納されるガス:10×100×0.65(空隙率) = 650Nml 従って、この容器に収容されるガスの総量は、 6200+650=6850Nml であり、空隙体積で換算すると、 6850/(100×0.65)=105(kg/cm
2 )の圧力による貯蔵に相当する。 (ii)前述のフマル酸銅を顆粒状に成形したものは、
顆粒としてのかさ密度は1.1g/cm3 、容器への充
填率は70%であり、同様に計算すると、 錯体に吸着されるガス: 88×1.1×100=9680Nml 空隙に圧縮されて収納されるガス:10×100×0.3= 300Nml 容器に収容されるガスの総量: 9980Nml 空隙体積で換算した圧力: 330kg/cm2 となり、ボンベに高圧で充填したものと同等以上のガス
を貯蔵しうることが明らかである。
Calculation of the amount of carbon dioxide adsorbed on the above-mentioned copper fumarate is as follows. (I) The powder of copper fumarate has a bulk density of 0.7 g / cm.
3 , which was filled into a 100 ml container,
When carbon dioxide gas is adsorbed under a pressure of kg / cm 2 , 88 Nml of gas is adsorbed for 1 g of the complex.
The amount of carbon dioxide gas filled in the 00 ml container is as follows. Gas adsorbed by the complex: 88 × 0.7 × 100 = 6200 Nml Gas compressed and stored in the void: 10 × 100 × 0.65 (porosity) = 650 Nml Therefore, the total amount of gas stored in this container Is 6200 + 650 = 6850 Nml, which is calculated as 6850 / (100 × 0.65) = 105 (kg / cm)
2 ) Equivalent to pressure storage. (Ii) The above-mentioned copper fumarate formed into granules is as follows:
The bulk density of the granules is 1.1 g / cm 3 , the filling rate in the container is 70%, and the gas adsorbed on the complex is calculated as follows: 88 × 1.1 × 100 = 9680 Nml Gas to be stored: 10 × 100 × 0.3 = 300 Nml Total amount of gas to be stored in the container: 9980 Nml Pressure converted to void volume: 330 kg / cm 2 . It is clear that it can be stored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】25℃における1,4−トランスシクロヘキサ
ンジカルボン酸銅の単位体積当たりの炭酸ガスの吸着等
温線を示したグラフ
FIG. 1 is a graph showing the adsorption isotherm of carbon dioxide gas per unit volume of copper 1,4-transcyclohexanedicarboxylate at 25 ° C.

【図2】25℃における1,4−トランスシクロヘキサ
ンジカルボン酸銅の単位重量当たりの炭酸ガスの吸着等
温線を示したグラフ
FIG. 2 is a graph showing an adsorption isotherm of carbon dioxide gas per unit weight of copper 1,4-transcyclohexanedicarboxylate at 25 ° C.

【図3】25℃における4,4’−ビフェニルジカルボ
ン酸銅及び活性炭M−30の単位体積当たりの炭酸ガス
の吸着等温線を示したグラフ
FIG. 3 is a graph showing the adsorption isotherm of carbon dioxide gas per unit volume of copper 4,4′-biphenyldicarboxylate and activated carbon M-30 at 25 ° C.

【図4】25℃における4,4’−ビフェニルジカルボ
ン酸銅の単位重量当たりの炭酸ガスの吸着等温線を示し
たグラフ
FIG. 4 is a graph showing the adsorption isotherm of carbon dioxide gas per unit weight of copper 4,4′-biphenyldicarboxylate at 25 ° C.

【図5】25℃におけるフマル酸銅の単位体積当たりの
炭酸ガスの吸着等温線を示したグラフ
FIG. 5 is a graph showing an adsorption isotherm of carbon dioxide gas per unit volume of copper fumarate at 25 ° C.

【図6】25℃におけるフマル酸銅の単位重量当たりの
炭酸ガスの吸着等温線を示したグラフ
FIG. 6 is a graph showing an adsorption isotherm of carbon dioxide gas per unit weight of copper fumarate at 25 ° C.

【図7】25℃におけるテレフタル酸銅の単位重量当た
りの炭酸ガスの吸着等温線を示したグラフ
FIG. 7 is a graph showing an adsorption isotherm of carbon dioxide gas per unit weight of copper terephthalate at 25 ° C.

【図8】25℃におけるテレフタル酸銅の単位重量当た
りの炭酸ガスの吸着等温線を示したグラフ
FIG. 8 is a graph showing an adsorption isotherm of carbon dioxide gas per unit weight of copper terephthalate at 25 ° C.

【図9】本発明の実施に使用しうる炭酸ガス貯蔵容器で
あって、高圧炭酸ガス発生装置としても使用可能な容器
のモデルを示した図
FIG. 9 is a diagram showing a model of a carbon dioxide gas storage container that can be used for carrying out the present invention, which can also be used as a high-pressure carbon dioxide gas generator.

【符号の説明】[Explanation of symbols]

1 容器本体 3 第1の区画 4 炭酸ガス貯蔵剤 6 第2の区画 11 隔壁部材 13 分解試薬 DESCRIPTION OF SYMBOLS 1 Container main body 3 1st section 4 Carbon dioxide storage agent 6 2nd section 11 Partition member 13 Decomposition reagent

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 1次元チャンネル構造を有し、難燃性ガ
スを吸着貯蔵しうる有機金属錯体を含む難燃性ガス貯蔵
剤。
1. A flame-retardant gas storage agent having an one-dimensional channel structure and containing an organometallic complex capable of adsorbing and storing a flame-retardant gas.
【請求項2】 前記1次元チャンネル構造を有する有機
金属錯体は、分子内の点対称位置に配置された2個のカ
ルボキシル基を有するジカルボン酸と金属イオンにより
形成される錯体である請求項1に記載の難燃性ガス貯蔵
剤。
2. The method according to claim 1, wherein the organometallic complex having a one-dimensional channel structure is a complex formed by a dicarboxylic acid having two carboxyl groups arranged at point symmetry positions in a molecule and a metal ion. A flame-retardant gas storage agent as described in the above.
【請求項3】 前記有機金属錯体は3〜20Åの細孔径
を有するものである請求項1に記載の難燃性ガス貯蔵
剤。
3. The flame-retardant gas storage agent according to claim 1, wherein the organometallic complex has a pore diameter of 3 to 20 °.
【請求項4】 難燃性ガスが炭酸ガスである請求項1、
2または3に記載の難燃性ガス貯蔵剤。
4. The method according to claim 1, wherein the flame-retardant gas is carbon dioxide.
4. The flame-retardant gas storage agent according to 2 or 3.
【請求項5】 難燃性ガスを加圧状態にて1次元チャン
ネル構造を有する有機金属錯体を含む難燃性ガス貯蔵剤
と接触させ、前記難燃性ガスを前記難燃性ガス貯蔵剤に
吸着することを特徴とする難燃性ガス貯蔵方法。
5. The flame-retardant gas is brought into contact with a flame-retardant gas storage agent containing an organometallic complex having a one-dimensional channel structure in a pressurized state, and the flame-retardant gas is converted into the flame-retardant gas storage agent. A method for storing a flame-retardant gas, which comprises adsorbing.
【請求項6】 吸着難燃性ガスが炭酸ガスである請求項
5に記載の難燃性ガス貯蔵方法。
6. The method for storing a flame-retardant gas according to claim 5, wherein the adsorbed flame-retardant gas is carbon dioxide.
【請求項7】 容器内に1次元チャンネル構造を有する
有機金属錯体を含む難燃性ガス貯蔵剤を収容した第1の
区画、及び前記有機金属錯体と反応し、分解する分解試
薬を収容した第2の区画を備え、第1の区画と第2の区
画は隔壁部材により分離されており、外部よりの操作に
より前記隔壁部材の分離作用を解除して前記難燃性ガス
貯蔵剤と前記分解試薬を接触させ、前記有機金属錯体を
分解することによって有機金属錯体に吸着貯蔵された難
燃性ガスを脱着させることにより高圧の難燃性ガスを発
生させることが可能な高圧難燃性ガス発生装置。
7. A first compartment containing a flame retardant gas storage agent containing an organometallic complex having a one-dimensional channel structure in a container, and a first compartment containing a decomposition reagent that reacts with and decomposes with the organometallic complex. And a first section and a second section are separated by a partition member, and the separating action of the partition member is released by an external operation to release the flame-retardant gas storage agent and the decomposition reagent. And a high-pressure flame-retardant gas generator capable of generating a high-pressure flame-retardant gas by desorbing the flame-retardant gas adsorbed and stored in the organometallic complex by decomposing the organometallic complex. .
【請求項8】 前記有機金属錯体と反応する第2の化学
物質が水、又は酸もしくはアルカリの水溶液である請求
項6記載の高圧難燃性ガス発生装置。
8. The high-pressure flame-retardant gas generator according to claim 6, wherein the second chemical substance that reacts with the organometallic complex is water or an aqueous solution of an acid or an alkali.
【請求項9】 吸着難燃性ガスが炭酸ガスである請求項
7または8に記載の高圧難燃性ガス発生装置。
9. The high-pressure flame-retardant gas generator according to claim 7, wherein the adsorbed flame-retardant gas is carbon dioxide.
JP8226218A 1996-08-28 1996-08-28 Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator Pending JPH1066865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8226218A JPH1066865A (en) 1996-08-28 1996-08-28 Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8226218A JPH1066865A (en) 1996-08-28 1996-08-28 Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004330879A Division JP4204535B2 (en) 2004-11-15 2004-11-15 High pressure carbon dioxide generator

Publications (1)

Publication Number Publication Date
JPH1066865A true JPH1066865A (en) 1998-03-10

Family

ID=16841753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8226218A Pending JPH1066865A (en) 1996-08-28 1996-08-28 Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator

Country Status (1)

Country Link
JP (1) JPH1066865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506782A (en) * 1998-03-16 2002-03-05 ハイネケン テクニカル サービシーズ ビー ブイ Device for dispensing liquid under pressure
EP1513849A1 (en) 2002-05-30 2005-03-16 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
JP2006297276A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP2006297278A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP2010513201A (en) * 2006-12-22 2010-04-30 イエフペ Purification by hydrogen adsorption with simultaneous generation of CO2 flow under pressure
JP2011064336A (en) * 2003-11-24 2011-03-31 Basf Se Method of adjusting, storing, and releasing gas using electrochemically produced crystalline, porous, organometallic skeleton material
CN104500972A (en) * 2014-12-15 2015-04-08 南车长江车辆有限公司 Low-temperature adsorbing agent device for cryogenic pressure container and production process of low-temperature adsorbing agent device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506782A (en) * 1998-03-16 2002-03-05 ハイネケン テクニカル サービシーズ ビー ブイ Device for dispensing liquid under pressure
EP1513849A1 (en) 2002-05-30 2005-03-16 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
EP1513849B1 (en) * 2002-05-30 2016-07-13 Basf Se Shaped bodies containing metal-organic frameworks
JP2011064336A (en) * 2003-11-24 2011-03-31 Basf Se Method of adjusting, storing, and releasing gas using electrochemically produced crystalline, porous, organometallic skeleton material
JP2006297276A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP2006297278A (en) * 2005-04-20 2006-11-02 Kuraray Co Ltd Gas absorbent, its manufacturing method and gas-absorbing method using it
JP4658668B2 (en) * 2005-04-20 2011-03-23 株式会社クラレ Gas absorbent, method for producing the same, and method for absorbing gas using the same
JP2010513201A (en) * 2006-12-22 2010-04-30 イエフペ Purification by hydrogen adsorption with simultaneous generation of CO2 flow under pressure
CN104500972A (en) * 2014-12-15 2015-04-08 南车长江车辆有限公司 Low-temperature adsorbing agent device for cryogenic pressure container and production process of low-temperature adsorbing agent device

Similar Documents

Publication Publication Date Title
Kang et al. Emerging porous materials and their composites for NH3 gas removal
KR100856445B1 (en) Method for storing, absorbing and emitting gases using novel framework materials
Nemiwal et al. Metal organic frameworks as water harvester from air: Hydrolytic stability and adsorption isotherms
Li et al. Advances of metal‐organic frameworks in energy and environmental applications
Gandara-Loe et al. Understanding the opportunities of metal–organic frameworks (MOFs) for CO 2 capture and gas-phase CO 2 conversion processes: a comprehensive overview
US8372369B2 (en) Enhancing hydrogen spillover and storage
Cha et al. Unique design of superior metal-organic framework for removal of toxic chemicals in humid environment via direct functionalization of the metal nodes
Huang et al. Covalent organic framework-based porous materials for harmful gas purification
JP3566655B2 (en) Manufacturing method of gas adsorbent
Shang et al. CO2 capture from wet flue gas using transition metal inserted porphyrin-based metal-organic frameworks as efficient adsorbents
JPH1066865A (en) Flame-retardant gas storing agent, method for storing flame-retardant gas, and high pressure flame-retardant gas generator
JP3746321B2 (en) Gas storage organometallic complex, method for producing the same, gas storage device, and automobile equipped with gas storage device
JP4493824B2 (en) Purification method and cleaning agent for harmful gas
Child Molecular interactions in clathrates: a comparison with other condensed phases
Lee et al. Highly efficient bromine capture and storage using N-containing porous organic cages
EP0986431A1 (en) Method of separating and selectively removing hydrogen contaminant from hydrogen-containing process streams and compositions useful therefor
Chong et al. A Review of HKUST-1 Metal-Organic Frameworks in Gas Adsorption
Yin et al. Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption
US20110126708A1 (en) Gas Adsorbents Based on Microporous Coordination Polymers
JP2001340754A (en) Gaseous oxygen absorbing agent and method of producing the same
Motkuri et al. Metal organic frameworks-synthesis and applications
EP3684502A1 (en) Chromium-based metal-organic frameworks for water adsorption-related applications and gas storage
JP6242136B2 (en) Porous metal complex composition
Erkartal et al. Synthesis of benzotriazole functionalized ZIF-8 by postsynthetic modification for enhanced CH4 and CO2 uptakes
JP4204535B2 (en) High pressure carbon dioxide generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041209