JPH10269557A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH10269557A
JPH10269557A JP8745497A JP8745497A JPH10269557A JP H10269557 A JPH10269557 A JP H10269557A JP 8745497 A JP8745497 A JP 8745497A JP 8745497 A JP8745497 A JP 8745497A JP H10269557 A JPH10269557 A JP H10269557A
Authority
JP
Japan
Prior art keywords
magnetic
powder
recording medium
mnbi
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8745497A
Other languages
Japanese (ja)
Inventor
Toshio Kanzaki
寿夫 神崎
Mikio Kishimoto
幹雄 岸本
Noriaki Otani
紀昭 大谷
Satoru Fukiage
悟 吹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8745497A priority Critical patent/JPH10269557A/en
Publication of JPH10269557A publication Critical patent/JPH10269557A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently improve corrosion resistance by specifying the pH of a magnetic recording medium mainly contain MnBi magnetic powder in a magnetic layer to alkalinity of a specific value or above. SOLUTION: The pH of the magnetic recording medium mainly contg. the MnBi magnetic powder in the magnetic layer is specified to the alkalinity of >=7. If the pH in the system of the magnetic recording medium is made alkaline of >=7 in such a manner, a passive phase of an Mn system is formed on the surface of the MnBi magnetic powder and the corrosion resistance of the MnBi magnetic powder is improved. The magnetic recording medium having the corrosion resistance of a practicable use level at which the deterioration of saturation magnetization is extremely little in spite of long-term preservation at and under a high temp. and high humidity is obtd. Nonmagnetic inorg. powder having a particle size of <=10 μm is preferably incorporated into the magnetic layer. Further, the inorg. powder is preferably inorg. powder of pH >=7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はMnBi合金磁性
粉末を記録素子として使用する磁気記録媒体に関し、さ
らに詳しくは、実用レベルの耐食性を有する耐食性に優
れた前記の磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a MnBi alloy magnetic powder as a recording element, and more particularly to a magnetic recording medium having a practical level of corrosion resistance and excellent corrosion resistance.

【0002】[0002]

【従来の技術】磁気記録媒体は、記録再生が容易である
ためビデオテ−プ、フロッピ−ディスク、クレジットカ
−ド、プリペイドカ−ド等として広く普及している。と
ころが、記録再生が容易であるため、クレジットカ−ド
等では、誤って消去されたり、故意に書き換えられる等
の事故や犯罪が多発している。特にクレジットカ−ド、
プリペイドカ−ド等のデ−タを書き換えて不正使用する
犯罪が多発しており、大きな社会問題になっている。
2. Description of the Related Art Magnetic recording media are widely used as video tapes, floppy disks, credit cards, prepaid cards, and the like because of easy recording and reproduction. However, since recording and reproduction are easy, there are many accidents and crimes such as erroneous deletion or intentional rewriting of credit cards and the like. Especially credit cards,
Crimes that rewrite data such as prepaid cards and misuse them have occurred frequently, and have become a major social problem.

【0003】そこで、これを防止するため、一旦記録す
ると室温では容易に消去されることがないという特徴を
有するMnBi磁性粉末を用いた磁気記録媒体が提案さ
れている。(特公昭57−38962号、特公昭54−
33725号、特公昭52−46801号、特公昭59
−31764号、特公昭54−19244号、特公昭5
7−38963号)
In order to prevent this, a magnetic recording medium using MnBi magnetic powder has been proposed which has the characteristic that once recorded, it is not easily erased at room temperature. (JP-B-57-38962, JP-B-54-
No. 33725, JP-B-52-46801, JP-B-59
No. 31764, Japanese Patent Publication No. 54-19244, Japanese Patent Publication No. 5
7-38963)

【0004】しかしながら、このMnBi磁性粉末は水
分や酸素により腐食・劣化して磁気特性が低下するとい
う問題があり、そのためこれまでに各種の防食剤を磁性
層中に添加したり、MnBi磁性粉末の粒子表面に腐食
防止被膜を形成するなどして、耐食性を改善することが
行われている。(特公昭60−57127号)
However, this MnBi magnetic powder has a problem that its magnetic properties deteriorate due to corrosion and deterioration due to moisture and oxygen. Therefore, various anticorrosives have been added to the magnetic layer so far. Improvement of corrosion resistance has been carried out by forming a corrosion prevention coating on the particle surface. (Japanese Patent Publication No. 60-57127)

【0005】[0005]

【発明が解決しようとする課題】ところが、これら従来
の方法では、未だ、実用上満足できる耐食性が得られ
ず、MnBi磁性粉末を用いた磁気記録媒体で実用レベ
ルの耐食性を有するものは得られていない。
However, in these conventional methods, practically satisfactory corrosion resistance has not yet been obtained, and a magnetic recording medium using MnBi magnetic powder having a practical level of corrosion resistance has not yet been obtained. Absent.

【0006】この発明は、かかる現状に鑑み種々検討を
行った結果なされたもので、MnBi磁性粉末を磁性層
中に主体として含む磁気記録媒体をpH7以上のアルカ
リ性にするか、あるいはMnBi磁性粉末を主体とした
磁性層中に粒子サイズが10μm以下の非磁性の無機粉
末を含有させるか、さらにはMnBi磁性粉末を磁性層
中に主体として含む磁気記録媒体をpH7以上のアルカ
リ性にするとともに、MnBi磁性粉末を主体とした磁
性層中に粒子サイズが10μm以下の非磁性の無機粉末
を含有させることによって、磁気記録媒体の耐食性を充
分に向上させ、実用レベルの耐食性を有する磁気記録媒
体が得られるようにしたものである。
The present invention has been made as a result of various studies in view of the current situation. The present invention is to make a magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer alkaline at pH 7 or more, or to use a MnBi magnetic powder. A non-magnetic inorganic powder having a particle size of 10 μm or less is contained in a main magnetic layer, or a magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer is made alkaline at a pH of 7 or more. By including a nonmagnetic inorganic powder having a particle size of 10 μm or less in the magnetic layer mainly composed of powder, the corrosion resistance of the magnetic recording medium is sufficiently improved, and a magnetic recording medium having a practical level of corrosion resistance can be obtained. It was made.

【0007】[0007]

【課題を解決するための手段】この発明の磁気記録媒体
は、MnBi磁性粉末を磁性層中に主体として含む磁気
記録媒体のpHを7以上としてアルカリ性にしている。
According to the magnetic recording medium of the present invention, the pH of a magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer is adjusted to 7 or more to make it alkaline.

【0008】また、この発明の磁気記録媒体は、MnB
i磁性粉末を主体とした磁性層中に粒子サイズが10μ
m以下の非磁性の無機粉末を含有させている。
[0008] The magnetic recording medium of the present invention has MnB
Particle size of 10μ in magnetic layer mainly composed of i-magnetic powder
m or less of non-magnetic inorganic powder.

【0009】さらに、この発明の磁気記録媒体は、Mn
Bi磁性粉末を磁性層中に主体として含む磁気記録媒体
のpHを7以上のアルカリ性ににするとともに、磁性層
中に粒子サイズが10μm以下の非磁性の無機粉末を含
有させている。
Further, the magnetic recording medium according to the present invention has Mn
The pH of the magnetic recording medium containing Bi magnetic powder as the main component in the magnetic layer is made alkaline at 7 or more, and the magnetic layer contains nonmagnetic inorganic powder having a particle size of 10 μm or less.

【0010】[0010]

【発明の実施の形態】この発明において、MnBi磁性
粉末を磁性層中に主体として含む磁気記録媒体は、pH
を7以上としてアルカリ性にしており、このように、磁
気記録媒体の系内をpH7以上のアルカリ性にすると、
MnBi磁性粉末の表面にMn系の不導態相が形成され
て、MnBi磁性粉末の耐食性が向上し、高温、高湿下
に長時間保存しても飽和磁化の劣化が極めて少ない実用
レベルの耐食性を有する磁気記録媒体が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer has a pH
Is 7 or more, and the pH of the magnetic recording medium is made alkaline at pH 7 or more.
A Mn-based non-conductive phase is formed on the surface of the MnBi magnetic powder to improve the corrosion resistance of the MnBi magnetic powder, and a practical level of corrosion resistance with very little deterioration of saturation magnetization even when stored for a long time at high temperature and high humidity. Is obtained.

【0011】これは、MnBi磁性粉末が、図1に示す
ように、pHが7未満の水中に浸漬させると、磁化量が
大幅に低下するが、pHが7以上のアルカリ水中に浸漬
させた場合は、磁化量の低下が極端に低くなる性質を有
しているためであり、これはMnがpH7以上のアルカ
リ水中では不導態相を形成することによるものと考えら
れ、磁気記録媒体の系内をpH7以上のアルカリ性にす
ると、MnBi磁性粉末の表面にMn系の不導態相が形
成されるからである。
This is because, as shown in FIG. 1, when the MnBi magnetic powder is immersed in water having a pH of less than 7, the amount of magnetization is greatly reduced, but when immersed in alkaline water having a pH of 7 or more. Is due to the fact that the decrease in the amount of magnetization is extremely low, which is considered to be due to the formation of a non-conducting phase in alkaline water having Mn of pH 7 or more. This is because if the inside is made alkaline at pH 7 or more, a Mn-based non-conductive phase is formed on the surface of the MnBi magnetic powder.

【0012】このようなMnBi磁性粉末を磁性層中に
主体として含む磁気記録媒体を、pH7以上のアルカリ
性にするには、MnBi磁性粉末を主体として含む磁性
層中に、ハイドロタルサイト類化合物、アルカリ性無機
粉末等を含有させるなどの方法で行われ、この他アンモ
ニアガスなどのアルカリ性ガス雰囲気中に放置する方法
でも行われる。
In order to make a magnetic recording medium containing such a MnBi magnetic powder as a main component in a magnetic layer alkaline at a pH of 7 or more, a hydrotalcite compound, an alkaline compound or the like is contained in the magnetic layer containing a MnBi magnetic powder as a main component. The method is performed by, for example, including an inorganic powder or the like, and is also performed by a method of being left in an atmosphere of an alkaline gas such as ammonia gas.

【0013】また、この発明において、MnBi磁性粉
末を磁性層中に主体として含む磁気記録媒体は、MnB
i磁性粉末を主体とした磁性層中に粒子サイズが10μ
m以下の非磁性の無機粉末を含有させており、このよう
に、磁性層中に粒子サイズが10μm以下の非磁性の無
機粉末を含有させると、緻密な磁性層が形成され、この
緻密な磁性層中にMnBi磁性粉末が閉じ込められて、
磁性層の耐食性が充分に向上され、高温、高湿下に長時
間保存しても飽和磁化の劣化が極めて少ない実用レベル
の耐食性を有する磁気記録媒体が得られる。
In the present invention, the magnetic recording medium containing MnBi magnetic powder as a main component in the magnetic layer is made of MnBi.
Particle size of 10μ in magnetic layer mainly composed of i-magnetic powder
m or less, and if the magnetic layer contains a non-magnetic inorganic powder having a particle size of 10 μm or less, a dense magnetic layer is formed, and this dense magnetic layer is formed. MnBi magnetic powder is confined in the layer,
The corrosion resistance of the magnetic layer is sufficiently improved, and a magnetic recording medium having a practical level of corrosion resistance with very little deterioration of saturation magnetization even when stored at high temperature and high humidity for a long time is obtained.

【0014】これに対し、磁性層中に粒子サイズが10
μm以下の非磁性の無機粉末を含有させない場合は、一
般にMnBi磁性粉末がMnBiのインゴットを乾式も
しくは湿式で粉砕し合成され、形状が一定でないため、
磁性層を形成する際の塗膜性が悪く、磁性層に空隙が発
生して、緻密な磁性層が形成されず、その結果、MnB
i磁性粉末を緻密な磁性層中に閉じこめることができ
ず、耐食性が劣化する。
On the other hand, when the particle size is 10
When not containing a non-magnetic inorganic powder of μm or less, generally MnBi magnetic powder is synthesized by pulverizing the MnBi ingot in a dry or wet method, the shape is not constant,
Poor coating properties when forming the magnetic layer, voids are generated in the magnetic layer, and a dense magnetic layer is not formed. As a result, MnB
The i-magnetic powder cannot be confined in the dense magnetic layer, and the corrosion resistance deteriorates.

【0015】このようなMnBi磁性粉末を主体とした
磁性層中に含有させる非磁性の無機粉末は、粒子サイズ
が10μm以下のものが好ましく、さらに5μm以下の
ものがより好ましく使用され、含有量は、MnBi磁性
粉末に対し1重量%より少なくては所期の効果が得られ
ず、40重量%より多くすると磁気特性が低くなり必要
な特性が得られないため、1重量%以上40重量%以下
にするのが好ましい。
The nonmagnetic inorganic powder to be contained in such a magnetic layer mainly composed of MnBi magnetic powder preferably has a particle size of 10 μm or less, more preferably 5 μm or less. If the amount is less than 1% by weight with respect to the MnBi magnetic powder, the desired effect cannot be obtained. If the amount is more than 40% by weight, the magnetic properties are lowered and the required properties cannot be obtained. It is preferred that

【0016】このような無機粉体としては、TiO2
Al2 3 、SiO2 、Fe2 3などの酸化物粉末が
好ましく使用され、粉末の形状は球状や針状などの統一
された形状のものが好ましく使用される。
As such inorganic powder, TiO 2 ,
Oxide powders such as Al 2 O 3 , SiO 2 and Fe 2 O 3 are preferably used, and powders having a uniform shape such as a sphere or a needle are preferably used.

【0017】特に、この無機粉末がpH7以上の無機粉
末である場合は、MnBi磁性粉末を磁性層中に主体と
して含む磁気記録媒体のpHを7以上のアルカリ性にす
るこができ、このようなpH7以上の無機粉末を使用し
て、磁気記録媒体の系内をpH7以上のアルカリ性にす
ると、MnBi磁性粉末の表面にMn系の不導態相が形
成されて、MnBi磁性粉末の耐食性が向上するととも
に、緻密な磁性層が形成されて、この緻密な磁性層中に
MnBi磁性粉末が閉じ込められ、磁性層の耐食性が一
段と向上されて、高温、高湿下に長時間保存しても飽和
磁化の劣化が極めて少ない実用レベルの耐食性を有する
磁気記録媒体が得られる。
In particular, when the inorganic powder is an inorganic powder having a pH of 7 or more, the pH of a magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer can be made alkaline at a pH of 7 or more. When the inside of the system of the magnetic recording medium is made alkaline at pH 7 or more using the above inorganic powder, a Mn-based non-conductive phase is formed on the surface of the MnBi magnetic powder, thereby improving the corrosion resistance of the MnBi magnetic powder. A dense magnetic layer is formed, the MnBi magnetic powder is confined in the dense magnetic layer, the corrosion resistance of the magnetic layer is further improved, and the saturation magnetization is deteriorated even when stored at high temperature and high humidity for a long time. , A magnetic recording medium having a practical level of corrosion resistance is obtained.

【0018】また、ベ−スフィルムやトップコ−ト層や
中間層などもアルカリ性としておくことが好ましい。
Further, it is preferable that the base film, the top coat layer and the intermediate layer are also made alkaline.

【0019】このようなこの発明で使用するMnBi合
金磁性粉末は、MnおよびBiを、粉末冶金法、ア−ク
炉、高周波溶解炉、溶融急冷法等によりMnBiインゴ
ットとし、これを粉砕してつくられ、粉砕せずにつくら
れることもある。
The MnBi alloy magnetic powder used in the present invention is obtained by converting Mn and Bi into a MnBi ingot by a powder metallurgy method, an arc furnace, a high-frequency melting furnace, a melting quenching method or the like, and pulverizing the MnBi ingot. And may be made without grinding.

【0020】たとえば、粉末冶金法でMnBiインゴッ
トを作製するときは、まず、100〜300メッシュの
Mn粉およびBi粉を不活性雰囲気中にて充分混合す
る。MnとBiの比率は、モル比で45:55から6
0:40であることが好ましく、原料とするMn粉、B
i粉としては、あらかじめ粉砕してあるものを用いても
よいし、フレ−クあるいはショット等の塊を粉砕により
微粉化して用いてもよい。なお、混合は自動乳鉢、ボ−
ルミル等任意の手段により行うことができる。
For example, when producing a MnBi ingot by powder metallurgy, first, Mn powder and Bi powder of 100 to 300 mesh are sufficiently mixed in an inert atmosphere. The ratio of Mn to Bi is from 45:55 to 6 in molar ratio.
0:40, Mn powder as raw material, B
As the i-powder, a powder that has been pulverized in advance may be used, or a lump such as a flake or a shot may be pulverized into fine powder for use. The mixing was performed using an automatic mortar,
It can be performed by any means such as Lumil.

【0021】混合が終わった原料は、加圧プレスを用い
て成型体とし、これにより焼結反応が促進され、均一な
MnBiインゴットが作製される。このときの加圧とし
ては、1〜8t/cm2 とするのが好ましく、加圧力が
低ければMnBiインゴットの均一性が得られず、高す
ぎる場合には、加圧装置が高価となる割りにMnBiイ
ンゴットの特性が向上しない。
The raw material after mixing is formed into a molded body by using a pressure press, whereby the sintering reaction is promoted and a uniform MnBi ingot is produced. The pressure at this time is preferably 1 to 8 t / cm 2. If the pressing force is low, uniformity of the MnBi ingot cannot be obtained, and if the pressing force is too high, the pressing device becomes expensive. The properties of the MnBi ingot do not improve.

【0022】得られた成型体は、ガラス容器あるいは金
属容器に密封され、容器内は真空あるいは不活性ガス雰
囲気として熱処理中の酸化が防止されて、電気炉に入れ
られ、260〜270℃で2〜15日間熱処理が行われ
る。この熱処理の温度が低いと熱処理に時間がかかり、
また、得られるMnBiインゴットの磁化量も低くな
る。反対に熱処理温度が高すぎると、Biが融解し、均
一なMnBiインゴットが得られなくなる。
The obtained molded body is sealed in a glass container or a metal container. The inside of the container is placed in a vacuum or an inert gas atmosphere to prevent oxidation during the heat treatment, and then placed in an electric furnace at 260 to 270 ° C. for 2 hours. Heat treatment is performed for ~ 15 days. If the temperature of this heat treatment is low, the heat treatment takes time,
Further, the amount of magnetization of the obtained MnBi ingot also becomes low. Conversely, if the heat treatment temperature is too high, Bi melts, and a uniform MnBi ingot cannot be obtained.

【0023】このようにして作製されたMnBiインゴ
ットは、取り出されて自動乳鉢により不活性ガス雰囲気
中で粗粉砕され、粒子サイズを100〜500μmとし
た後、ボ−ルミル、遊星ボ−ルミル等を用いた湿式粉
砕、あるいはジエットミル等の乾式粉砕により微粒子化
される。湿式粉砕の場合の液体としては、トルエン等の
水分を含まない溶剤を用い、乾式粉砕の場合は不活性ガ
ス雰囲気にして行われる。粉砕後の平均粒子サイズは約
0.05〜10μmであり、粉砕条件によりコントロ−ル
できる。粒子サイズが0.05μmより小さいと、最終的
に得られる磁性粉末の飽和磁化が低下してしまい、10
μmを越えると、最終的に得られる磁性粉末を用いた磁
気記録媒体の表面平滑性が低下し、充分な記録が行えな
い。
The MnBi ingot thus produced is taken out and coarsely pulverized by an automatic mortar in an inert gas atmosphere to reduce the particle size to 100 to 500 μm, and then subjected to ball mill, planetary ball mill, or the like. Fine particles are obtained by wet pulverization or dry pulverization using a jet mill or the like. As a liquid in the case of wet pulverization, a solvent containing no water such as toluene is used, and in the case of dry pulverization, an inert gas atmosphere is used. Average particle size after grinding is about
0.05 to 10 μm, and can be controlled by pulverization conditions. If the particle size is smaller than 0.05 μm, the saturation magnetization of the finally obtained magnetic powder decreases, and
If it exceeds μm, the surface smoothness of the magnetic recording medium using the finally obtained magnetic powder is reduced, and sufficient recording cannot be performed.

【0024】以上の工程により飽和磁化が30emu/
g以上あり、保磁力が3000〜14000エルステッ
ドのMnBi磁性粉末が得られる。
By the above steps, the saturation magnetization becomes 30 emu /
g and MnBi magnetic powder having a coercive force of 3000 to 14000 Oersted.

【0025】このようなMnBi磁性粉末を磁性層中に
主体として含み、pHを7以上のアルカリ性とし、ま
た、磁性層中に粒子サイズが10μm以下の非磁性の無
機粉末を含有させた磁気記録媒体は、常法に準じて作製
され、たとえば、MnBi磁性粉末をpH7以上の無機
粉末などと併用し、結合剤樹脂、有機溶剤などとともに
混合分散して磁性塗料を調製して、これを基体上に塗
布、乾燥して作製される。なお、磁性塗料を基体上に塗
布した後、磁性層面に対して平行に磁場を印加して磁場
配向を行うのが好ましい。
A magnetic recording medium containing such a MnBi magnetic powder as a main component in a magnetic layer, having an alkaline pH of 7 or more, and containing a nonmagnetic inorganic powder having a particle size of 10 μm or less in the magnetic layer. Is prepared in accordance with a conventional method. For example, a magnetic coating material is prepared by mixing and dispersing a MnBi magnetic powder with an inorganic powder having a pH of 7 or more and a binder resin, an organic solvent, and the like, and forming the magnetic coating material on a substrate. It is produced by coating and drying. It is preferable that after applying the magnetic paint on the substrate, a magnetic field is applied in parallel to the surface of the magnetic layer to perform magnetic field orientation.

【0026】ここで、結合剤樹脂としては、一般に磁気
記録媒体に用いられているものがいずれも使用され、た
とえば、塩化ビニル−酢酸ビニル系共重合体、ポリビニ
ルブチラ−ル樹脂、繊維素系樹脂、ポリウレタン系樹
脂、イソシアネ−ト化合物、放射線硬化型樹脂などが用
いられる。
Here, as the binder resin, any resin generally used for magnetic recording media is used, for example, vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, cellulose resin Resins, polyurethane resins, isocyanate compounds, radiation-curable resins and the like are used.

【0027】また、有機溶剤としては、シクロヘキサノ
ン、メチルエチルケトン、メチルイソブチルケトン、酢
酸エチル、ベンゼン、トルエン、キシレン、テトラヒド
ロフラン、ジオキサンなど、使用する結合剤樹脂を溶解
するのに適した溶剤が、特に制限されることなく単独ま
たは二種以上混合して使用される。
As the organic solvent, solvents suitable for dissolving the binder resin used, such as cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, benzene, toluene, xylene, tetrahydrofuran and dioxane, are particularly limited. Used alone or in combination of two or more.

【0028】なお、磁性塗料中には、通常使用されてい
る各種添加剤、たとえば、分散剤、潤滑剤、帯電防止剤
などを任意に添加使用してもよい。
The magnetic paint may optionally contain various additives commonly used, for example, dispersants, lubricants, antistatic agents and the like.

【0029】[0029]

【実施例】次に、この発明の実施例について説明する。 実施例1 Mnフレ−ク(フルウチ化学社製;純度99.9%)Bi
ショット(フルウチ化学社製;純度99.9%)を乳鉢を
用いて粉砕し、100メッシュのふるい掛けをした後、
Mnを30.2重量部、Biを94.0重量部秤量し、乳鉢
を用いて充分に混合した。
Next, an embodiment of the present invention will be described. Example 1 Mn flake (manufactured by Furuuchi Chemical Co .; purity 99.9%) Bi
After crushing the shot (Furuuchi Chemical Co .; purity 99.9%) using a mortar and sieving 100 mesh,
30.2 parts by weight of Mn and 94.0 parts by weight of Bi were weighed and thoroughly mixed using a mortar.

【0030】次に、これを加圧プレス機を用いて4t/
cm2 の圧力で直径×長さが6mm×6mmの円柱状に
成型し、この成型体をパイレックスガラス管に真空封入
し、電気炉中にて265℃で10日間熱処理して、Mn
Biインゴットを作製した。
Next, this was subjected to 4 t /
It was molded into a cylinder having a diameter of 6 mm x 6 mm in diameter at a pressure of 2 cm2, and the molded body was vacuum-sealed in a Pyrex glass tube and heat-treated at 265 ° C for 10 days in an electric furnace to obtain Mn.
A Bi ingot was produced.

【0031】次いで、得られたMnBiインゴットをグ
ロ−ボックスを使用し、不活性雰囲気中で乳鉢を用いて
粗粉砕し、さらに、遊星ボ−ルミルを用いてトルエン中
にて、200rpmで2時間粉砕した。このようにして
得られたMnBi磁性粉末の平均粒径は、約3μmであ
り、VSMを用いて測定した磁気特性は、保磁力が98
00エルステッド、飽和磁化が48.6emu/g、最大
印加磁界は16kエルステッドであった。
Next, the obtained MnBi ingot is roughly pulverized using a mortar in an inert atmosphere using a glove box, and further pulverized in toluene using a planetary ball mill at 200 rpm for 2 hours. did. The MnBi magnetic powder thus obtained has an average particle size of about 3 μm, and the magnetic properties measured using a VSM indicate that the coercive force is 98%.
00 Oersted, the saturation magnetization was 48.6 emu / g, and the maximum applied magnetic field was 16 kOersted.

【0032】以上のようにして得られたMnBi磁性粉
末を使用し、 MnBi合金磁性粉末 70重量部 ポリウレタン樹脂(大日本インキ化学工業社製;T−52 15 〃 50) アルカマイザ−(協和化学工業株式会社製;ハイドロタル 10 〃 サイト類化合物、pH:9.0) シクロヘキサノン 75 〃 トルエン 75 〃 の組成物をボ−ルミルで充分に混練分散させ後、多官能
性ポリイソシアネ−ト化合物(日本ポリウレタン工業社
製、コロネ−トL)を5重量部加えて磁性塗料を調製し
た。
Using the MnBi magnetic powder obtained as described above, MnBi alloy magnetic powder 70 parts by weight Polyurethane resin (manufactured by Dainippon Ink and Chemicals, T-52 15 @ 50) Alkamizer (Kyowa Chemical Industry Co., Ltd.) Hydrotal 10 site compound, pH: 9.0) A composition of cyclohexanone 75% toluene 75% is sufficiently kneaded and dispersed in a ball mill, and then a polyfunctional polyisocyanate compound (Nippon Polyurethane Industry Co., Ltd.) Co., Ltd., 5 parts by weight was added to prepare a magnetic paint.

【0033】この磁性塗料を厚さ30μmのポリエステ
ルフィルム上に、乾燥後の厚さが10μmとなるように
塗布して、1000エルステッドの長手方向の配向磁場
を印加しながら乾燥させて磁性層を形成し、磁気記録媒
体を作製した。
This magnetic paint is applied on a 30 μm-thick polyester film so that the thickness after drying becomes 10 μm, and dried while applying a longitudinal orientation magnetic field of 1000 Oe to form a magnetic layer. Thus, a magnetic recording medium was manufactured.

【0034】実施例2 実施例1における磁性塗料の組成において、アルカマイ
ザ−の使用量を10重量部から5重量部に変更し、新た
にAl2 3 (粒径:1μm、pH:6.5 )を5重量部
加えた以外は、実施例1と同様にして磁性塗料を調製
し、磁気記録媒体を作製した。
Example 2 In the composition of the magnetic paint in Example 1, the amount of the alkamizer was changed from 10 parts by weight to 5 parts by weight, and Al 2 O 3 (particle size: 1 μm, pH: 6.5) was newly added. A magnetic coating material was prepared in the same manner as in Example 1 except that 5 parts by weight was added, to prepare a magnetic recording medium.

【0035】実施例3 実施例1における磁性塗料の組成において、MnBi磁
性粉末の使用量を70重量部から55重量部に変更する
とともに、アルカマイザ−の使用量を10重量部から5
重量部に変更し、新たにAl2 3 (粒径:1μm、p
H:6.5 )を5重量部加えた以外は、実施例1と同様に
して磁性塗料を調製し、磁気記録媒体を作製した。
Example 3 In the composition of the magnetic coating material in Example 1, the amount of the MnBi magnetic powder was changed from 70 parts by weight to 55 parts by weight, and the amount of the alkamizer was changed from 10 parts by weight to 5 parts by weight.
Parts by weight, and Al 2 O 3 (particle size: 1 μm, p
H: 6.5) was prepared in the same manner as in Example 1 except that 5 parts by weight of H) was added to prepare a magnetic recording medium.

【0036】実施例4 実施例2における磁性塗料の組成において、Al2 3
に代えてTiO2 (粒径:1μm、pH:5)を同量使
用した以外は、実施例2と同様にして磁性塗料を調製
し、磁気記録媒体を作製した。
Example 4 In the composition of the magnetic paint in Example 2, Al 2 O 3
A magnetic coating medium was prepared in the same manner as in Example 2 except that the same amount of TiO 2 (particle size: 1 μm, pH: 5) was used in place of the above.

【0037】実施例5 実施例2における磁性塗料の組成において、Al2 3
に代えてα−Fe2 3 (粒径:3μm、pH:9.5 )
を同量使用した以外は、実施例2と同様にして磁性塗料
を調製し、磁気記録媒体を作製した。
Example 5 In the composition of the magnetic paint in Example 2, Al 2 O 3
Instead of α-Fe 2 O 3 (particle size: 3 μm, pH: 9.5)
Was used in the same manner as in Example 2 except that the same amount was used to prepare a magnetic recording medium.

【0038】実施例6 実施例1における磁性塗料の組成において、アルカマイ
ザ−に代えてα−Fe2 3 (粒径:3μm、pH:9.
5 )を同量使用した以外は、実施例1と同様にして磁性
塗料を調製し、磁気記録媒体を作製した。
Example 6 In the composition of the magnetic coating material in Example 1, α-Fe 2 O 3 (particle size: 3 μm, pH: 9.
A magnetic coating medium was prepared in the same manner as in Example 1 except that 5) was used in the same amount to prepare a magnetic recording medium.

【0039】比較例1 実施例1における磁性塗料の組成において、MnBi磁
性粉末の使用量を70重量部から80重量部に変更し、
アルカマイザ−を省いた以外は、実施例1と同様にして
磁性塗料を調製し、磁気記録媒体を作製した。
Comparative Example 1 In the composition of the magnetic paint in Example 1, the amount of MnBi magnetic powder used was changed from 70 parts by weight to 80 parts by weight.
A magnetic coating material was prepared and a magnetic recording medium was prepared in the same manner as in Example 1 except that the alkamiser was omitted.

【0040】比較例2 実施例1における磁性塗料の組成において、MnBi磁
性粉末の使用量を70重量部から56重量部に変更し、
アルカマイザ−を省いた以外は、実施例1と同様にして
磁性塗料を調製し、磁気記録媒体を作製した。
Comparative Example 2 In the composition of the magnetic paint in Example 1, the amount of MnBi magnetic powder used was changed from 70 parts by weight to 56 parts by weight.
A magnetic coating material was prepared and a magnetic recording medium was prepared in the same manner as in Example 1 except that the alkamiser was omitted.

【0041】比較例3 実施例2における磁性塗料の組成において、MnBi磁
性粉末の使用量を70重量部から40重量部に変更し、
Al2 3 (粒径:1μm、pH:6.5 )の使用量を5
重量部から35重量部に変更した以外は、実施例2と同
様にして磁性塗料を調製し、磁気記録媒体を作製した。
Comparative Example 3 In the composition of the magnetic paint in Example 2, the amount of MnBi magnetic powder used was changed from 70 parts by weight to 40 parts by weight.
Al 2 O 3 (particle size: 1 μm, pH: 6.5)
A magnetic coating material was prepared in the same manner as in Example 2 except that the weight was changed from 35 parts by weight to 35 parts by weight, to prepare a magnetic recording medium.

【0042】各実施例および比較例で得られた磁気記録
媒体について、保磁力、磁化量、pHを測定し、耐食性
を試験した。pHの測定は、厚さ15μm×巾3inc
h×長さ1mの磁気記録媒体を、1cm×1cm程度に
細断し、それを100gのH2 Oが入った石英フラスコ
に入れ、そのフラスコをホットプレ−トにのせて5分間
煮沸させた後、室温まで冷却し、フラスコ内の溶液を取
り出し、pHメ−タ−にて溶液のpHを測定した。ま
た、耐食性試験は、得られた磁気記録媒体を、60℃、
90%RHの高温高湿槽中に1週間放置後の磁化量の劣
化率を算出して調べた。下記表1はその結果である。
With respect to the magnetic recording media obtained in each of the examples and comparative examples, the coercive force, the amount of magnetization, and the pH were measured, and the corrosion resistance was tested. The measurement of pH is 15 μm thickness x 3 inch width.
A magnetic recording medium of length h × 1 m is cut into pieces of about 1 cm × 1 cm, put into a quartz flask containing 100 g of H 2 O, and placed on a hot plate and boiled for 5 minutes. After cooling to room temperature, the solution in the flask was taken out, and the pH of the solution was measured with a pH meter. In addition, the corrosion resistance test was conducted at 60 ° C. for the obtained magnetic recording medium.
The deterioration rate of the amount of magnetization after being left for one week in a high-temperature, high-humidity tank of 90% RH was calculated and examined. Table 1 below shows the results.

【0043】 [0043]

【0044】また、実施例1、3、5および比較例1の
試料を温度60℃、相対湿度90%の雰囲気に1週間保
持した時の磁化量の変化を調べた。図2は、その結果を
放置日数と磁化量の劣化率との関係にして表したもの
で、◆は実施例1、■は実施例3、▲は実施例5、●は
比較例1のそれぞれの試料を示す。
Further, the samples of Examples 1, 3, 5 and Comparative Example 1 were examined for changes in the amount of magnetization when kept in an atmosphere at a temperature of 60 ° C. and a relative humidity of 90% for one week. FIG. 2 shows the results as a relationship between the number of days left and the deterioration rate of the magnetization amount. Δ represents Example 1, Δ represents Example 3, ▲ represents Example 5, and ● represents Comparative Example 1. The sample is shown.

【0045】[0045]

【発明の効果】上記表1および図2明らかなように、こ
の発明で得られた磁気記録媒体(実施例1ないし6)
は、比較例1ないし3で得られた磁気記録媒体に比し、
いずれも磁化量の劣化率が小さく、このことからこの発
明によって得られるMnBi合金磁性粉末を用いた磁気
記録媒体は、高温、多湿下に保持しても磁化量の劣化が
極めて少なく、優れた耐食性を有していることがわか
る。
As is clear from Table 1 and FIG. 2, the magnetic recording medium obtained by the present invention (Examples 1 to 6)
Is smaller than the magnetic recording media obtained in Comparative Examples 1 to 3,
In any case, the rate of deterioration of the amount of magnetization is small. Therefore, the magnetic recording medium using the MnBi alloy magnetic powder obtained according to the present invention has very little deterioration of the amount of magnetization even when kept at high temperature and high humidity, and has excellent corrosion resistance. It can be seen that they have

【図面の簡単な説明】[Brief description of the drawings]

【図1】水のpHによるMnBi磁性粉末の耐水性の変
化を示したpHと磁化量の劣化率との関係図である。
FIG. 1 is a graph showing the change in water resistance of MnBi magnetic powder depending on the pH of water and the relationship between the pH and the rate of deterioration of the amount of magnetization.

【図2】高温高湿槽中におけるMnBi磁性粉末を用い
た磁気記録媒体の磁化量の変化を示した放置日数と磁化
量の劣化率との関係図である。
FIG. 2 is a graph showing the relationship between the number of days left and the rate of deterioration of the amount of magnetization showing the change in the amount of magnetization of a magnetic recording medium using MnBi magnetic powder in a high-temperature and high-humidity bath.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吹上 悟 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoru Fukiage 1-88 Ushitora, Ibaraki-shi, Osaka Hitachi Maxell Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MnBi磁性粉末を磁性層中に主体とし
て含むpHが7以上のアルカリ性の磁気記録媒体
An alkaline magnetic recording medium containing MnBi magnetic powder as a main component in a magnetic layer and having a pH of 7 or more.
【請求項2】 MnBi磁性粉末を主体とした磁性層中
に粒子サイズが10μm以下の非磁性の無機粉末を含有
させたことを特徴とする磁気記録媒体
2. A magnetic recording medium wherein a nonmagnetic inorganic powder having a particle size of 10 μm or less is contained in a magnetic layer mainly composed of MnBi magnetic powder.
【請求項3】 無機粉末がpH7以上のアルカリ性の無
機粉末である請求項2記載の磁気記録媒体
3. The magnetic recording medium according to claim 2, wherein the inorganic powder is an alkaline inorganic powder having a pH of 7 or more.
JP8745497A 1997-03-21 1997-03-21 Magnetic recording medium Withdrawn JPH10269557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8745497A JPH10269557A (en) 1997-03-21 1997-03-21 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8745497A JPH10269557A (en) 1997-03-21 1997-03-21 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH10269557A true JPH10269557A (en) 1998-10-09

Family

ID=13915317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8745497A Withdrawn JPH10269557A (en) 1997-03-21 1997-03-21 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH10269557A (en)

Similar Documents

Publication Publication Date Title
JP5637362B2 (en) Method for producing magnetic powder
JP5855832B2 (en) Hexagonal ferrite magnetic powder for magnetic recording and magnetic recording medium using the powder
US4232071A (en) Method of producing magnetic thin film
WO2011048823A1 (en) Hexagonal ferrite magnetic powder for magnetic recording, process for production thereof, and magnetic recording media using the powder
US3855016A (en) Acicular cobalt powders having high squarenesss ratios
JPH10269557A (en) Magnetic recording medium
JPH0317774B2 (en)
JPS582225A (en) Hexagonal system ferrite powder for magnetic recording
JPS60138731A (en) Production of magnetic recording medium
JP2001257110A (en) Magnetic material and magnetic recording medium formed by use thereof
JP5660566B2 (en) Magnetic particles and method for producing the same
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP3490201B2 (en) MnNiBi alloy magnetic powder
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JPH10261514A (en) Magnetic material
JPS6197805A (en) Ferri magnetic particle and making thereof
JPH1167511A (en) Magnetic material
JPH0643601B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH0623402B2 (en) Method for producing metallic iron particle powder or alloy magnetic particle powder mainly composed of iron
JPH05144623A (en) Compound tabular hexagonal system ferrite magnetic powder and manufacture thereof, and magnetic recording medium using the magnetic powder
JPH10172134A (en) Magnetic recording medium
JPH1064709A (en) Method of manufacturing manganese-bismuth magnetic powder and magnetic sheet using the powder
JP3049765B2 (en) Surface treatment of magnetic powder
JPH09138937A (en) Magnetic recording medium
JPH06290924A (en) Magnetic powder and high density magnetic recording medium made of same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601