JPH1062136A - Method and device for shape measurement - Google Patents
Method and device for shape measurementInfo
- Publication number
- JPH1062136A JPH1062136A JP8221250A JP22125096A JPH1062136A JP H1062136 A JPH1062136 A JP H1062136A JP 8221250 A JP8221250 A JP 8221250A JP 22125096 A JP22125096 A JP 22125096A JP H1062136 A JPH1062136 A JP H1062136A
- Authority
- JP
- Japan
- Prior art keywords
- angle
- gravity
- shape measuring
- base
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Details Of Measuring And Other Instruments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば干渉測定な
どの際に、測定光軸を重力に対し任意の角度に設定した
測定を行うのに適した形状測定方法及び形状測定装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring method and a shape measuring apparatus suitable for performing a measurement with an optical axis of a measurement set at an arbitrary angle with respect to gravity, for example, in interference measurement.
【0002】[0002]
【従来の技術】干渉測定を例にとって説明する。干渉光
を重力と垂直方向に射出し、被検面を立てて測定する場
合、通常、重力による被検面の変形を避けるために、該
被検面の直径に合わせたレンズやミラーの剛性(厚さ)
を設定している。さらに、被検面のホールド(保持)に
よる変形を避けるために、ホールド方法に注意を払って
いた。2. Description of the Related Art An example of interference measurement will be described. When an interference light is emitted in a direction perpendicular to the gravity and the measurement is performed with the test surface set up, usually, the rigidity of the lens or mirror according to the diameter of the test surface is adjusted to avoid deformation of the test surface due to gravity. thickness)
Is set. Furthermore, in order to avoid deformation due to holding (holding) of the test surface, attention was paid to the holding method.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、変形を
防止するのに必要な厚さを確保できない場合や、被検面
の形状によりそのホールド方法が限られてしまう場合も
多々ある。この場合、被検面の変形量はシミュレーショ
ン(有限要素法による計算)などにより予想することは
可能であるが、その計算も不十分な場合がある。また、
変形量をシミュレーションで予測して修正を加えたので
は、真の意味での検査とは言えない。被検面の重力によ
る変形については、測定時における被検面の重力に対す
る傾きが重要であり、測定対象物の形状と厚さの関係に
よっては、数秒の傾きであっても、無視できない変形が
生じることもある。However, there are many cases where the thickness required to prevent deformation cannot be ensured, and the method of holding the surface is limited depending on the shape of the surface to be inspected. In this case, the amount of deformation of the test surface can be predicted by simulation (calculation by the finite element method) or the like, but the calculation may be insufficient. Also,
If the amount of deformation is predicted by simulation and corrected, it cannot be said that it is a true inspection. Regarding the deformation of the test surface due to gravity, the inclination of the test surface with respect to gravity during measurement is important, and depending on the relationship between the shape and thickness of the measurement object, deformation that cannot be ignored even with a tilt of several seconds. May also occur.
【0004】また、仮に、ある条件下では重力に対する
角度を設定できた場合でも、一般の除振台などでは、荷
重がかかったときに台が傾くため、角度に関して数秒単
位の再現性が得られることは少ない。[0004] Even if an angle with respect to gravity can be set under certain conditions, a general anti-vibration table or the like tilts when a load is applied, so that the reproducibility of the angle in units of seconds can be obtained. There are few things.
【0005】そこで、本発明は、例えば、干渉計測定の
光軸の重力に対する角度を、垂直あるいは水平、あるい
は任意に設定でき、さらには該設定角度を維持するとと
もに容易に変更できる測定方法と装置を提供することを
目的とする。さらに、厳密に測定対象物の使用状態を再
現して形状評価できる形状測定方法及び形状測定装置を
提供することを目的とする。Therefore, the present invention provides a measuring method and apparatus which can set the angle of the optical axis of the interferometer with respect to gravity, for example, vertically or horizontally, or arbitrarily, and can maintain the set angle and easily change it. The purpose is to provide. Further, it is another object of the present invention to provide a shape measuring method and a shape measuring device capable of strictly reproducing a use state of a measuring object and evaluating a shape.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するた
め、本発明の形状測定方法は、干渉等の原理によって物
体の形状を測定する方法であって、測定器と測定対象物
の相対位置関係を保持したまま、該測定器と測定対象物
の姿勢を重力方向に対して任意に調節したうえで形状測
定することを特徴とする。In order to solve the above-mentioned problems, a shape measuring method according to the present invention is a method for measuring the shape of an object based on the principle of interference or the like. The shape is measured after the posture of the measuring instrument and the object to be measured is arbitrarily adjusted with respect to the direction of gravity while holding.
【0007】また、本発明の形状測定装置は、測定対象
物及び形状測定器を載せるベースと、このベース上に置
かれた形状測定器と、ベースの角度調節機構と、重力方
向検出手段と、を備え;測定器と測定対象物の相対位置
関係を保持したまま、ベースの重力方向に対する角度を
任意に調節可能であることを特徴とする。Further, the shape measuring apparatus of the present invention comprises a base on which an object to be measured and a shape measuring instrument are mounted, a shape measuring instrument placed on the base, an angle adjusting mechanism of the base, a gravitational direction detecting means, The angle of the base with respect to the direction of gravity can be adjusted arbitrarily while maintaining the relative positional relationship between the measuring instrument and the object to be measured.
【0008】干渉計測定の場合、例えば、除振台(ベー
ス)の角度を調節することにより、測定器の設置場所の
床の水平度に関係なく、重力に対して除振台を任意の角
度に設定することが可能となる。ただし、この際、何ら
かの手段によって重力方向を検出する必要がある。角度
の調節方法は、除振台などに備わっている空気バネの調
節でも良いし、何らかの他の方法(ピエゾアクチュエー
タ等)を用いても良い。[0008] In the case of interferometer measurement, for example, by adjusting the angle of the anti-vibration table (base), the anti-vibration table can be set at an arbitrary angle with respect to gravity regardless of the level of the floor where the measuring instrument is installed. Can be set. However, at this time, it is necessary to detect the direction of gravity by some means. The angle may be adjusted by adjusting an air spring provided in the vibration isolation table or the like, or by using some other method (such as a piezo actuator).
【0009】重力方向の検出手段としては、セオドライ
ト(水準器)のような建築用の機材などを用いても良
い。より高精度に重力方向を検出したい場合は、水銀な
どの液体面からのレーザーの反射を見ても良いし、さら
には、該液体面を干渉計などで測定しても良い。As the means for detecting the direction of gravity, an equipment for construction such as a theodolite (level) may be used. When it is desired to detect the direction of gravity with higher accuracy, the reflection of the laser from a liquid surface such as mercury may be observed, or the liquid surface may be measured with an interferometer or the like.
【0010】しかし、前記課題でも述べたように、例え
ば、除振台に荷重をかけた場合、あるいは荷重が変動す
る場合は、荷重をかける前後(変動前後)で、初期に設
定した重力に対する角度が再現されるとは限らない。そ
の解決策として、最も簡易な方法としては、その除振台
の空気バネの感度をより敏感にするということが考えら
れる。しかし、この場合、その除振台の固有振動数が問
題となる可能性がある。そこで、除振台の重力に対する
角度を、常に、あるいは適宜検出し、検出された結果を
元に、装置に取り付けられた角度調節機構をフィードバ
ック制御することにより、より確実に、任意の設定角度
を常に維持することが可能となる。また、フィードバッ
クをかけることにより、設定角度自体の変更も容易に可
能となる。However, as described above, for example, when a load is applied to the vibration isolation table or when the load fluctuates, before and after the load is applied (before and after the change), the angle with respect to the initially set gravity is set. Is not always reproduced. As a solution, the simplest method is to make the sensitivity of the air spring of the vibration isolation table more sensitive. However, in this case, the natural frequency of the anti-vibration table may be a problem. Therefore, the angle of the anti-vibration table with respect to gravity is always or appropriately detected, and based on the detected result, the angle adjustment mechanism attached to the apparatus is feedback-controlled to more reliably set an arbitrary set angle. It is possible to always maintain. Further, by applying the feedback, it is possible to easily change the set angle itself.
【0011】[0011]
【実施例】以下、図面を参照しつつさらに詳しく説明す
る。図1は、本発明の1実施例に係る形状測定装置を示
す側面図である。図1の形状測定装置1は、除振台8を
ベースとして構成してある。すなわち、除振台8上に、
干渉計3と測定対象物5、及びプリズム7を載置してい
る。干渉計3は、干渉光源であるレーザ発振器や干渉光
学系や結像光学系等を内蔵している。干渉計3を出た平
行光束4は、測定対象物5の被検面5aで反射して干渉
計3内に戻り干渉縞を形成する。被検面5aは、基本的
には光束4と直交している。プリズム7については後述
する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a side view showing a shape measuring apparatus according to one embodiment of the present invention. The shape measuring apparatus 1 of FIG. 1 is configured based on a vibration isolation table 8. That is, on the vibration isolation table 8,
The interferometer 3, the measurement object 5, and the prism 7 are placed. The interferometer 3 incorporates a laser oscillator, an interference optical system, an imaging optical system, and the like, which are interference light sources. The parallel light beam 4 that has exited the interferometer 3 is reflected on the surface 5a of the measurement object 5 and returns to the interferometer 3 to form interference fringes. The test surface 5 a is basically orthogonal to the light beam 4. The prism 7 will be described later.
【0012】除振台8は、脚13、空気バネ11、及び
定盤9等から構成されており、硬い安定した床15上に
設置されている。空気バネ11は脚13上に載置されて
おり、定盤9を支持している。空気バネ11は、定盤9
の角度調節機構を兼ねる。空気バネ11の中に充填する
空気の量を調節することによって、定盤9の角度を10
秒オーダーで調節することができる。定盤9は、剛性が
高く、厚い板状体である。The anti-vibration table 8 includes legs 13, an air spring 11, a surface plate 9, and the like, and is installed on a hard and stable floor 15. The air spring 11 is mounted on the legs 13 and supports the platen 9. The air spring 11 is a platen 9
Angle adjustment mechanism. By adjusting the amount of air to be charged into the air spring 11, the angle of the platen 9 can be set to 10 degrees.
Can be adjusted in seconds. The platen 9 is a rigid plate having high rigidity.
【0013】定盤9の上面右端にはプリズム7を載せて
いる。このプリズム7は、その下面と反射面との直角度
がきわめて良好なものである。プリズム7と対向して、
セオドライト(水準器)17が設置されている。セオド
ライト17は、定盤9上ではなく、別の台19の上に置
かれている。セオドライト17を出た光がプリズム7に
当り、反射してセオドライト17に戻り、発射光と反射
光のズレを見てプリズム7載置面の水平度を検出する。
図1の形状測定装置1では、プリズム7とセオドライト
17が重力方向検出手段を形成している。なお、セオド
ライト17の検出精度は数秒オーダーと良好である。A prism 7 is mounted on the right end of the upper surface of the surface plate 9. The prism 7 has a very good perpendicularity between the lower surface and the reflection surface. Opposing the prism 7,
A theodolite (level) 17 is provided. Theodolite 17 is placed on another stand 19, not on the surface plate 9. The light that has exited the theodolite 17 strikes the prism 7 and is reflected back to the theodolite 17, where the difference between the emitted light and the reflected light is detected to detect the levelness of the prism 7 mounting surface.
1, the prism 7 and the theodolite 17 form a gravitational direction detecting unit. The detection accuracy of the theodolite 17 is as good as several seconds.
【0014】図2は、本発明の他の実施例に係る形状測
定装置(2段重ね式)の側面図である。図2の形状測定
装置と図1の形状測定装置との相違点は、除振台8上に
上置き定盤23とピエゾアクチュエータ式の角度調節機
構25を設置している点(2段重ね式)である。ピエゾ
アクチュエータ25は、除振台8上に複数個置かれてお
り、その精密な伸長・収縮により、上置き定盤23の水
平に対する角度を精密にコントロールすることができ
る。FIG. 2 is a side view of a shape measuring apparatus (two-stage type) according to another embodiment of the present invention. The difference between the shape measuring device of FIG. 2 and the shape measuring device of FIG. 1 is that an upper surface plate 23 and a piezo-actuator type angle adjusting mechanism 25 are installed on the vibration isolation table 8 (two-stage stacking type). ). A plurality of piezo actuators 25 are placed on the vibration isolation table 8, and the precise extension and contraction of the piezo actuators 25 enables precise control of the angle of the upper platen 23 with respect to the horizontal.
【0015】図3は、本発明の他の実施例に係る形状測
定装置(フィードバック制御式)の側面図である。図3
の形状測定装置の機械的な構成は、図2の形状測定装置
と同じである。しかし、制御機構中に、フィードバック
回路33が組み込まれており、重力方向検出手段(プリ
ズム7、セオドライト17)によって検出された定盤2
3の重力方向に対する角度を、角度調節機構25にフィ
ードバックし、任意に設定された角度に定盤23の角度
を調節するものである。このフィードバックに関して
は、常時、あるいは適宜(荷重変化時)行えるようにな
っている。なお、角度の自動調節は、除振台8の空気バ
ネ25を用いても良い。FIG. 3 is a side view of a shape measuring apparatus (feedback control type) according to another embodiment of the present invention. FIG.
The mechanical configuration of the shape measuring device is the same as that of the shape measuring device of FIG. However, a feedback circuit 33 is incorporated in the control mechanism, and the platen 2 detected by the gravity direction detecting means (prism 7, theodolite 17).
The angle with respect to the gravitational direction 3 is fed back to the angle adjusting mechanism 25 to adjust the angle of the surface plate 23 to an arbitrarily set angle. This feedback can be performed at all times or appropriately (when the load changes). The automatic adjustment of the angle may use the air spring 25 of the vibration isolation table 8.
【0016】図4は、本発明の他の実施例に係る形状測
定装置(液面検出式)を示す側面図である。図4の形状
測定装置と図3の形状測定装置の相違点は、重力方向検
出手段が液体面を基準とする方式であることである。す
なわち、上置き定盤23の上面の右端部には、容器51
に入った水銀等の液体49が置かれている。この液体表
面49aを、地球重力に直交する基準面としている。FIG. 4 is a side view showing a shape measuring apparatus (liquid level detection type) according to another embodiment of the present invention. The difference between the shape measuring device of FIG. 4 and the shape measuring device of FIG. 3 is that the gravity direction detecting means is based on the liquid surface. That is, a container 51 is provided at the right end of the upper surface of the upper surface plate 23.
A liquid 49 such as mercury that has entered is placed. This liquid surface 49a is used as a reference plane orthogonal to the earth's gravity.
【0017】重力方向を検出する際は、干渉計3と測定
対象物5との間のスィングミラー43を下げて(実線の
位置)干渉光束4を上に曲げ(光束4′)、ミラー4
5、47により180°配向して液体表面49aで反射
させ、再びミラー47、45、43により干渉計3に戻
して干渉縞を形成している。液体表面49aは、上置き
定盤23上面の傾斜に関係なく地球重力の直交方向に倣
う。したがって、上置き定盤23の水平度が変化する
と、干渉光束4′に対する液体表面49aの角度が変化
するので、これを検知できる。When detecting the direction of gravity, the swing mirror 43 between the interferometer 3 and the measuring object 5 is lowered (at the position indicated by the solid line), and the interference light beam 4 is bent upward (light beam 4 ').
The light is reflected 180 ° by the liquid surface 49a after being oriented by 5 and 47, and is returned to the interferometer 3 again by the mirrors 47, 45 and 43 to form interference fringes. The liquid surface 49a follows the direction perpendicular to the earth's gravity regardless of the inclination of the upper surface of the platen 23. Therefore, when the horizontality of the upper surface plate 23 changes, the angle of the liquid surface 49a with respect to the interference light beam 4 'changes, which can be detected.
【0018】図5は、本発明の他の実施例に係る形状測
定装置(測定対象物基準型)を示す側面図である。図5
の形状測定装置の図2の形状測定装置に対する相違点
は、重力方向検出手段の1部として測定対象物自身を用
いる点である。すなわち、測定対象物の球面レンズ5′
の背面5bを重力方向の基準面としている。なお、ここ
で干渉計3の先には、球面参照面3bを有するフィゾー
レンズ3aが取り付けられており、参照面3bと球面レ
ンズ5′の球面被検面5aとが干渉する。FIG. 5 is a side view showing a shape measuring apparatus (object to be measured) according to another embodiment of the present invention. FIG.
2 differs from the shape measuring device of FIG. 2 in that the measuring object itself is used as a part of the gravitational direction detecting means. That is, the spherical lens 5 'of the measurement object
Is used as a reference plane in the direction of gravity. Here, a Fizeau lens 3a having a spherical reference surface 3b is attached to the tip of the interferometer 3, and the reference surface 3b and the spherical test surface 5a of the spherical lens 5 'interfere with each other.
【0019】被検面5aの裏面5bが平面である場合、
該裏面5bを直接セオドライト17などで測定すること
により、被検物5′の重力方向に対する角度を、装置の
構成部品による誤差を無視して調節できる。ただし、そ
の被検物の偏心が誤差として残るが、別方法にてその偏
心を測定しておき、その方向と角度をフィードバックす
ることにより対応できる。When the back surface 5b of the test surface 5a is flat,
By directly measuring the back surface 5b with the theodolite 17, the angle of the test object 5 'with respect to the direction of gravity can be adjusted ignoring errors due to the components of the apparatus. However, although the eccentricity of the test object remains as an error, it can be dealt with by measuring the eccentricity by another method and feeding back its direction and angle.
【0020】[0020]
【発明の効果】以上のように、本発明によれば、干渉計
測定などにおいて、測定光軸方向と重力方向との角度関
係を任意に設定し、その角度を容易に維持、変更するこ
とが可能となる。また、本測定方法並びに装置を用いる
ことにより、液体面の干渉計測定も可能になる。As described above, according to the present invention, in an interferometer measurement or the like, the angle relationship between the measurement optical axis direction and the gravity direction can be arbitrarily set, and the angle can be easily maintained and changed. It becomes possible. Further, by using the present measuring method and apparatus, it is possible to perform interferometer measurement on a liquid surface.
【図1】本発明の1実施例に係る形状測定装置を示す側
面図である。FIG. 1 is a side view showing a shape measuring apparatus according to one embodiment of the present invention.
【図2】本発明の他の実施例に係る形状測定装置(2段
重ね式)の側面図である。FIG. 2 is a side view of a shape measuring apparatus (two-stage type) according to another embodiment of the present invention.
【図3】本発明の他の実施例に係る形状測定装置(フィ
ードバック制御式)の側面図である。FIG. 3 is a side view of a shape measuring apparatus (feedback control type) according to another embodiment of the present invention.
【図4】本発明の他の実施例に係る形状測定装置(液面
基準式)を示す側面図である。FIG. 4 is a side view showing a shape measuring apparatus (liquid level reference type) according to another embodiment of the present invention.
【図5】本発明の他の実施例に係る形状測定装置(測定
対象物基準式)を示す側面図である。FIG. 5 is a side view showing a shape measuring apparatus (measurement target reference type) according to another embodiment of the present invention.
1 形状測定装置 3 干渉計 3a フィゾーレンズ 3b 参照面 4 光束 5 測定対象物 5a 被検面 5b 裏面 7 プリズム 8 除振台 9 定盤 11 空気バネ 13 脚 15 床 17 セオドライト 19 台 21 形状測定装置 23 上置き定盤 25 精密ピエゾアクチュエータ(角度調節機構) 31 形状測定装置 33 フィードバ
ック回路 41 形状測定装置 43 スィングミ
ラー 45 ミラー 47 ミラー 49 液体(水銀) 49a 表面Reference Signs List 1 shape measuring device 3 interferometer 3a Fizeau lens 3b reference surface 4 luminous flux 5 measurement object 5a test surface 5b back surface 7 prism 8 anti-vibration table 9 surface plate 11 air spring 13 legs 15 floor 17 theodolite 19 tables 21 shape measuring device 23 Top platen 25 Precision piezo actuator (angle adjustment mechanism) 31 Shape measuring device 33 Feedback circuit 41 Shape measuring device 43 Swing mirror 45 Mirror 47 Mirror 49 Liquid (mercury) 49a Surface
Claims (3)
する方法であって、測定器と測定対象物の相対位置関係
を保持したまま、該測定器と測定対象物の姿勢を重力方
向に対して任意に調節したうえで形状測定することを特
徴とする形状測定方法。1. A method for measuring the shape of an object based on the principle of interference or the like, wherein the attitude of the measuring instrument and the object to be measured with respect to the direction of gravity is maintained while maintaining the relative positional relationship between the measuring instrument and the object to be measured. A shape measuring method characterized by arbitrarily adjusting the shape and measuring the shape.
スと、このベース上に置かれた形状測定器と、ベースの
角度調節機構と、重力方向検出手段と、を備え;測定器
と測定対象物の相対位置関係を保持したまま、ベースの
重力方向に対する角度を任意に調節可能であることを特
徴とする形状測定装置。2. A base on which a measuring object and a shape measuring instrument are mounted, a shape measuring instrument placed on the base, an angle adjusting mechanism of the base, and a gravity direction detecting means; A shape measuring apparatus characterized in that the angle of the base with respect to the direction of gravity can be arbitrarily adjusted while maintaining the relative positional relationship between objects.
重力方向を演算処理し、上記角度調節機構にフィードバ
ックし、上記ベースを重力方向に対して常に一定の角度
に維持するか、または、任意の角度に変更するためのフ
ィードバック回路を備える請求項2記載の形状測定装
置。3. An arithmetic processing of the gravity direction detected by the gravity direction detecting means, and the arithmetic processing is fed back to the angle adjusting mechanism so that the base is always maintained at a constant angle with respect to the gravity direction. 3. The shape measuring device according to claim 2, further comprising a feedback circuit for changing the angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8221250A JPH1062136A (en) | 1996-08-22 | 1996-08-22 | Method and device for shape measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8221250A JPH1062136A (en) | 1996-08-22 | 1996-08-22 | Method and device for shape measurement |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1062136A true JPH1062136A (en) | 1998-03-06 |
Family
ID=16763833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8221250A Pending JPH1062136A (en) | 1996-08-22 | 1996-08-22 | Method and device for shape measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1062136A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004266264A (en) * | 2003-02-13 | 2004-09-24 | Canon Inc | Optical system, aligner, method for manufacturing device |
US7190448B2 (en) | 2002-10-25 | 2007-03-13 | Nidek Co., Ltd. | Surface inspecting apparatus |
JP2011112487A (en) * | 2009-11-26 | 2011-06-09 | Mitsubishi Heavy Ind Ltd | Excitation device |
JP2011127901A (en) * | 2009-12-15 | 2011-06-30 | Canon Inc | Interference measuring apparatus |
JP2016075603A (en) * | 2014-10-07 | 2016-05-12 | 株式会社ジェイテック | Ultra precise shape measurement device |
CN113251995A (en) * | 2021-05-18 | 2021-08-13 | 中国科学院云南天文台 | Method for obtaining all-weather astronomical longitude and latitude indirect measurement value |
-
1996
- 1996-08-22 JP JP8221250A patent/JPH1062136A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190448B2 (en) | 2002-10-25 | 2007-03-13 | Nidek Co., Ltd. | Surface inspecting apparatus |
JP2004266264A (en) * | 2003-02-13 | 2004-09-24 | Canon Inc | Optical system, aligner, method for manufacturing device |
JP2011112487A (en) * | 2009-11-26 | 2011-06-09 | Mitsubishi Heavy Ind Ltd | Excitation device |
JP2011127901A (en) * | 2009-12-15 | 2011-06-30 | Canon Inc | Interference measuring apparatus |
JP2016075603A (en) * | 2014-10-07 | 2016-05-12 | 株式会社ジェイテック | Ultra precise shape measurement device |
CN113251995A (en) * | 2021-05-18 | 2021-08-13 | 中国科学院云南天文台 | Method for obtaining all-weather astronomical longitude and latitude indirect measurement value |
CN113251995B (en) * | 2021-05-18 | 2023-03-21 | 中国科学院云南天文台 | Method for obtaining all-weather astronomical longitude and latitude indirect measurement value |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1183438A (en) | Position calibration method for optical measuring device | |
US9733078B2 (en) | Levelness detecting device and method, levelness adjusting device and method | |
US11898926B2 (en) | Inspection apparatus and methods for precision vibration-isolation tabletops | |
US5208438A (en) | Method and apparatus for adjusting laser instruments Z axis | |
JP2009069151A (en) | Means and method for determining space position of transfer element in coordinate measuring device | |
US6067152A (en) | Alignment range for multidirectional construction laser | |
CN102566295A (en) | Lithography device and method for measuring multi-light spot zero offset | |
Fan et al. | Design of a dual-axis optoelectronic level for precision angle measurements | |
JPH1062136A (en) | Method and device for shape measurement | |
US5724744A (en) | Self-leveling device mounted on a rotating base for projecting laser rays | |
JP2003057026A (en) | Alignment adjusting apparatus for probe, measuring machine equipped therewith and alignment adjusting method for probe | |
CN109959350A (en) | The detection method and device of prism right angle working face verticality | |
JP7211722B2 (en) | X-ray CT system for measurement | |
Bruns | An optically referenced inclinometer with sub-microradian repeatability | |
JPH11125520A (en) | Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer | |
JP2009036766A (en) | Determination method of systematic error caused by substrate topology in measuring edge position of structure on substrate | |
KR100670072B1 (en) | Reticle focus measurement system and method using multiple interferometric beams | |
JP2003004433A (en) | Method and apparatus for measuring minute inside diameter | |
JP2018059733A (en) | Three-dimentional shape measurement system | |
TW593974B (en) | Micro-mirror inspecting method and its inspecting apparatus | |
JP3151150B2 (en) | Surveying instrument accuracy inspection method and its inspection device | |
JPH11166823A (en) | Probe mechanism and coordinate measuring device using the same | |
JPH1074687A (en) | Stage device | |
KR101851471B1 (en) | Apparatus to align rotation surface and Method to align rotation surface thereof | |
CN112762857B (en) | Large-caliber plane mirror surface shape online detection method |