JPH1061466A - Fuel injection control device for internal combustion engine of inner-cylinder direct infection type - Google Patents
Fuel injection control device for internal combustion engine of inner-cylinder direct infection typeInfo
- Publication number
- JPH1061466A JPH1061466A JP8218671A JP21867196A JPH1061466A JP H1061466 A JPH1061466 A JP H1061466A JP 8218671 A JP8218671 A JP 8218671A JP 21867196 A JP21867196 A JP 21867196A JP H1061466 A JPH1061466 A JP H1061466A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- temperature
- catalyst
- sub
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は筒内直接噴射式内燃
機関の燃料噴射制御装置に関する。The present invention relates to a fuel injection control device for a direct injection type internal combustion engine.
【0002】[0002]
【従来の技術】高い燃費を確保するために空燃比を非常
に大きくしたリーン混合気を大部分の機関運転領域にお
いて燃焼するようにしたリーンバーン内燃機関が知られ
ている。リーンバーン内燃機関では多量のNOX を排出
するため、このNOX を浄化するための浄化触媒を排気
系に配置する必要がある。従来から三元触媒が良く知ら
れているが、これは排気ガスの空燃比が理論空燃比のと
きに良好な浄化特性を示すため、排気ガス中の酸素濃度
が非常に高いリーンバーン内燃機関において三元触媒を
用いてNOX を良好に浄化することができない。従って
リーンバーン内燃機関では排気ガスの空燃比がリーンの
ときに適量のHC、CO等の存在下でNO X をHC、C
Oと選択的に反応させるリーンNOX 触媒としてNOX
選択還元触媒が用いられる。上述のようにNOX 選択還
元触媒でNOX を浄化するためには触媒内に適量のHC
成分等が必要とされる。ところが、筒内直接噴射式内燃
機関の通常運転時の排気中のHC成分等の量は極めて少
なくなる。このため通常の運転状態では触媒のNOX 浄
化能力が低下してしまう。これを防止するためにはリー
ン空燃比運転実施時に定期的にNOX 選択還元触媒にH
C成分等を供給することが必要である。例えば特開平4
−231645号公報では、リーンバーンタイプの筒内
直接噴射式内燃機関において機関駆動力を得るために通
常筒内へ行われる噴射(以下、主噴射)のあとに別個の
噴射(以下、副噴射)を筒内へ行うことにより、未燃H
CをNOX 選択還元触媒へ供給している。2. Description of the Related Art In order to ensure high fuel efficiency, an air-fuel ratio is extremely low.
The lean mixture to most engine operating areas.
There is a known lean-burn internal combustion engine
ing. Large amounts of NO in lean burn internal combustion enginesXDischarge
This NOXExhaust purification catalyst to purify
Must be placed in the system. Well known three-way catalyst
This is because the air-fuel ratio of the exhaust gas is
Oxygen concentration in exhaust gas to show good purification characteristics
Use three-way catalysts in lean burn internal combustion engines
NO usingXCannot be satisfactorily purified. Therefore
In a lean burn internal combustion engine, the air-fuel ratio of the exhaust
Sometimes NO in the presence of appropriate amounts of HC, CO, etc. XTo HC, C
Lean NO that selectively reacts with OXNO as catalystX
A selective reduction catalyst is used. NO as described aboveXReturn
NO with original catalystXIn order to purify the catalyst, an appropriate amount of HC
Components and the like are required. However, direct injection type internal combustion
The amount of HC components and the like in the exhaust gas during normal operation of the engine is extremely small.
Disappears. For this reason, in the normal operation state, the catalyst NOXPurification
Conversion ability is reduced. To prevent this,
NO periodically during air-fuel ratio operationXH for selective reduction catalyst
It is necessary to supply the C component and the like. For example, JP
Japanese Patent No. 231645 discloses a lean burn type cylinder.
In order to obtain the engine driving force in a direct injection internal combustion engine,
A separate injection is performed after injection into the cylinder (hereinafter referred to as main injection).
By performing injection (hereinafter, sub-injection) into the cylinder, unburned H
NO for CXSupplying to the selective reduction catalyst.
【0003】[0003]
【発明が解決しようとする課題】ところでNOX 選択還
元触媒には浄化作用を行う適正温度範囲が存在する。即
ち、触媒温度が適正温度範囲以下のときには適量のHC
が触媒内に流入してもHCとNOX が反応せずに十分浄
化作用がおこなわれない。そこで、燃焼爆発直後に副噴
射で再度燃料を燃料室に噴射すると燃料が燃焼して十分
高温な排気ガスとして排出され触媒に流入することとな
る。そのため、触媒又はその近傍の温度は高温な排ガス
によって瞬時に上記適正温度範囲内に上昇する。しか
し、上記適正温度範囲に入ったと検知した後、別の気筒
の副噴射によってHCを供給したのではタイムラグで触
媒が上記適正温度範囲内にもかかわらずHCを添加して
いない期間が生じてしまうという問題がある。本発明の
目的はNOX 選択還元触媒の浄化率を高く維持すること
にある。The way the NO X selective reducing catalyst [0008] There are proper temperature range for purification action. That is, when the catalyst temperature is below the appropriate temperature range, an appropriate amount of HC
However, even if NO flows into the catalyst, HC and NO X do not react, and a sufficient purifying action is not performed. Therefore, when the fuel is again injected into the fuel chamber by the sub-injection immediately after the combustion explosion, the fuel burns, is discharged as a sufficiently high temperature exhaust gas, and flows into the catalyst. Therefore, the temperature of the catalyst or the vicinity thereof is instantaneously increased within the above-mentioned appropriate temperature range by the high-temperature exhaust gas. However, if HC is supplied by sub-injection of another cylinder after it is detected that the temperature has entered the appropriate temperature range, a period in which the catalyst does not add HC despite the above-mentioned appropriate temperature range occurs due to a time lag. There is a problem. An object of the present invention is to maintain a high purification rate of the NO X selective reducing catalyst.
【0004】[0004]
【課題を解決するための手段】本発明によれば、リーン
NOX 触媒を排気系に具備し、吸気行程または圧縮行程
において筒内へ主噴射を行い、該主噴射とは別個に筒内
へ副噴射を行うようにした筒内噴射式内燃機関の燃料噴
射制御装置において、上記リーンNOX 触媒の温度が予
め定められた温度より低いときには上記副噴射として膨
張行程において第一の副噴射を行い、該第一の噴射によ
り供給したHCを筒内にて燃焼し、更に前記第一の副噴
射後の膨張行程または排気行程において第二の副噴射を
行い、排気ガス中のHC量を増大し、上記リーンNOX
触媒の温度が予め定められた温度以上のときには上記副
噴射として第二の副噴射のみを行い、排気ガス中のHC
量を増大する。これにより触媒温度が予め定められた温
度より低いときには第一の副噴射により供給されたHC
が燃焼され、第二の副噴射により供給されたHCは燃焼
されずにリーンNOX 触媒へ流入し、触媒温度が予め定
められた温度以上のときには第二の副噴射により供給さ
れたHCが燃焼されずにリーンNOX 触媒へ流入する。According to the present invention, a lean NO X catalyst is provided in an exhaust system, and a main injection is performed into a cylinder during an intake stroke or a compression stroke, and the main injection is performed separately from the main injection into the cylinder. In the fuel injection control device for an in-cylinder injection internal combustion engine configured to perform the sub-injection, the first sub-injection is performed in the expansion stroke as the sub-injection when the temperature of the lean NO X catalyst is lower than a predetermined temperature. The HC supplied by the first injection is burned in a cylinder, and a second sub-injection is performed in an expansion stroke or an exhaust stroke after the first sub-injection to increase the amount of HC in the exhaust gas. , The lean NO X
When the temperature of the catalyst is equal to or higher than a predetermined temperature, only the second sub-injection is performed as the sub-injection, and HC in the exhaust gas is used.
Increase volume. Thus, when the catalyst temperature is lower than the predetermined temperature, the HC supplied by the first sub-injection
Are burned, and the HC supplied by the second sub-injection flows into the lean NO X catalyst without being burned, and when the catalyst temperature is equal to or higher than a predetermined temperature, the HC supplied by the second sub-injection is burned. Instead, it flows into the lean NO X catalyst.
【0005】[0005]
【発明の実施の形態】図1を参照すると、1は筒内直接
噴射式のディーゼル内燃機関の機関本体、2はピスト
ン、3は燃焼室、4は排気弁、5は排気ポートを夫々示
す。各気筒には夫々燃焼室3内に向けて燃料を噴射する
燃料噴射弁6が取り付けられる。排気ポート5はエキゾ
ーストマニホルド7および排気管8を介してリーンNO
X 触媒としてのNOX 選択還元触媒10に接続される。DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes an engine body of a direct injection type diesel internal combustion engine, 2 denotes a piston, 3 denotes a combustion chamber, 4 denotes an exhaust valve, and 5 denotes an exhaust port. A fuel injection valve 6 for injecting fuel into the combustion chamber 3 is attached to each cylinder. The exhaust port 5 is provided with a lean NO through an exhaust manifold 7 and an exhaust pipe 8.
It is connected to a NO X selective reduction catalyst 10 as an X catalyst.
【0006】電子制御ユニット40はデジタルコンピュ
ータからなり双方向性バス41を介して相互に接続され
たCPU(マイクロプロセッサ)42、RAM(ランダ
ムアクセスメモリ)43、ROM(リードオンメモリ)
44、入力ポート45および出力ポート46を具備す
る。NOX 選択還元触媒10には触媒温度に比例した出
力電圧を発生する温度センサ12が取り付けられ、この
温度センサ12の出力電圧はAD変換器47を介して入
力ポート45に入力される。また、入力ポート45には
機関本体1のクランクシャフトが例えば30度回転する
毎に出力パルスを発生するクランク角センサ14がAD
変換器48を介して接続される。更に、入力ポート45
にはアクセル踏込量Dに比例した出力電圧を発生するア
クセル踏込量センサ16が取り付けられ、このアクセル
踏込量センサ16の出力電圧がAD変換器49を介して
入力ポート45に入力される。CPU42ではこの出力
パルスに基づいて機関本体1の機関回転数が算出され
る。一方、出力ポート46はそれぞれ対応する駆動回路
50を介して燃料噴射弁6に接続される。The electronic control unit 40 is composed of a digital computer and is connected to each other via a bidirectional bus 41. A CPU (microprocessor) 42, a RAM (random access memory) 43, and a ROM (read-on memory).
44, an input port 45 and an output port 46. A temperature sensor 12 for generating an output voltage proportional to the catalyst temperature is attached to the NO X selective reduction catalyst 10, and the output voltage of the temperature sensor 12 is input to an input port 45 via an AD converter 47. The input port 45 is provided with the crank angle sensor 14 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 30 degrees.
It is connected via a converter 48. Further, the input port 45
The accelerator depression amount sensor 16 that generates an output voltage proportional to the accelerator depression amount D is attached to the input port. The output voltage of the accelerator depression amount sensor 16 is input to the input port 45 via the AD converter 49. The CPU 42 calculates the engine speed of the engine body 1 based on the output pulse. On the other hand, the output ports 46 are connected to the fuel injection valves 6 via the corresponding drive circuits 50, respectively.
【0007】次に本発明の燃料噴射制御装置の作動につ
いて説明する。機関運転中、NOX選択還元触媒10の
温度が温度センサ12により検出され、NOX 選択還元
触媒10の温度が予め定められた温度、本実施形態では
最適温度T0 (図2参照)以上であるか否かが判別され
る。NOX 選択還元触媒10の温度が最適温度T0 以上
であると判別されたときには図3の燃料噴射制御が行わ
れる。即ち、圧縮行程が完了する上死点(TDC)直後
において燃料噴射弁6から筒内へ主噴射Aが行われ、主
噴射Aのあとの膨張行程後期において燃料噴射弁6から
筒内へ副噴射(以下、第二の副噴射)Cが行われる。膨
張行程後期の筒内温度はHCを燃焼したり改質したりす
るほど十分に高くないため、第二の副噴射Cにより筒内
へ噴射されたHCは焼失したり改質されたりせずに高沸
点HCを多く含んだままNOX 選択還元触媒10へ流入
する。NOX 選択還元触媒10では適量の高沸点HCが
供給され、高い浄化率で浄化作用が行われる。NOX 選
択還元触媒10の温度が最適温度T0 より低いと判別さ
れたときには図4の燃料噴射制御が行われる。即ち、圧
縮行程が完了する上死点(TDC)直後において燃料噴
射弁6から筒内へ主噴射Aが行われ、主噴射Aのあとの
膨張行程中期において燃料噴射弁6から筒内へ副噴射
(以下、第一の副噴射)Bが行われ、更に第一の副噴射
Bのあとの膨張行程後期において燃料噴射弁6から筒内
へ第二の副噴射Cが行われる。膨張行程中期の筒内温度
は高いため、第一の副噴射Bにより筒内へ供給されたH
Cは燃焼されて焼失する。このとき排気ガス温度が上昇
し、温度の上昇した排気ガスがNOX 選択還元触媒10
へ流入する。これによりNOX 選択還元触媒10の触媒
温度が上昇せしめられ、最適温度T0 以上となる。第一
の副噴射により供給するHC量は、触媒温度Tを最適温
度T0 にするために必要な量に制御される。また膨張行
程後期では上述したように筒内温度が低いため、第二の
副噴射Cにより筒内へ供給されたHCは燃焼されたり改
質されたりせずに高沸点HCを多く含んだままNOX 選
択還元触媒へ流入する。このときNOX 選択還元触媒1
0は既に温度が最適温度T0 以上となっているため、そ
の後にNOX 選択還元触媒10へ流入した適量の高沸点
HCにより高い浄化率で浄化作用が行われる。尚、上記
では第一の副噴射の噴射タイミングは膨張行程中期とし
たが、第一の副噴射Bは筒内温度が第一の副噴射Bによ
り供給したHCを燃焼可能な温度にあるタイミングを選
択して行えばよく、概ね圧縮行程が完了する上死点(T
DC)後のクランク角度0°〜120°である。但し、
上死点後のクランク角度0°〜90°では主噴射Aによ
り供給されたHCが未だ燃焼している可能性があり、こ
こで副噴射により供給されたHCを燃焼させるとトルク
変動が生じるため、第一の副噴射Bは上死点後のクラン
ク角度90°〜120°であるのが好ましい。また第二
の副噴射Cの噴射タイミングは膨張行程後期としたが、
第二の副噴射Cは筒内がHCを燃焼しない温度にあるタ
イミングを選択して行えばよく、概ね上死点後のクラン
ク角度150°〜180°である。また第一の副噴射B
では、NOX 選択還元触媒10の触媒温度を上昇させる
のに十分な量のHCを筒内へ供給し、第二の副噴射Cで
はそのときの触媒温度や排気ガス中のNOX 量等に応じ
てNOX 選択還元触媒10が最も高い浄化率を示す量の
HCを筒内へ供給する。Next, the operation of the fuel injection control device according to the present invention will be described. During engine operation, the temperature of the NO X selective reducing catalyst 10 is detected by the temperature sensor 12, the temperature at which the temperature of the NO X selective reducing catalyst 10 is predetermined at least the optimum temperature T 0 in the present embodiment (see FIG. 2) It is determined whether or not there is. When it is determined that the temperature of the NO X selective reduction catalyst 10 is equal to or higher than the optimum temperature T 0 , the fuel injection control of FIG. 3 is performed. That is, the main injection A is performed from the fuel injection valve 6 into the cylinder immediately after the top dead center (TDC) at which the compression stroke is completed, and the sub-injection is performed from the fuel injection valve 6 into the cylinder at a later stage of the expansion stroke after the main injection A. (Hereinafter, the second sub-injection) C is performed. Since the in-cylinder temperature in the second half of the expansion stroke is not high enough to burn or reform HC, the HC injected into the cylinder by the second sub-injection C is not burned or reformed. It flows into the high-boiling HC to remain laden the NO X selective reducing catalyst 10. The NO X selective reduction catalyst 10 is supplied with an appropriate amount of high boiling point HC, and performs a purification operation at a high purification rate. When it is determined that the temperature of the NO X selective reduction catalyst 10 is lower than the optimum temperature T 0 , the fuel injection control of FIG. 4 is performed. That is, the main injection A is performed from the fuel injection valve 6 into the cylinder immediately after the top dead center (TDC) at which the compression stroke is completed, and the sub-injection is performed from the fuel injection valve 6 into the cylinder during the middle stage of the expansion stroke after the main injection A. (Hereinafter, a first sub-injection) B is performed, and a second sub-injection C is performed from the fuel injection valve 6 into the cylinder at a later stage of the expansion stroke after the first sub-injection B. Since the in-cylinder temperature in the middle stage of the expansion stroke is high, H supplied to the cylinder by the first sub-injection B
C is burned and burned off. At this time the exhaust gas temperature rises and increased exhaust gas temperature is the NO X selective reducing catalyst 10
Flows into Thus the catalyst temperature of the NO X selective reducing catalyst 10 is raised, the optimum temperature T 0 or more. HC quantity supplied by the first auxiliary injection is controlled to an amount required to bring the catalyst temperature T in optimum temperature T 0. In the latter half of the expansion stroke, since the in-cylinder temperature is low as described above, the HC supplied into the cylinder by the second sub-injection C is not burned or reformed and contains a large amount of high-boiling-point HC. It flows into the X selective reduction catalyst. In this case the NO X selective reducing catalyst 1
Since the temperature of 0 is already higher than the optimum temperature T 0 , the purifying action is performed at a high purifying rate by an appropriate amount of high boiling point HC which has flowed into the NO X selective reduction catalyst 10 thereafter. In the above description, the injection timing of the first sub-injection is set to the middle stage of the expansion stroke. The top dead center (T
The crank angle after DC) is 0 ° to 120 °. However,
At a crank angle of 0 ° to 90 ° after the top dead center, there is a possibility that HC supplied by the main injection A is still burning, and if HC supplied by the sub-injection is burned, a torque fluctuation occurs. The first sub-injection B preferably has a crank angle of 90 ° to 120 ° after the top dead center. In addition, the injection timing of the second sub-injection C is in the latter half of the expansion stroke,
The second sub-injection C may be performed by selecting a timing at which the inside of the cylinder is at a temperature at which HC is not combusted, and generally has a crank angle of 150 ° to 180 ° after the top dead center. Also, the first sub-injection B
Then, an amount of HC sufficient to raise the catalyst temperature of the NO X selective reduction catalyst 10 is supplied into the cylinder, and the second sub-injection C adjusts the catalyst temperature and the NO X amount in the exhaust gas at that time. Accordingly, the NO X selective reduction catalyst 10 supplies an amount of HC showing the highest purification rate into the cylinder.
【0008】ところで排気ガス中のNOX 量を直接求め
ることは困難である。そこで本発明では機関運転状態か
ら排気ガス中のNOX 量を推定するようにしている。即
ち、機関回転数Nが高くなるほど機関から単位時間当た
り排出される排気ガス量が増大するので機関回転数Nが
高くなるにつれて機関から単位時間当たり排出されるN
OX 量は増大する。また、機関負荷が高くなるほど、即
ちアクセル踏込量Dが高くなるほど各燃焼室3から排出
される排気ガス量が増大し、しかも燃焼温度が高くなる
ので機関負荷が高くなるほど、即ちアクセル踏込量Dが
高くなるほど機関から単位時間当たり排出されるNOX
量が増大する。図5は実験により求められた単位時間当
たりに機関から排出されるNOX 量と、アクセル踏込量
D、機関回転数Nとの関係を示しており、図5において
各曲線は同一NOX 量を示している。図5に示されるよ
うに単位時間当たり機関から排出されるNOX 量はアク
セル踏込量Dが高くなるほど多くなり、機関回転数Nが
高くなるほど多くなる。なお、図5に示されるNOX 量
は図6に示すようなマップの形で予めROM42内に記
憶されている。By the way to determine the amount of NO X in the exhaust gas it is difficult to directly. Therefore, in the present invention, the NO X amount in the exhaust gas is estimated from the operating state of the engine. That is, as the engine speed N increases, the amount of exhaust gas discharged from the engine per unit time increases. Therefore, as the engine speed N increases, N is discharged from the engine per unit time.
The O X amount increases. Further, as the engine load increases, that is, as the accelerator depression amount D increases, the amount of exhaust gas exhausted from each combustion chamber 3 increases, and the combustion temperature increases. Therefore, as the engine load increases, that is, the accelerator depression amount D decreases. NO X emitted per unit time from the engine as it becomes higher
The amount increases. FIG. 5 shows the relationship between the NO X amount discharged from the engine per unit time, the accelerator depression amount D, and the engine speed N obtained by the experiment. In FIG. 5, each curve shows the same NO X amount. Is shown. As shown in FIG. 5, the NO X amount discharged from the engine per unit time increases as the accelerator depression amount D increases, and increases as the engine speed N increases. The NO X amount shown in FIG. 5 is stored in advance in the ROM 42 in the form of a map as shown in FIG.
【0009】図7には本発明に従った噴射制御のフロー
チャートを示している。ステップS10において主噴射
Aが行われたあとにステップS12においてNOX 選択
還元触媒10の触媒温度Tを検出する。次いでステップ
S14へ進んで触媒温度Tが最適温度T0 以上であるか
否かが判別される。ステップS14において触媒温度T
が最適温度T0 以上であると判別されたときにはステッ
プS16へ進んで第二の副噴射Cが行われ、処理サイク
ルを終了する。ステップS14において触媒温度Tが最
適温度T0 以上でないと判別されたときにはステップS
18へ進んで第一の副噴射Bを行い、次いでステップS
16へ進んで第二の副噴射Cを行い、処理サイクルを終
了する。本発明においては上記噴射制御を全機関サイク
ルで常時行っているが、場合によっては予め定められた
機関サイクル毎または予め定められた時間毎に行っても
よい。FIG. 7 shows a flowchart of the injection control according to the present invention. Detecting the catalyst temperature T of the NO X selective reducing catalyst 10 in step S12 after the main injection A is performed in step S10. Then whether the catalyst temperature T is the optimum temperature T 0 or more is determined proceeds to step S14. In step S14, the catalyst temperature T
Is determined to be equal to or higher than the optimum temperature T 0 , the process proceeds to step S16, the second sub-injection C is performed, and the processing cycle ends. Step S when the catalyst temperature T is determined to not optimum temperature T 0 or more in step S14
18, the first sub-injection B is performed, and then step S
Proceeding to 16, the second sub-injection C is performed, and the processing cycle ends. In the present invention, the above-described injection control is always performed in all engine cycles, but may be performed in every predetermined engine cycle or every predetermined time in some cases.
【0010】上記では浄化率が最も高くなる最適温度T
0 以上に触媒温度Tがあるか否かを判別し、副噴射を制
御しているが、所望により予め定められた温度を設定
し、この予め定められた温度を応じて副噴射を制御した
り、浄化率が比較的高くなる適正温度範囲(例えば、図
2中の温度範囲T1 〜T2 )内、適正温度範囲以下、ま
たは適正温度範囲以上のいずれに触媒温度があるか否か
を判別し、そのときの必要に応じて副噴射を制御しても
よい。また本願ではディーゼル内燃機関に適用した場合
の燃料噴射制御装置を挙げたが、リーンバーン型であれ
ば筒内直接噴射火花点火式の内燃機関にも適用できる。
更に排気ガスの空燃比がリーンのときにはNOX を吸収
し、排気ガス中の酸素濃度が低下すると吸収したNOX
を放出するNOX 触媒に本発明を適用することも可能で
ある。In the above description, the optimum temperature T at which the purification rate becomes the highest is obtained.
The sub-injection is controlled by determining whether or not the catalyst temperature T is equal to or greater than 0, but a predetermined temperature is set as desired, and the sub-injection is controlled according to the predetermined temperature. It is determined whether the catalyst temperature is within an appropriate temperature range where the purification rate is relatively high (for example, the temperature range T 1 to T 2 in FIG. 2), below the appropriate temperature range, or above the appropriate temperature range. The sub-injection may be controlled as needed at that time. Further, in the present application, the fuel injection control device applied to the diesel internal combustion engine has been described. However, the present invention can be applied to a direct injection spark ignition type internal combustion engine of a lean burn type.
Further, when the air-fuel ratio of the exhaust gas is lean, NO X is absorbed, and when the oxygen concentration in the exhaust gas decreases, the absorbed NO X is absorbed.
It is also possible to apply the present invention to a NO X catalyst that releases NO.
【0011】[0011]
【発明の効果】本発明によれば、触媒温度が予め定めら
れた温度より低いときには第一の副噴射によるHCの大
部分を燃焼させるため、その燃焼により温度が上昇した
排気ガスがリーンNOX 触媒へ流入し、リーンNOX 触
媒の温度を予め定められた温度に近づけまたは予め定め
られた温度に維持することができる。また第二の副噴射
により供給されたHCの大部分が筒内の熱の影響を受け
ずにリーンNOX 触媒へ流入されるため、浄化作用に適
量のHCがリーンNOX 触媒へ供給され、リーンNOX
触媒の高い浄化率を確保することができる。According to the present invention, when the catalyst temperature is lower than the predetermined temperature, most of the HC by the first sub-injection is burned, so that the exhaust gas whose temperature has risen due to the combustion becomes lean NO X. flows into the catalyst can be maintained in close or a predetermined temperature in a predetermined temperature the temperature of the lean NO X catalyst. Further, most of the HC supplied by the second sub-injection flows into the lean NO X catalyst without being affected by the heat in the cylinder, so that an appropriate amount of HC for the purification action is supplied to the lean NO X catalyst, Lean NO X
A high purification rate of the catalyst can be secured.
【図1】NOX 選択還元触媒を備えた筒内直接噴射式内
燃機関を示した図である。FIG. 1 is a view showing an in-cylinder direct injection internal combustion engine equipped with a NO X selective reduction catalyst.
【図2】NOX 選択還元触媒の触媒温度とNOX 浄化率
との関係を示す図である。FIG. 2 is a diagram showing a relationship between a catalyst temperature of a NO X selective reduction catalyst and a NO X purification rate.
【図3】触媒温度が所定温度以上であると判別されたと
きに行われる燃料噴射制御におけるクランク角度と燃料
噴射弁開閉信号との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a crank angle and a fuel injection valve opening / closing signal in fuel injection control performed when it is determined that a catalyst temperature is equal to or higher than a predetermined temperature.
【図4】触媒温度が所定温度以上であると判別されなか
ったときに行われる燃料噴射制御におけるクランク角度
と燃料噴射弁開閉信号との関係を示す図である。FIG. 4 is a diagram illustrating a relationship between a crank angle and a fuel injection valve opening / closing signal in fuel injection control performed when it is not determined that the catalyst temperature is equal to or higher than a predetermined temperature.
【図5】機関本体から排出されるNOX 量を示す図であ
る。FIG. 5 is a diagram showing the amount of NO X discharged from the engine body.
【図6】機関本体から排出されるNOX 量を推定するた
めのマップを示す図である。FIG. 6 is a diagram showing a map for estimating the NO X amount discharged from the engine body.
【図7】本発明の燃料噴射制御を示すフローチャートで
ある。FIG. 7 is a flowchart showing fuel injection control according to the present invention.
10…NOX 選択還元触媒 A…主噴射 B…第一の副噴射 C…第二の副噴射10: NO X selective reduction catalyst A: Main injection B: First sub-injection C: Second sub-injection
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/28 ZAB F02D 41/02 330A 3/36 ZAB 9523−3G 41/34 ZABF F02D 41/02 330 45/00 ZAB 41/34 ZAB 310R 45/00 ZAB B01D 53/36 ZAB 310 102H (72)発明者 井口 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 田中 俊明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display F01N 3/28 ZAB F02D 41/02 330A 3/36 ZAB 9523-3G 41/34 ZABF F02D 41/02 330 45/00 ZAB 41/34 ZAB 310R 45/00 ZAB B01D 53/36 ZAB 310 102H (72) Inventor Tetsu Iguchi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Toshiaki Tanaka Aichi 1 Toyota Town, Toyota City, Japan
Claims (1)
気行程または圧縮行程において筒内へ主噴射を行い、該
主噴射とは別個に筒内へ副噴射を行うようにした筒内噴
射式内燃機関の燃料噴射制御装置において、上記リーン
NOX 触媒の温度が予め定められた温度より低いときに
は上記副噴射として膨張行程において第一の副噴射を行
い、該第一の噴射により供給したHCを筒内にて燃焼
し、更に前記第一の副噴射後の膨張行程または排気行程
において第二の副噴射を行い、排気ガス中のHC量を増
大し、上記リーンNOX 触媒の温度が予め定められた温
度以上のときには上記副噴射として第二の副噴射のみを
行い、排気ガス中のHC量を増大したことを特徴とする
筒内直接噴射式内燃機関の燃料噴射制御装置。1. An in-cylinder injection in which a lean NO X catalyst is provided in an exhaust system, and a main injection is performed into a cylinder during an intake stroke or a compression stroke, and a sub-injection is performed separately from the main injection into the cylinder. In the fuel injection control device for an internal combustion engine, when the temperature of the lean NO X catalyst is lower than a predetermined temperature, a first sub-injection is performed in the expansion stroke as the sub-injection, and the HC supplied by the first injection is supplied. burning in the cylinder, further subjected to a second auxiliary injection in the first expansion stroke or exhaust stroke after the auxiliary injection, to increase the HC amount in the exhaust gas, the temperature of the lean NO X catalyst in advance A fuel injection control apparatus for a direct injection type internal combustion engine, characterized in that when the temperature is equal to or higher than a predetermined temperature, only the second sub-injection is performed as the sub-injection to increase the amount of HC in the exhaust gas.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21867196A JP3371707B2 (en) | 1996-08-20 | 1996-08-20 | Fuel injection control device for in-cylinder direct injection internal combustion engine |
US08/911,811 US5839275A (en) | 1996-08-20 | 1997-08-15 | Fuel injection control device for a direct injection type engine |
EP97114293A EP0831226B1 (en) | 1996-08-20 | 1997-08-19 | A fuel injection control device for a direct injection type engine |
DE69732461T DE69732461T2 (en) | 1996-08-20 | 1997-08-19 | Fuel injection control device for a direct injection engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21867196A JP3371707B2 (en) | 1996-08-20 | 1996-08-20 | Fuel injection control device for in-cylinder direct injection internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1061466A true JPH1061466A (en) | 1998-03-03 |
JP3371707B2 JP3371707B2 (en) | 2003-01-27 |
Family
ID=16723607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21867196A Expired - Fee Related JP3371707B2 (en) | 1996-08-20 | 1996-08-20 | Fuel injection control device for in-cylinder direct injection internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3371707B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006038480A1 (en) * | 2004-10-04 | 2006-04-13 | Hino Motors, Ltd. | Exhaust emission control device |
US7589656B2 (en) | 2004-06-16 | 2009-09-15 | Siemens Aktiengesellschaft | Crankshaft-synchronous detection of analog signals |
US7720593B2 (en) * | 2007-10-02 | 2010-05-18 | Ford Global Technologies, Llc | Fuel injection strategy for gasoline direct injection engine during high speed/load operation |
-
1996
- 1996-08-20 JP JP21867196A patent/JP3371707B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7589656B2 (en) | 2004-06-16 | 2009-09-15 | Siemens Aktiengesellschaft | Crankshaft-synchronous detection of analog signals |
WO2006038480A1 (en) * | 2004-10-04 | 2006-04-13 | Hino Motors, Ltd. | Exhaust emission control device |
US7720593B2 (en) * | 2007-10-02 | 2010-05-18 | Ford Global Technologies, Llc | Fuel injection strategy for gasoline direct injection engine during high speed/load operation |
Also Published As
Publication number | Publication date |
---|---|
JP3371707B2 (en) | 2003-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5839275A (en) | Fuel injection control device for a direct injection type engine | |
JP4250856B2 (en) | In-cylinder internal combustion engine | |
US6516612B1 (en) | Exhaust gas purification device for an engine and A/F ratio control for early activating a NOx trapping catalyst | |
US6438943B1 (en) | In-cylinder injection type internal combustion engine | |
JPH10317946A (en) | Exhaust emission control device | |
US7162863B2 (en) | Exhaust gas purifying apparatus for internal combustion engine | |
JP2000008922A (en) | Cylinder direct injection type spark-ignition engine | |
JPH04231645A (en) | Fuel injection control apparatus for cylinder direct injection type internal combustion engine | |
US6170260B1 (en) | Exhaust emission control apparatus for combustion engine | |
JP3931820B2 (en) | Internal combustion engine and control method for internal combustion engine | |
JP3052777B2 (en) | In-cylinder injection internal combustion engine | |
JPH11148338A (en) | Method to regenerate trap for nitrogen oxides of exhaust system of internal combustion engine | |
JP3371707B2 (en) | Fuel injection control device for in-cylinder direct injection internal combustion engine | |
JP3675198B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3335278B2 (en) | Fuel injection control device for in-cylinder direct injection internal combustion engine | |
JP2773341B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2001073913A (en) | Control device of direct injection spark ignition internal combustion engine | |
JP3341592B2 (en) | Fuel injection control device for in-cylinder direct injection internal combustion engine | |
JP3614051B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4134861B2 (en) | Control device for premixed compression ignition type internal combustion engine | |
JPH1150894A (en) | Emission control device of internal combustion engine | |
JP2000130214A (en) | Exhaust emission control device for internal combustion engine | |
JP3512062B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2005048631A (en) | Catalyst temperature raising device for internal combustion engine | |
JP2024054713A (en) | Control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081122 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |