JPH1064709A - Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder - Google Patents

Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder

Info

Publication number
JPH1064709A
JPH1064709A JP8231419A JP23141996A JPH1064709A JP H1064709 A JPH1064709 A JP H1064709A JP 8231419 A JP8231419 A JP 8231419A JP 23141996 A JP23141996 A JP 23141996A JP H1064709 A JPH1064709 A JP H1064709A
Authority
JP
Japan
Prior art keywords
mnbi
precursor
magnetic
magnetic powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8231419A
Other languages
Japanese (ja)
Inventor
Toshio Kanzaki
壽夫 神崎
Shinichi Kitahata
慎一 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8231419A priority Critical patent/JPH1064709A/en
Publication of JPH1064709A publication Critical patent/JPH1064709A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Abstract

PROBLEM TO BE SOLVED: To produce a product superior in magnetic characteristics in a short time at a high productivity by the mechanical alloying of Mn with Bi to obtain an MnBi precursor, heating to crystallize it and pulverizing it. SOLUTION: The method comprises weighing Mn and Bi, degassing them in a vacuum planetary ball mill, substituting them with Ar gas to mechanically react them, putting in a resultant product in an inert tank, classifying it to obtain an MnBi precursor, heating the obtd. precursor in an N gas flow, using an electric furnace, cooling it to room temp., wet pulverizing the heated precursor in toluene, using the planetary ball mill, heating it in an N gas flow contg. O after removing the toluene, and holding it at room temp. to form an oxide film on the surface, thus obtaining a stabilized MnBi magnetic powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、室温で容易に消
去されることのない情報記録用携帯カ−ドに用いるMn
Bi磁性粉末の製造方法およびこのMnBi磁性粉末を
用いた磁気シ−トに関し、さらに詳しくは、磁気特性に
優れた前記のMnBi磁性粉末を短時間で生産性よく製
造する方法と、このMnBi磁性粉末を使用したS*が
0.6以上の記録特性に優れた磁気シ−トに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Mn used for an information recording portable card which is not easily erased at room temperature.
More specifically, the present invention relates to a method for producing a Bi magnetic powder and a magnetic sheet using the MnBi magnetic powder, and more particularly to a method for producing the MnBi magnetic powder having excellent magnetic properties in a short time with high productivity. S * using
The present invention relates to a magnetic sheet having excellent recording characteristics of 0.6 or more.

【0002】[0002]

【従来の技術】磁気記録媒体は、記録再生が容易である
ためにビデオテ−プ、フロッピ−ディスク、クレジット
カ−ド、プリペイドカ−ド等として広く普及している。
ところが、記録再生が容易であるため、クレジットカ−
ド等では、誤って消去されたり、故意に書き換えられる
等の事故や犯罪が多発している。
2. Description of the Related Art Magnetic recording media are widely used as video tapes, floppy disks, credit cards, prepaid cards, and the like because of their easy recording and reproduction.
However, since recording and reproduction are easy, the credit card
Accidents and crimes such as accidental erasure or intentional rewriting have occurred frequently in Japan.

【0003】そこで、これを防止するため、一旦記録す
ると室温では容易に消去されることがないという特徴を
有するMnBi磁性粉末を用いた磁気記録媒体が提案さ
れている。(特公昭57−38962号、特公昭54−
33725号、特公昭52−46801号、特公昭59
−31764号、特公昭54−19244号、特公昭5
7−38963号)
In order to prevent this, a magnetic recording medium using MnBi magnetic powder has been proposed which has the characteristic that once recorded, it is not easily erased at room temperature. (JP-B-57-38962, JP-B-54-
No. 33725, JP-B-52-46801, JP-B-59
No. 31764, Japanese Patent Publication No. 54-19244, Japanese Patent Publication No. 5
7-38963)

【0004】[0004]

【発明が解決しようとする課題】ところが、この種のM
nBi磁性粉末は、従来、原料となるMnとBiをそれ
ぞれ非酸化性雰囲気の中で100μm程度以下に予め粉
砕し、これを所定量秤量して混合成型をし、さらにこの
成型体を非酸化性雰囲気の中で10日ないし20日間加
熱するという粉末冶金的方法によりMnBiインゴット
を作製した後、湿式粉砕を行って製造されているため、
製造に長時間を要し生産性に劣る。また、成型のときの
形態や圧力分布によってMnとBiの組成ずれを発生
し、磁気特性の低下を引き起こす可能性がある上、粉砕
前の粒子サイズが大きいこともあって、粒度分布が悪
く、磁気シ−トにした際のS*が悪くて記録特性に劣
る。
However, this kind of M
Conventionally, nBi magnetic powder is prepared by previously pulverizing Mn and Bi as raw materials to about 100 μm or less in a non-oxidizing atmosphere, weighing a predetermined amount thereof, mixing and molding, and further molding the molded body with a non-oxidizing material. Since the MnBi ingot is manufactured by a powder metallurgy method of heating for 10 to 20 days in an atmosphere, and then manufactured by wet pulverization,
It takes a long time to manufacture and is inferior in productivity. Further, due to the form and pressure distribution during molding, a composition deviation between Mn and Bi may occur, which may cause a decrease in magnetic properties.In addition, since the particle size before pulverization is large, the particle size distribution is poor, When a magnetic sheet is used, S * is poor and recording characteristics are inferior.

【0005】この発明は、かかる現状に鑑み、将来的に
MnBi磁性粉末を用いた磁気記録媒体を普及させるた
めには、プロセスの抜本的改良による生産性向上ととも
にMnBi磁性粉末の品質のさらなる向上が不可欠と考
えてなされたもので、磁気特性に優れたMnBi磁性粉
末を短時間で生産性よく製造する方法を提供し、このM
nBi磁性粉末を使用して、S*が0.6以上の記録特性
に優れた磁気シ−トを得ようとするものである。
[0005] In view of the present situation, the present invention requires that the quality of MnBi magnetic powder be further improved in addition to the improvement of productivity by drastic improvement of the process, in order to spread magnetic recording media using MnBi magnetic powder in the future. A method for producing MnBi magnetic powder having excellent magnetic properties in a short period of time and with high productivity was provided.
An object of the present invention is to obtain a magnetic sheet having an S * of 0.6 or more and excellent in recording characteristics using nBi magnetic powder.

【0006】[0006]

【課題を解決するための手段】この発明のMnBi磁性
粉末は、MnとBiをメカニカルアロイング法により反
応させてMnとBiが均一組成のMnBi前駆体を得、
このMnBi前駆体を加熱して結晶化させた後、微粉砕
して製造される。
The MnBi magnetic powder of the present invention is obtained by reacting Mn and Bi by a mechanical alloying method to obtain a MnBi precursor having a uniform composition of Mn and Bi.
The MnBi precursor is heated and crystallized, and then finely pulverized to be manufactured.

【0007】また、この発明の磁気シ−トは、六方晶M
nBi磁性粉末を、磁気的に配列させて含有させたS*
が0.6以上の磁性層を基体上に設けて構成されている。
Further, the magnetic sheet of the present invention has a hexagonal M
S * containing nBi magnetic powder magnetically arranged
Is provided on a substrate with a magnetic layer of 0.6 or more.

【0008】[0008]

【発明の実施の形態】この発明のMnBi磁性粉末は、
原料となるMnとBiをメカニカルアロイング法(固相
反応)により反応させてMnとBiが均一組成のMnB
i前駆体を得、このMnBi前駆体を加熱により結晶化
させた後、これを微粉砕して製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The MnBi magnetic powder of the present invention comprises:
Mn and Bi as raw materials are reacted by a mechanical alloying method (solid-phase reaction) to obtain MnB having a uniform composition of Mn and Bi.
An i-precursor is obtained, and the MnBi precursor is crystallized by heating and then pulverized.

【0009】しかして、従来のように、MnとBiを予
め粉砕し、次いでプレス機により成型した後、これを加
熱してMnBiインゴットを作製し、これを粉砕して製
造されるMnBi磁性粉末とは異なり、出発原料がMn
とBiをメカニカルアロイング法(固相反応)により反
応させて得られたMnとBiが均一組成のMnBi前駆
体であるため、磁気特性に優れたMnBi磁性粉末が短
時間で生産性よく製造され、このMnBi磁性粉末を使
用すると、S*が0.6以上の記録特性に優れた磁気シ−
トが得られる。
However, as in the prior art, Mn and Bi are preliminarily pulverized, then molded by a press machine, and then heated to produce an MnBi ingot. Is different and the starting material is Mn
Mn and Bi obtained by reacting Ni and Bi by a mechanical alloying method (solid phase reaction) are MnBi precursors having a uniform composition, so that MnBi magnetic powder having excellent magnetic properties can be produced in a short time with high productivity. When this MnBi magnetic powder is used, a magnetic screen having an excellent recording characteristic of S * of 0.6 or more is obtained.
Is obtained.

【0010】以下、この発明のMnBi磁性粉末の製造
方法を、MnとBiをメカニカルアロイング法(固相反
応)により反応させてMnとBiが均一組成のMnBi
前駆体を得る工程と、このMnBi前駆体を加熱により
結晶化させる工程と、この結晶化させたMnBi前駆体
を微粉砕する工程に分け、工程順に従って説明する。
In the following, the method for producing MnBi magnetic powder of the present invention comprises reacting Mn and Bi by a mechanical alloying method (solid phase reaction) to obtain MnBi having a uniform composition.
The steps of obtaining the precursor, the step of crystallizing the MnBi precursor by heating, and the step of pulverizing the crystallized MnBi precursor will be described in the order of the steps.

【0011】<MnとBiが均一組成のMnBi前駆体
を得る工程>原料として用意したMnとBiとを秤量
し、ボ−ルミル等の乾式の粉砕機に入れ、非酸化性雰囲
気中で機械的に反応させて行われ、反応時間は装置の種
類、付加エネルギ−により異なるが、最大遠心力加速度
150Gを発生することができる遊星ボ−ルミルでは、
遠心力加速度150Gで1時間でよく、このメカニカル
アロイング反応によりMnとBiが均一組成のMnBi
前駆体が得られる。
<Step of Obtaining MnBi Precursor Having Uniform Composition of Mn and Bi> Mn and Bi prepared as raw materials are weighed, placed in a dry pulverizer such as a ball mill, and subjected to mechanical treatment in a non-oxidizing atmosphere. Although the reaction time varies depending on the type of the apparatus and the added energy, in a planetary ball mill capable of generating a maximum centrifugal acceleration of 150 G,
A centrifugal acceleration of 150 G is sufficient for 1 hour, and MnBi having a uniform composition of Mn and Bi by this mechanical alloying reaction.
A precursor is obtained.

【0012】<MnBi前駆体を加熱により結晶化させ
る工程>前記のMnBi前駆体を得た段階で、すでにあ
る程度の反応が起こっているため、260℃ないし34
0℃で5分間ないし10分間加熱して行われる。この加
熱で結晶化されたMnBi前駆体の結晶子サイズは70
0Å〜2000Åの範囲内であることが好ましい。
<Step of Crystallizing MnBi Precursor by Heating> At the stage when the above-mentioned MnBi precursor is obtained, a certain degree of reaction has already taken place.
Heating is performed at 0 ° C. for 5 to 10 minutes. The crystallite size of the MnBi precursor crystallized by this heating is 70
It is preferable that the angle be in the range of 0 ° to 2000 °.

【0013】このような加熱を行う場合、従来の粉末冶
金法による場合は、加熱温度を高くしすぎてBiが溶融
するとそれ以上反応が進行しにくくなるため、加熱温度
としてはBiの融点直下の温度である265℃から27
0℃が好ましく、Biの融点以上に加熱しないように厳
密にコントロ−ルする必要があるが、前記のMnBi前
駆体は、すでにMnとBiが均一に混じっているため反
応が即座に終了する。従って、この場合、Biの融点以
上に加熱されても悪影響を及ぼさないという利点を有す
る。
In the case of performing such heating, in the case of the conventional powder metallurgy method, if the heating temperature is too high and Bi is melted, the reaction hardly proceeds further, so that the heating temperature is just below the melting point of Bi. Temperature from 265 ° C to 27
The temperature is preferably 0 ° C., and it is necessary to strictly control the temperature so as not to exceed the melting point of Bi. However, in the above-mentioned MnBi precursor, the reaction is immediately terminated because Mn and Bi are already uniformly mixed. Therefore, in this case, there is an advantage that even if heated to a temperature higher than the melting point of Bi, there is no adverse effect.

【0014】<結晶化させたMnBi前駆体を微粉砕す
る工程>結晶化の終わったMnBi前駆体は、次いで、
ボ−ルミル、遊星ボ−ルミル等を用いた湿式粉砕法、あ
るいはジェットミル等を用いた乾式粉砕法によりμmオ
−ダ−の微粒子に微粉砕される。
<Step of Finely Pulverizing the Crystallized MnBi Precursor> The crystallized MnBi precursor is then
The particles are finely pulverized into fine particles of the order of μm by a wet pulverization method using a ball mill, a planetary ball mill or the like, or a dry pulverization method using a jet mill or the like.

【0015】ここで、粉末冶金法によって得たMnBi
インゴットを粉砕する従来の方法では、インゴットのサ
イズが大きく、また結晶性が高くないため、極めて高い
エネルギ−を加えて粉砕する必要があるが、このMnB
i前駆体を微粉砕する方法では、すでに粒子サイズが数
μmから100μm程度と小さいため、粉砕の程度は粉
末冶金法による場合に比べて弱くても充分であり、その
結果、欠陥が少なく、均一なMnBi磁性粉末が得られ
る。
Here, MnBi obtained by powder metallurgy is used.
In the conventional method of pulverizing an ingot, since the size of the ingot is large and the crystallinity is not high, it is necessary to pulverize the ingot by applying extremely high energy.
In the method of pulverizing the i-precursor, since the particle size is already as small as about several μm to about 100 μm, the degree of pulverization is sufficient even if weaker than in the case of the powder metallurgy method. MnBi magnetic powder is obtained.

【0016】粉砕手段としては、ボ−ルミル、遊星ボ−
ルミル等を用いた湿式粉砕法、あるいはジェットミル等
を用いた乾式粉砕法など従来より汎用されている手段を
使用することができ、湿式粉砕法による場合の液体とし
てはトルエン等の水を含まない溶剤が用いられる。ま
た、乾式粉砕法による場合は、不活性ガス雰囲気にして
行われる。
Ball mills, planetary balls, etc.
A conventional method such as a wet milling method using a dry mill or a dry milling method using a jet mill or the like can be used, and the liquid in the case of the wet milling method does not include water such as toluene. A solvent is used. In the case of the dry pulverization method, the drying is performed in an inert gas atmosphere.

【0017】粉砕後の平均粒子サイズは0.05〜3μm
になるように粉砕条件によりコントロ−ルするのが好ま
しく、粒子サイズが0.05μmより小さいと最終的に得
られるMnBi磁性粉末が充分な磁気特性を示さなくな
り、3μmを超えると最終的に得られるMnBi磁性粉
末を用いた磁気シ−トの磁性層の表面平滑性が低下し、
充分な記録が行えない。
The average particle size after pulverization is 0.05 to 3 μm.
It is preferable to control the milling conditions so that the particle size is smaller than 0.05 μm, the finally obtained MnBi magnetic powder does not show sufficient magnetic properties, and the particle size is more than 3 μm. The surface smoothness of the magnetic layer of the magnetic sheet using the MnBi magnetic powder is reduced,
Not enough recording.

【0018】以上の工程により、150時間以内で、飽
和磁化が20emu/g以上あり、保磁力が3000〜
15000エルステッドのMnBi磁性粉末が得られ
る。
According to the above steps, the saturation magnetization is 20 emu / g or more and the coercive force is 3000 to
15,000 Oersted of MnBi magnetic powder is obtained.

【0019】なお、MnBi前駆体を加熱により結晶化
させる工程と、結晶化させたMnBi前駆体を微粉砕す
る工程の順序は逆であってもよく、MnとBiがほぼ均
一に混ざり合ったMnBi前駆体をまず微粉砕し、次に
これを加熱させることにより結晶化させてもよい。
The order of the step of crystallizing the MnBi precursor by heating and the step of finely pulverizing the crystallized MnBi precursor may be reversed, and MnBi in which Mn and Bi are almost uniformly mixed. The precursor may be first pulverized and then crystallized by heating.

【0020】このような順序でMnBi前駆体をまず微
粉砕し、次にこれを加熱させて結晶化させると、粉砕に
より生じたいびつな形状や結晶中の歪みが加熱によりあ
る程度除去されるため、粒子の機械的性質、塗料特性、
磁気的性質がより好ましく改善される場合があり、この
ような効果を発現させるためには、MnとBiとがより
均一に混合した組成のMnBi前駆体としておく必要が
ある。
When the MnBi precursor is first pulverized in this order, and then heated to crystallize, the irregular shape caused by the pulverization and the distortion in the crystal are removed to some extent by heating. Mechanical properties of the particles, paint properties,
In some cases, the magnetic properties are more preferably improved, and in order to exert such an effect, it is necessary to prepare a MnBi precursor having a composition in which Mn and Bi are more uniformly mixed.

【0021】また、粉砕後は、酸素を微量含む不活性ガ
ス雰囲気中で、加熱する等により、表面に安定な酸化被
膜を形成することが好ましい。
After the pulverization, it is preferable to form a stable oxide film on the surface by heating or the like in an inert gas atmosphere containing a small amount of oxygen.

【0022】このようなMnBi合金磁性粉末を用いた
磁気シ−トは、常法に準じて作製され、たとえば、Mn
Bi磁性粉末を、結合剤樹脂、有機溶剤などとともに混
合分散して磁性塗料を調製し、これを基体上に塗布、乾
燥して作製される。なお、磁性塗料を基体上に塗布した
後、磁性層面に対して平行に磁場を印加して磁場配向を
行うのが好ましい。
A magnetic sheet using such MnBi alloy magnetic powder is produced according to a conventional method.
A magnetic coating material is prepared by mixing and dispersing Bi magnetic powder with a binder resin, an organic solvent, and the like, and the magnetic coating material is applied to a substrate and dried to prepare a magnetic coating material. It is preferable that after applying the magnetic paint on the substrate, a magnetic field is applied in parallel to the surface of the magnetic layer to perform magnetic field orientation.

【0023】ここで、結合剤樹脂としては、一般に磁気
記録媒体に用いられているものがいずれも使用され、た
とえば、塩化ビニル−酢酸ビニル系共重合体、ポリビニ
ルブチラ−ル樹脂、繊維素系樹脂、フッ素系樹脂、ポリ
ウレタン系樹脂、イソシアネ−ト化合物、放射線硬化型
樹脂などが用いられる。
Here, as the binder resin, any resin generally used for magnetic recording media is used, for example, a vinyl chloride-vinyl acetate copolymer, a polyvinyl butyral resin, a cellulose resin Resins, fluorine resins, polyurethane resins, isocyanate compounds, radiation-curable resins and the like are used.

【0024】また、有機溶剤としては、シクロヘキサノ
ン、メチルエチルケトン、メチルイソブチルケトン、酢
酸エチル、ベンゼン、トルエン、キシレン、テトラヒド
ロフラン、ジオキサンなど、使用する結合剤樹脂を溶解
するのに適した溶剤が、特に制限されることなく単独ま
たは二種以上混合して使用される。
As the organic solvent, solvents suitable for dissolving the binder resin to be used, such as cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, benzene, toluene, xylene, tetrahydrofuran and dioxane, are particularly limited. Used alone or in combination of two or more.

【0025】なお、磁性塗料中には、通常使用されてい
る各種添加剤、たとえば、潤滑剤、研磨剤、帯電防止剤
などを任意に添加使用してもよい。
The magnetic coating material may optionally contain various commonly used additives such as a lubricant, an abrasive, an antistatic agent and the like.

【0026】[0026]

【実施例】次に、この発明の実施例について説明する。 実施例1 Mn(フルウチ化学社製;純度99.9%)、Bi(フル
ウチ化学社製;純度99.9%)を用いて、Mnを100
g、Biを380g秤量し、これを遊星ボ−ルミル(栗
本鉄工所社製)に入れ真空脱気後Arガスにて置換し、
遠心加速度150Gにて1時間機械的に反応させた。そ
の後、不活性タンク中に取り出し、分級することにより
サイズが100μm以下のMnBi前駆体を得た。
Next, an embodiment of the present invention will be described. Example 1 Using Mn (manufactured by Furuuchi Chemical Co .; purity: 99.9%) and Bi (manufactured by Furuuchi Chemical Co .; purity: 99.9%), Mn was reduced to 100.
g and Bi were weighed in an amount of 380 g, placed in a planetary ball mill (manufactured by Kurimoto Iron Works), vacuum-degassed, and replaced with Ar gas.
A mechanical reaction was performed at a centrifugal acceleration of 150 G for 1 hour. Then, it was taken out into an inert tank and classified to obtain a MnBi precursor having a size of 100 μm or less.

【0027】次に、得られたMnBi前駆体を、雰囲気
電気炉を用いて窒素ガス気流中300℃で2時間加熱
後、室温にまで冷却して取り出した。
Next, the obtained MnBi precursor was heated in a nitrogen gas stream at 300 ° C. for 2 hours using an atmosphere electric furnace, and then cooled to room temperature and taken out.

【0028】次いで、加熱の終わったMnBi前駆体を
遊星ボ−ルミルを用いてトルエン中で、30Gで2時間
湿式粉砕した。
Then, the heated MnBi precursor was wet-milled at 30 G for 2 hours in toluene using a planetary ball mill.

【0029】粉砕後、トルエンを除去し1000ppm
の酸素を含む窒素気流中で、80℃で2時間加熱し、さ
らに室温に12時間保持し、表面に酸化被膜を形成して
安定化した。このようにして得られたMnBi磁性粉末
の平均粒径は約2μmであり、VSMを用いて測定した
磁気特性は、保磁力が9400エルステッド、飽和磁化
が44emu/g、最大印加磁界は16Kエルステッド
であった。
After pulverization, toluene was removed and 1000 ppm
Was heated at 80 ° C. for 2 hours in a nitrogen gas stream containing oxygen and kept at room temperature for 12 hours to form an oxide film on the surface and stabilized. The MnBi magnetic powder thus obtained has an average particle size of about 2 μm. The magnetic properties measured using a VSM are as follows: a coercive force of 9400 Oersted, a saturation magnetization of 44 emu / g, and a maximum applied magnetic field of 16 K Oersted. there were.

【0030】以上のようにして得られたMnBi磁性粉
末を使用し、 MnBi合金磁性粉末 100重量部 ポリウレタン樹脂 20 〃 (大日本インキ化学工業社製;T−5250) シクロヘキサノン 115 〃 トルエン 115 〃 の組成物をサンドグラインダ−ミルで充分に混練分散さ
せた後、多官能性ポリイソシアネ−ト化合物(日本ポリ
ウレタン工業社製;コロネ−トL)を5重量部加えて磁
性塗料を調製した。この磁性塗料を厚さ75μmのポリ
エステルフィルム上に、乾燥後の厚さが20μmとなる
ように塗布し、10kエルステッドの長手方向の配向磁
場を印加しながら乾燥させて磁性層を形成し、磁気シ−
トを作製した。
Using the MnBi magnetic powder obtained as described above, MnBi alloy magnetic powder 100 parts by weight Polyurethane resin 20〃 (manufactured by Dainippon Ink and Chemicals, Inc .; T-5250) Composition of cyclohexanone 115〃toluene 115〃 After sufficiently kneading and dispersing the product with a sand grinder mill, 5 parts by weight of a polyfunctional polyisocyanate compound (manufactured by Nippon Polyurethane Industry Co., Ltd .; Colonate L) was added to prepare a magnetic paint. This magnetic paint is applied on a 75 μm-thick polyester film so that the thickness after drying becomes 20 μm, and dried while applying a longitudinal orientation magnetic field of 10 kOersted to form a magnetic layer. −
Was made.

【0031】実施例2 実施例1におけるMnBi前駆体の調製において、分級
することにより300μmサイズのMnBi前駆体を得
た以外は、実施例1と同様にしてMnBi前駆体を得、
これを原料として使用し、実施例1と同様にしてMnB
i磁性粉末を製造し、磁気シ−トを作製した。
Example 2 In the preparation of the MnBi precursor in Example 1, an MnBi precursor was obtained in the same manner as in Example 1, except that a MnBi precursor having a size of 300 μm was obtained by classification.
Using this as a raw material, MnB was used in the same manner as in Example 1.
An i-magnetic powder was produced to produce a magnetic sheet.

【0032】実施例3 実施例1におけるMnBi前駆体の調製において、遠心
加速度150Gにて1時間機械的に反応させる代わり
に、遠心加速度150Gにて2時間機械的に反応させた
以外は、実施例1と同様にしてMnBi前駆体を得、こ
れを原料として使用し、実施例1と同様にして、MnB
i磁性粉末を製造し、磁気シ−トを作製した。
Example 3 In the preparation of the MnBi precursor in Example 1, the mechanical reaction was performed at a centrifugal acceleration of 150 G for 2 hours instead of the mechanical reaction at a centrifugal acceleration of 150 G for 1 hour. MnBi precursor was obtained in the same manner as in Example 1, and this was used as a raw material.
An i-magnetic powder was produced to produce a magnetic sheet.

【0033】実施例4 実施例1におけるMnBi前駆体の調製において、遠心
加速度150Gにて1時間機械的に反応させる代わり
に、遠心加速度100Gにて2時間機械的に反応させた
以外は、実施例1と同様にしてMnBi前駆体を得、こ
れを原料として使用し、実施例1と同様にして、MnB
i磁性粉末を製造し、磁気シ−トを作製した。
Example 4 In the preparation of the MnBi precursor in Example 1, the mechanical reaction was performed at a centrifugal acceleration of 100 G for 2 hours instead of the mechanical reaction at a centrifugal acceleration of 150 G for 1 hour. MnBi precursor was obtained in the same manner as in Example 1, and this was used as a raw material.
An i-magnetic powder was produced to produce a magnetic sheet.

【0034】比較例1 Bi(フルウチ化学社製;純度99.9%)、Mn(フル
ウチ化学社製;純度99.9%)を乳鉢を用いて粉砕し、
100メッシュのふるい掛けをした後、Mnを100
g、Biを380g秤量し、乳鉢を用いて充分に混合し
た。
Comparative Example 1 Bi (manufactured by Furuuchi Chemical Co .; purity: 99.9%) and Mn (manufactured by Furuuchi Chemical Co .; purity: 99.9%) were ground using a mortar.
After sieving 100 mesh, Mn was 100
g and Bi were weighed in an amount of 380 g and sufficiently mixed using a mortar.

【0035】次に、これを加圧プレス機を用いて3t/
cm2 の圧力で直径×長さが6mm×6mmの円柱状に
成型し、この成型体をパイレックスガラス管に真空封入
し、電気炉中にて265℃で10日間熱処理して、Mn
Biインゴットを作製した。
Next, this was subjected to 3 t /
It was molded into a cylinder having a diameter of 6 mm x 6 mm in diameter at a pressure of 2 cm2, and the molded body was vacuum-sealed in a Pyrex glass tube and heat-treated at 265 ° C for 10 days in an electric furnace to obtain Mn.
A Bi ingot was produced.

【0036】次いで、得られたMnBiインゴットをグ
ロ−ボックスを使用し、不活性雰囲気中で乳鉢を用いて
粗粉砕し、さらに、遊星ボ−ルミルを用いてトルエン中
にて、200rpmで2時間粉砕した後、実施例1と同
様に気相酸化による安定化処理を施した。このようにし
て得られたMnBi磁性粉末の平均粒径は約2μmであ
り、VSMを用いて測定した磁気特性は、保磁力が85
00エルステッド、飽和磁化が34emu/g、最大印
加磁界は16Kエルステッドであった。
Next, the obtained MnBi ingot was coarsely pulverized using a mortar in an inert atmosphere using a glove box, and further pulverized in toluene using a planetary ball mill at 200 rpm for 2 hours. After that, a stabilization treatment by vapor phase oxidation was performed in the same manner as in Example 1. The average particle size of the MnBi magnetic powder thus obtained is about 2 μm, and the magnetic characteristics measured using a VSM indicate that the coercive force is 85 μm.
00 Oersted, the saturation magnetization was 34 emu / g, and the maximum applied magnetic field was 16 K Oersted.

【0037】このようにして得られたMnBi磁性粉末
を使用し、実施例1と同様にして磁気シ−トを作製し
た。
Using the MnBi magnetic powder thus obtained, a magnetic sheet was produced in the same manner as in Example 1.

【0038】比較例2 比較例1において、100メッシュのふるい掛けをした
後のMnとBiを混合し、これをそのままパイレックス
ガラス管に真空封入した以外は、比較例1と同様にして
MnBiインゴットを作製し、MnBi磁性粉末を得
た。また、このようにして得られたMnBi磁性粉末を
使用し、実施例1と同様にして磁気シ−トを作製した。
Comparative Example 2 A MnBi ingot was prepared in the same manner as in Comparative Example 1 except that Mn and Bi after sieving with 100 mesh were mixed and the mixture was directly vacuum-sealed in a Pyrex glass tube. It produced and obtained MnBi magnetic powder. Using the MnBi magnetic powder thus obtained, a magnetic sheet was produced in the same manner as in Example 1.

【0039】各実施例で得られたMnBi前駆体の結晶
子サイズを、X線回析を行ってシェラ−の式から求め
た。また、各実施例および比較例で得られたMnBiの
加熱後の飽和磁化、微粉砕後の飽和磁化、微粉砕後の保
磁力および製造時間を測定した。さらに、各実施例およ
び比較例で得られた磁気シ−トについて、S*を従来の
方法にて測定した。下記表1はその結果である。
The crystallite size of the MnBi precursor obtained in each of the examples was determined by X-ray diffraction using the Scherrer equation. Further, the saturation magnetization after heating, the saturation magnetization after fine pulverization, the coercive force after fine pulverization, and the production time of the MnBi obtained in each of the examples and comparative examples were measured. Further, S * was measured by a conventional method for the magnetic sheets obtained in each of Examples and Comparative Examples. Table 1 below shows the results.

【0040】 [0040]

【0041】[0041]

【発明の効果】上記表1から明らかなように、この発明
のMnBi磁性粉末の製造方法(実施例1〜4)では、
従来のMnBi磁性粉末の製造方法(比較例1〜2)に
比べて、製造時間がはるかに短く、また得られたMnB
i磁性粉末の飽和磁化および保磁力が高く、このことか
らこの発明の製造方法によれば、短時間で生産性よく磁
気特性に優れたMnBi磁性粉末が得られることがわか
る。
As is clear from the above Table 1, in the method for producing MnBi magnetic powder of the present invention (Examples 1 to 4),
The production time is much shorter than the conventional method for producing MnBi magnetic powder (Comparative Examples 1 and 2), and the obtained MnBi
The saturation magnetization and the coercive force of the i-magnetic powder are high, which indicates that the production method of the present invention can provide a MnBi magnetic powder excellent in magnetic properties with good productivity in a short time.

【0042】また、この発明の製造方法で得られたMn
Bi磁性粉末を用いた磁気シ−ト(実施例1〜4)は、
従来の製造方法で得られたMnBi磁性粉末を用いた磁
気シ−ト(比較例1〜2)に比べてS*が0.6以上で高
く、このことからこの発明の製造方法で得られたMnB
i磁性粉末を用いた磁気シ−トは、S*が0.6以上で記
録特性に優れていることがわかる。
The Mn obtained by the production method of the present invention
The magnetic sheets using Bi magnetic powder (Examples 1 to 4)
Compared with the magnetic sheet using the MnBi magnetic powder obtained by the conventional manufacturing method (Comparative Examples 1 and 2), S * was 0.6 or higher, which was high by the manufacturing method of the present invention. MnB
It can be seen that the magnetic sheet using the i-magnetic powder has excellent recording characteristics when S * is 0.6 or more.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 MnとBiをメカニカルアロイング法に
より反応させてMnとBiが均一組成のMnBi前駆体
を得、このMnBi前駆体を加熱して結晶化させた後、
微粉砕して六方晶MnBi磁性粉末とすることを特徴と
するMnBi磁性粉末の製造方法。
1. Mn and Bi are reacted by a mechanical alloying method to obtain a MnBi precursor having a uniform composition of Mn and Bi, and the MnBi precursor is heated and crystallized.
A method for producing MnBi magnetic powder, which is pulverized to obtain hexagonal MnBi magnetic powder.
【請求項2】 MnBi前駆体がMnとBiを主成分と
する粉末状の合金である請求項1記載のMnBi磁性粉
末の製造方法。
2. The method for producing MnBi magnetic powder according to claim 1, wherein the MnBi precursor is a powdery alloy containing Mn and Bi as main components.
【請求項3】 MnとBiを主成分とする粉末状の合金
の結晶子サイズが700Å以上2000Å以下である請
求項2記載のMnBi磁性粉末の製造方法。
3. The method for producing MnBi magnetic powder according to claim 2, wherein the crystallite size of the powdery alloy containing Mn and Bi as main components is 700 ° or more and 2000 ° or less.
【請求項4】 MnBi磁性粉末の製造時間が150時
間以内である請求項1記載のMnBi磁性粉末の製造方
法。
4. The method for producing a MnBi magnetic powder according to claim 1, wherein the production time of the MnBi magnetic powder is 150 hours or less.
【請求項5】 基体上に設けられた磁性層中に、六方晶
MnBi磁性粉末を磁気的に配列させて含有させたS*
が0.6以上の磁気シ−ト。
5. An S * in which hexagonal MnBi magnetic powder is magnetically arranged and contained in a magnetic layer provided on a substrate.
Is a magnetic sheet of 0.6 or more.
JP8231419A 1996-08-12 1996-08-12 Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder Withdrawn JPH1064709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8231419A JPH1064709A (en) 1996-08-12 1996-08-12 Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8231419A JPH1064709A (en) 1996-08-12 1996-08-12 Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder

Publications (1)

Publication Number Publication Date
JPH1064709A true JPH1064709A (en) 1998-03-06

Family

ID=16923298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8231419A Withdrawn JPH1064709A (en) 1996-08-12 1996-08-12 Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder

Country Status (1)

Country Link
JP (1) JPH1064709A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615318A (en) * 2012-04-11 2012-08-01 景旺电子(深圳)有限公司 Routing method for PCB (printed circuit board)
JP2015055010A (en) * 2013-09-12 2015-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド METHOD OF PREPARING MANGANESE-BISMUTH ALLOY NANOPARTICLE, MnBi NANOPARTICLE AND HARD MAGNET CONTAINING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102615318A (en) * 2012-04-11 2012-08-01 景旺电子(深圳)有限公司 Routing method for PCB (printed circuit board)
JP2015055010A (en) * 2013-09-12 2015-03-23 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド METHOD OF PREPARING MANGANESE-BISMUTH ALLOY NANOPARTICLE, MnBi NANOPARTICLE AND HARD MAGNET CONTAINING THE SAME

Similar Documents

Publication Publication Date Title
US20090053089A1 (en) HOMOGENEOUS GRANULATED METAL BASED and METAL-CERAMIC BASED POWDERS
US4066564A (en) Process for producing cobalt- and iron-containing ferromagnetic powder by heat-treatment in the presence of an oxidizing agent
JP2009091227A (en) Method of manufacturing ferrite powder, ferrite powder, and magnetic recording media
JPH0986906A (en) Production of functional oxide powder for functional thin film
JPH1064709A (en) Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder
JPH03120704A (en) Method for processing ferromagnetic metal powder and magnetic recording medium
JPS5819733A (en) Magnetic recording medium and its manufacture
EP0150561B1 (en) Method of manufacturing magnetic recording medium
JP2708568B2 (en) Magnetic material
US6103021A (en) Method of preparing raw material powder for permanent magnets superior in moldability
JPH05175022A (en) Manufacture of magnet and bonded magnet
US6143096A (en) Process for producing alloy, alloy and alloy containing sheets made therefrom
JPS586209B2 (en) Magnetic recording medium manufacturing method
JPH05326233A (en) Production of magnetic powder
JPS6324935B2 (en)
JP2009084125A (en) Method for manufacturing ferrite powder, ferrite powder, and magnetic recording medium
JPH10261514A (en) Magnetic material
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPH02180005A (en) Soft magnetic alloy powder and manufacture thereof, amorphous alloy soft magnetic powder, and magnetic shielding material
JP2838173B2 (en) Method for producing RTNM alloy powder
JPH10269557A (en) Magnetic recording medium
US5229219A (en) Magnetic recording medium comprising a magnetic layer containing a specified magnetic ferrite powder and having a curie temperature up to 180° C.
JPS61139930A (en) Production of magnetic recording medium
JPH05342562A (en) Magnetic powder for magnetic recording medium and magnetic recording medium
JPH09296201A (en) Production of alloy, and alloy, alloy-containing sheet using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104