JP3341592B2 - Fuel injection control device for in-cylinder direct injection internal combustion engine - Google Patents

Fuel injection control device for in-cylinder direct injection internal combustion engine

Info

Publication number
JP3341592B2
JP3341592B2 JP21864396A JP21864396A JP3341592B2 JP 3341592 B2 JP3341592 B2 JP 3341592B2 JP 21864396 A JP21864396 A JP 21864396A JP 21864396 A JP21864396 A JP 21864396A JP 3341592 B2 JP3341592 B2 JP 3341592B2
Authority
JP
Japan
Prior art keywords
injection
catalyst
temperature
sub
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21864396A
Other languages
Japanese (ja)
Other versions
JPH1061464A (en
Inventor
信也 広田
達司 水野
一哉 木部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21864396A priority Critical patent/JP3341592B2/en
Priority to US08/911,811 priority patent/US5839275A/en
Priority to EP97114293A priority patent/EP0831226B1/en
Priority to DE69732461T priority patent/DE69732461T2/en
Publication of JPH1061464A publication Critical patent/JPH1061464A/en
Application granted granted Critical
Publication of JP3341592B2 publication Critical patent/JP3341592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は筒内直接噴射式内燃
機関の燃料噴射制御装置に関する。
The present invention relates to a fuel injection control device for a direct injection type internal combustion engine.

【0002】[0002]

【従来の技術】高い燃費を確保するために空燃比を非常
に大きくしたリーン混合気を大部分の機関運転領域にお
いて燃焼するようにしたリーンバーン内燃機関が知られ
ている。リーンバーン内燃機関では多量のNOX を排出
するため、このNOX を浄化するための浄化触媒を排気
系に配置する必要がある。従来から三元触媒が良く知ら
れているが、これは排気ガスの空燃比が理論空燃比のと
きに良好な浄化特性を示すため、排気ガス中の酸素濃度
が非常に高いリーンバーン内燃機関において三元触媒を
用いてNOX を良好に浄化することができない。従って
リーンバーン内燃機関では排気ガスの空燃比がリーンの
ときに適量のHC、CO等の存在下でNO X をHC、C
Oと選択的に反応させるリーンNOX 触媒としてNOX
選択還元触媒が用いられる。上述のようにNOX 選択還
元触媒でNOX を浄化するためには触媒内に適量のHC
成分等が必要とされる。ところが、筒内直接噴射式内燃
機関の通常運転時の排気中のHC成分等の量は極めて少
なくなる。このため通常の運転状態では触媒のNOX
化能力が低下してしまう。これを防止するためにはリー
ン空燃比運転実施時に定期的にNOX 選択還元触媒にH
C成分等を供給することが必要である。
2. Description of the Related Art In order to ensure high fuel efficiency, an air-fuel ratio is extremely low.
The lean mixture to most engine operating areas.
There is a known lean-burn internal combustion engine
ing. Large amounts of NO in lean burn internal combustion enginesXDischarge
This NOXExhaust purification catalyst to purify
Must be placed in the system. Well known three-way catalyst
This is because the air-fuel ratio of the exhaust gas is
Oxygen concentration in exhaust gas to show good purification characteristics
Use three-way catalysts in lean burn internal combustion engines
NO usingXCannot be satisfactorily purified. Therefore
In a lean burn internal combustion engine, the air-fuel ratio of the exhaust
Sometimes NO in the presence of appropriate amounts of HC, CO, etc. XTo HC, C
Lean NO that selectively reacts with OXNO as catalystX
A selective reduction catalyst is used. NO as described aboveXReturn
NO with original catalystXIn order to purify the catalyst, an appropriate amount of HC
Components and the like are required. However, direct injection type internal combustion
The amount of HC components and the like in the exhaust gas during normal operation of the engine is extremely small.
Disappears. For this reason, in the normal operation state, the catalyst NOXPurification
Conversion ability is reduced. To prevent this,
NO periodically during air-fuel ratio operationXH for selective reduction catalyst
It is necessary to supply the C component and the like.

【0003】[0003]

【発明が解決しようとする課題】ところでNOX 選択還
元触媒には浄化作用を行う適正温度範囲が存在する。即
ち、触媒温度が適正温度範囲以下のときには適量のHC
が触媒内に流入してもHCとNOX が反応せずに十分浄
化作用がおこなわれない。そこで、HC成分を高活性な
HCにすれば比較的低温でもHCとNOX が反応する。
このような高活性なHCを副噴射から生成させようとす
ると副噴射時期を爆発時期に近づけることが必要とな
る。即ち、爆発時の熱によって燃料が高活性なHCに改
質する。ところが、この高活性なHCを生成するために
は爆発時の熱によって燃料が焼失する分も見込んで供給
しなければならないので多量にHCが必要となってくる
という問題がある。本発明の目的はNOX 選択還元触媒
の浄化率を高く維持することにある。
The way the NO X selective reducing catalyst [0008] There are proper temperature range for purification action. That is, when the catalyst temperature is below the appropriate temperature range, an appropriate amount of HC
However, even if NO flows into the catalyst, HC and NO X do not react, and a sufficient purifying action is not performed. Therefore, HC and NO X react even at relatively low temperatures if the HC component in the highly active HC.
In order to generate such highly active HC from the sub-injection, it is necessary to bring the sub-injection timing close to the explosion timing. That is, the fuel is reformed into highly active HC by the heat of the explosion. However, in order to generate this highly active HC, it is necessary to supply the fuel in consideration of the loss of the fuel due to the heat at the time of the explosion. Therefore, there is a problem that a large amount of HC is required. An object of the present invention is to maintain a high purification rate of the NO X selective reducing catalyst.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1によれ
ば、リーンNOX 触媒を排気系に具備し、吸気行程また
は圧縮行程において筒内へ主噴射を行い、該主噴射とは
別個に筒内へ副噴射を行うようにした筒内直接噴射式内
燃機関の燃料噴射制御装置において、上記副噴射として
膨張行程において第一の副噴射を行い、HC熱分解物を
発生させ、更に前記第一の副噴射後の膨張行程または排
気行程において第二の副噴射を行い、排気ガス中のHC
量を増大する。これによりHC熱分解物と熱分解されて
いないHCとがリーンNOX 触媒へ供給される。本発明
の請求項2によれば、請求項1の筒内直接噴射式内燃機
関の燃料噴射制御装置において、前記リーンNOX 触媒
の上流側の排気系に酸化触媒を備えると共に、該酸化触
媒と前記リーンNOX 触媒との間にHCを添加するHC
添加手段を具備し、前記リーンNOX 触媒の温度が予め
定められた温度より低いときには前記第一の副噴射と第
二の副噴射とを行い、前記リーンNOX 触媒の温度が予
め定められた温度以上であるときには前記HC添加手段
によりHCを添加する。これにより触媒温度が予め定め
られた温度より低いときには副噴射により供給されたH
Cは酸化触媒を介してリーンNOX 触媒へ供給され、触
媒温度が予め定められた温度以上であるときには酸化触
媒を介さずにHC添加手段により直接リーンNOX 触媒
へHCが供給される。
According to a first aspect of the present invention, in order to solve the problems], comprising a lean NO X catalyst in the exhaust system performs a main injection into the cylinder in the intake stroke or compression stroke, separately from the main injection In the fuel injection control device for a direct injection type internal combustion engine, which performs a sub-injection into a cylinder, performs a first sub-injection in an expansion stroke as the sub-injection to generate HC pyrolysis products, The second sub-injection is performed in the expansion stroke or the exhaust stroke after the first sub-injection, and the HC in the exhaust gas
Increase volume. As a result, the thermally decomposed HC and the undecomposed HC are supplied to the lean NO X catalyst. According to a second aspect of the present invention, in the fuel injection control apparatus for a direct injection type internal combustion engine according to the first aspect, an oxidation catalyst is provided in an exhaust system on an upstream side of the lean NO X catalyst, and HC for adding HC to the lean NO X catalyst
When the temperature of the lean NO X catalyst is lower than a predetermined temperature, the first sub-injection and the second sub-injection are performed, and the temperature of the lean NO X catalyst is predetermined. When the temperature is equal to or higher than the temperature, HC is added by the HC adding means. Thus, when the catalyst temperature is lower than a predetermined temperature, H
C is supplied to the lean NO X catalyst via the oxidation catalyst. When the catalyst temperature is equal to or higher than a predetermined temperature, HC is directly supplied to the lean NO X catalyst by the HC adding means without passing through the oxidation catalyst.

【0005】[0005]

【発明の実施の形態】図1を参照すると本発明の第一実
施形態が示されており、図1において、1は筒内直接噴
射式のディーゼル内燃機関の機関本体、2はピストン、
3は燃焼室、4は排気弁、5は排気ポートを夫々示す。
各気筒には夫々燃焼室3内に向けて燃料を噴射する燃料
噴射弁6が取り付けられる。排気ポート5はエキゾース
トマニホルド7および排気管8を介してリーンNOX
媒としてのNOX 選択還元触媒10に接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, there is shown a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an engine body of a direct injection type diesel internal combustion engine;
Reference numeral 3 denotes a combustion chamber, 4 denotes an exhaust valve, and 5 denotes an exhaust port.
A fuel injection valve 6 for injecting fuel into the combustion chamber 3 is attached to each cylinder. Exhaust port 5 is connected to the NO X selective reducing catalyst 10 as the lean NO X catalyst through the exhaust manifold 7 and an exhaust pipe 8.

【0006】電子制御ユニット40はデジタルコンピュ
ータからなり双方向性バス41を介して相互に接続され
たCPU(マイクロプロセッサ)42、RAM(ランダ
ムアクセスメモリ)43、ROM(リードオンメモリ)
44、入力ポート45および出力ポート46を具備す
る。NOX 選択還元触媒10には触媒温度に比例した出
力電圧を発生する温度センサ12が取り付けられ、この
温度センサ12の出力電圧はAD変換器47を介して入
力ポート45に入力される。また、入力ポート45には
機関本体1のクランクシャフトが例えば30度回転する
毎に出力パルスを発生するクランク角センサ14がAD
変換器48を介して接続される。更に、入力ポート45
にはアクセル踏込量Dに比例した出力電圧を発生するア
クセル踏込量センサ16が取り付けられ、このアクセル
踏込量センサ16の出力電圧がAD変換器49を介して
入力ポート45に入力される。CPU42ではこの出力
パルスに基づいて機関本体1の機関回転数が算出され
る。一方、出力ポート46はそれぞれ対応する駆動回路
50を介して燃料噴射弁6に接続される。
The electronic control unit 40 is composed of a digital computer and is connected to each other via a bidirectional bus 41. A CPU (microprocessor) 42, a RAM (random access memory) 43, and a ROM (read-on memory).
44, an input port 45 and an output port 46. A temperature sensor 12 for generating an output voltage proportional to the catalyst temperature is attached to the NO X selective reduction catalyst 10, and the output voltage of the temperature sensor 12 is input to an input port 45 via an AD converter 47. The input port 45 is provided with the crank angle sensor 14 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 30 degrees.
It is connected via a converter 48. Further, the input port 45
The accelerator depression amount sensor 16 that generates an output voltage proportional to the accelerator depression amount D is attached to the input port. The output voltage of the accelerator depression amount sensor 16 is input to the input port 45 via the AD converter 49. The CPU 42 calculates the engine speed of the engine body 1 based on the output pulse. On the other hand, the output ports 46 are connected to the fuel injection valves 6 via the corresponding drive circuits 50, respectively.

【0007】次に本発明の燃料噴射制御装置の作動につ
いて説明する。機関運転中、NOX選択還元触媒10の
温度が温度センサ12により検出され、NOX 選択還元
触媒10の温度が予め定められた温度、本実施形態では
最適温度T0 (図2参照)以上であるか否かが判別され
る。NOX 選択還元触媒10の温度が最適温度T0 以上
であると判別されたときには図3の燃料噴射制御が行わ
れる。即ち、圧縮行程が完了する上死点(TDC)直後
において燃料噴射弁6から筒内へ主噴射Aが行われ、主
噴射Aのあとの膨張行程後期において燃料噴射弁6から
筒内へ副噴射(以下、第二の副噴射)Cが行われる。膨
張行程後期の筒内温度はHCを燃焼したり改質したりす
るほど十分に高くないため、第二の副噴射Cにより筒内
へ噴射されたHCは焼失したり改質されたりせずに高沸
点HCを多く含んだままNOX 選択還元触媒10へ流入
する。NOX 選択還元触媒10では適量の高沸点HCが
供給され、高い浄化率で浄化作用が行われる。NOX
択還元触媒10の温度が最適温度T0 より低いと判別さ
れたときには図4の燃料噴射制御が行われる。即ち、圧
縮行程が完了する上死点(TDC)直後において燃料噴
射弁6から筒内へ主噴射Aが行われ、主噴射Aのあとの
膨張行程中期において燃料噴射弁6から筒内へ副噴射
(以下、第一の副噴射)Bが行われ、更に第一の副噴射
Bのあとの膨張行程後期において燃料噴射弁6から筒内
へ第二の副噴射Cが行われる。膨張行程中期の筒内温度
は比較的高いため、第一の副噴射Bにより筒内へ供給さ
れたHCは改質されて熱分解物、即ち低沸点HCとな
り、NOX 選択還元触媒10へ供給される。また膨張行
程後期では上述したように筒内温度が低いため、第二の
副噴射Cにより筒内へ供給されたHCは燃焼されたり改
質されたりせずに高沸点HCを多く含んだままNOX
択還元触媒10へ流入する。NOX 選択還元触媒10で
は、初めに活性の高い低沸点HCによりNOX 選択還元
触媒10の浄化作用が開始され、その後に高沸点HCに
より浄化作用が行われる。このように浄化作用が素早く
良好に行われ、且つNOX 選択還元触媒10へ適量の低
沸点および高沸点HCが供給されるように制御している
ため、高い浄化率で浄化作用が行われる。尚、上記では
第一の副噴射の噴射タイミングは膨張行程中期とした
が、第一の副噴射Bは筒内温度が第一の副噴射Bにより
供給したHCを低沸点HCへ改質可能な温度にあるタイ
ミングを選択して行えばよく、概ね圧縮行程が完了する
上死点(TDC)後のクランク角度90°〜150°で
ある。但し、上死点後のクランク角度90°〜120°
では主噴射Aにより供給されたHCの燃焼により筒内が
高温であり、この噴射タイミングでHCを副噴射すると
焼失してしまう可能性があるため、第一の副噴射Bは上
死点後のクランク角度120°〜150°であるのが好
ましい。また第二の副噴射Cの噴射タイミングは膨張行
程後期としたが、第二の副噴射Cは筒内がHCを改質し
たり燃焼しない温度にあるタイミングを選択して行えば
よく、従って排気行程をも含む概ね上死点後のクランク
角度150°〜360°である。また第一の副噴射Bで
は、比較的温度の低いNOX 選択還元触媒10において
も浄化作用を開始するのに十分な量の低沸点HCが生成
されるHC量を筒内へ供給し、第二の副噴射Cではその
ときの触媒温度や排気ガス中のNOX 量に応じてNOX
選択還元触媒10が最も高い浄化率を示す量のHCを筒
内へ供給する。
Next, the operation of the fuel injection control device according to the present invention will be described. During engine operation, the temperature of the NO X selective reducing catalyst 10 is detected by the temperature sensor 12, the temperature at which the temperature of the NO X selective reducing catalyst 10 is predetermined at least the optimum temperature T 0 in the present embodiment (see FIG. 2) It is determined whether or not there is. When it is determined that the temperature of the NO X selective reduction catalyst 10 is equal to or higher than the optimum temperature T 0 , the fuel injection control of FIG. 3 is performed. That is, the main injection A is performed from the fuel injection valve 6 into the cylinder immediately after the top dead center (TDC) at which the compression stroke is completed, and the sub-injection is performed from the fuel injection valve 6 into the cylinder at a later stage of the expansion stroke after the main injection A. (Hereinafter, the second sub-injection) C is performed. Since the in-cylinder temperature in the second half of the expansion stroke is not high enough to burn or reform HC, the HC injected into the cylinder by the second sub-injection C is not burned or reformed. It flows into the high-boiling HC to remain laden the NO X selective reducing catalyst 10. The NO X selective reduction catalyst 10 is supplied with an appropriate amount of high boiling point HC, and performs a purification operation at a high purification rate. When it is determined that the temperature of the NO X selective reduction catalyst 10 is lower than the optimum temperature T 0 , the fuel injection control of FIG. 4 is performed. That is, the main injection A is performed from the fuel injection valve 6 into the cylinder immediately after the top dead center (TDC) at which the compression stroke is completed, and the sub-injection is performed from the fuel injection valve 6 into the cylinder during the middle stage of the expansion stroke after the main injection A. (Hereinafter, a first sub-injection) B is performed, and a second sub-injection C is performed from the fuel injection valve 6 into the cylinder at a later stage of the expansion stroke after the first sub-injection B. Since cylinder temperature of the expansion stroke mid relatively high, the HC fed into the cylinder is reformed thermal decomposition product by the first auxiliary injection B, that low-boiling HC, and the supply to the NO X selective reducing catalyst 10 Is done. In the latter half of the expansion stroke, since the in-cylinder temperature is low as described above, the HC supplied into the cylinder by the second sub-injection C is not burned or reformed and contains a large amount of high-boiling-point HC. It flows into the X selective reduction catalyst 10. In the NO X selective reduction catalyst 10, the purifying action of the NO X selective reducing catalyst 10 is started by the low boiling point HC having high activity first, and thereafter, the purifying action is performed by the high boiling point HC. As described above, the purifying action is performed quickly and favorably, and the control is performed so that an appropriate amount of low boiling point and high boiling point HC is supplied to the NO X selective reduction catalyst 10. Therefore, the purifying action is performed at a high purification rate. In the above description, the injection timing of the first sub-injection is set to the middle stage of the expansion stroke. However, the first sub-injection B is capable of reforming the HC supplied by the first sub-injection B to the low boiling point HC. It is sufficient to select a timing at a temperature, and the crank angle is approximately 90 ° to 150 ° after the top dead center (TDC) when the compression stroke is completed. However, the crank angle after top dead center is 90 ° to 120 °
In this case, the inside of the cylinder is at a high temperature due to the combustion of HC supplied by the main injection A, and there is a possibility that the sub-injection of HC at this injection timing may burn out. Preferably, the crank angle is between 120 ° and 150 °. Although the injection timing of the second sub-injection C is set in the latter stage of the expansion stroke, the second sub-injection C may be performed by selecting a timing at which the inside of the cylinder is at a temperature at which HC is not reformed or burned. The crank angle is approximately 150 ° to 360 ° after the top dead center including the stroke. Further, in the first auxiliary injection B, and supplies the amount of HC low boiling HC is generated in an amount sufficient to initiate the cleaning action even at low the NO X selective reducing catalyst 10 comparatively temperature into the cylinder, the NO X according to the catalyst temperature and the amount of NO X in the exhaust gas at that time the second auxiliary injection C
The selective reduction catalyst 10 supplies an amount of HC showing the highest purification rate into the cylinder.

【0008】ところで排気ガス中のNOX 量を直接求め
ることは困難である。そこで本発明では機関運転状態か
ら排気ガス中のNOX 量を推定するようにしている。即
ち、機関回転数Nが高くなるほど機関から単位時間当た
り排出される排気ガス量が増大するので機関回転数Nが
高くなるにつれて機関から単位時間当たり排出されるN
X 量は増大する。また、機関負荷が高くなるほど、即
ちアクセル踏込量Dが高くなるほど各燃焼室3から排出
される排気ガス量が増大し、しかも燃焼温度が高くなる
ので機関負荷が高くなるほど、即ちアクセル踏込量Dが
高くなるほど機関から単位時間当たり排出されるNOX
量が増大する。図5は実験により求められた単位時間当
たりに機関から排出されるNOX 量と、アクセル踏込量
D、機関回転数Nとの関係を示しており、図5において
各曲線は同一NOX 量を示している。図5に示されるよ
うに単位時間当たり機関から排出されるNOX 量はアク
セル踏込量Dが高くなるほど多くなり、機関回転数Nが
高くなるほど多くなる。なお、図5に示されるNOX
は図6に示すようなマップの形で予めROM42内に記
憶されている。
By the way to determine the amount of NO X in the exhaust gas it is difficult to directly. Therefore, in the present invention, the NO X amount in the exhaust gas is estimated from the operating state of the engine. That is, as the engine speed N increases, the amount of exhaust gas discharged from the engine per unit time increases. Therefore, as the engine speed N increases, N is discharged from the engine per unit time.
The O X amount increases. Further, as the engine load increases, that is, as the accelerator depression amount D increases, the amount of exhaust gas discharged from each combustion chamber 3 increases, and the combustion temperature increases. Therefore, as the engine load increases, that is, the accelerator depression amount D decreases. NO X emitted per unit time from the engine as it becomes higher
The amount increases. FIG. 5 shows the relationship between the NO X amount discharged from the engine per unit time, the accelerator depression amount D, and the engine speed N obtained by the experiment. In FIG. 5, each curve shows the same NO X amount. Is shown. As shown in FIG. 5, the NO X amount discharged from the engine per unit time increases as the accelerator depression amount D increases, and increases as the engine speed N increases. The NO X amount shown in FIG. 5 is stored in advance in the ROM 42 in the form of a map as shown in FIG.

【0009】図7には本発明に従った噴射制御のフロー
チャートを示している。ステップS10において主噴射
Aが行われたあとにステップS12においてNOX 選択
還元触媒10の触媒温度Tを検出する。次いでステップ
S14へ進んで触媒温度Tが最適温度T0 以上であるか
否かが判別される。ステップS14において触媒温度T
が最適温度T0 以上であると判別されたときにはステッ
プS16へ進んで第二の副噴射Cが行われ、処理サイク
ルを終了する。ステップS14において触媒温度Tが最
適温度T0 以上でないと判別されたときにはステップS
18へ進んで第一の副噴射Bを行い、次いでステップS
16へ進んで第二の副噴射Cを行い、処理サイクルを終
了する。本発明においては上記噴射制御を全機関サイク
ルで常時行っているが、場合によっては予め定められた
機関サイクル毎または予め定められた時間毎に行っても
よい。
FIG. 7 shows a flowchart of the injection control according to the present invention. Detecting the catalyst temperature T of the NO X selective reducing catalyst 10 in step S12 after the main injection A is performed in step S10. Then whether the catalyst temperature T is the optimum temperature T 0 or more is determined proceeds to step S14. In step S14, the catalyst temperature T
Is determined to be equal to or higher than the optimum temperature T 0 , the process proceeds to step S16, the second sub-injection C is performed, and the processing cycle ends. Step S when the catalyst temperature T is determined to not optimum temperature T 0 or more in step S14
18, the first sub-injection B is performed, and then step S
Proceeding to 16, the second sub-injection C is performed, and the processing cycle ends. In the present invention, the above-described injection control is always performed in all engine cycles, but may be performed in every predetermined engine cycle or every predetermined time in some cases.

【0010】上記では浄化率が最も高くなる最適温度T
0 以上に触媒温度Tがあるか否かを判別し、副噴射を制
御しているが、所望により予め定められた温度を設定
し、この予め定められた温度を応じて副噴射を制御した
り、浄化率が比較的高くなる適正温度範囲(例えば、図
2中の温度範囲T1 〜T2 )内、適正温度範囲以下、ま
たは適正温度範囲以上のいずれに触媒温度があるか否か
を判別し、そのときの必要に応じて副噴射を制御しても
よい。また本願ではディーゼル内燃機関に適用した場合
の燃料噴射制御装置を挙げたが、リーンバーン型であれ
ば筒内直接噴射火花点火式の内燃機関にも適用できる。
更に排気ガスの空燃比がリーンのときにはNOX を吸収
し、排気ガス中の酸素濃度が低下すると吸収したNOX
を放出するNOX 触媒に本発明を適用することも可能で
ある。
In the above description, the optimum temperature T at which the purification rate becomes the highest is obtained.
The sub-injection is controlled by determining whether or not the catalyst temperature T is equal to or greater than 0, but a predetermined temperature is set as desired, and the sub-injection is controlled according to the predetermined temperature. It is determined whether the catalyst temperature is within an appropriate temperature range where the purification rate is relatively high (for example, the temperature range T 1 to T 2 in FIG. 2), below the appropriate temperature range, or above the appropriate temperature range. The sub-injection may be controlled as needed at that time. Further, in the present application, the fuel injection control device applied to the diesel internal combustion engine has been described. However, the present invention can be applied to a direct injection spark ignition type internal combustion engine of a lean burn type.
Further, when the air-fuel ratio of the exhaust gas is lean, NO X is absorbed, and when the oxygen concentration in the exhaust gas decreases, the absorbed NO X is absorbed.
It is also possible to apply the present invention to a NO X catalyst that releases NO.

【0011】図8は本発明の第二実施形態を示してい
る。第二実施形態では、機関本体1とNOX 選択還元触
媒10との間に排気ガス中のCOの浄化を目的とした酸
化触媒18が配置され、また酸化触媒18とNOX 選択
還元触媒10との間にはHC添加手段20が設けられて
いる。一方、出力ポート46が駆動回路50を介してH
C添加手段20へ接続される。その他の構成は第一実施
形態と同様である。図2にも示したように、NOX 選択
還元触媒10には最も浄化率が高くなる最適温度T0
ある。従って浄化率を高く維持するためには触媒温度を
最適温度T 0 に維持することが重要である。そこで本実
施形態では温度センサ12によりNOX 選択還元触媒1
0の触媒温度を検出し、NOX 選択還元触媒10の温度
が最適温度T0 より低いときには第一実施形態と同様に
第一および第二の副噴射B、Cを行い、低沸点HCと高
沸点HCとが混合された状態で筒内から排気ガスを流出
する。このとき触媒温度Tを最適温度T0 にするために
必要な量の低沸点HCと高沸点HCとが生成されるHC
量が副噴射により供給されるように制御する。NOX
択還元触媒10の触媒温度が低いときには酸化触媒18
の触媒温度も比較的低いことが多く、酸化触媒18にお
いてHCを燃焼しずらい可能性がある。しかしながら本
実施形態では低沸点HCと高沸点HCとが混在した排気
ガスが酸化触媒18へ流入するため、酸化触媒18の触
媒温度が比較的低いときでも活性の高い低沸点HCから
燃焼され始め、次いで高沸点HCが燃焼されて発熱す
る。酸化触媒18において温度上昇がなされた排気ガス
によりNOX 選択還元触媒10の温度が上昇され、NO
X 選択還元触媒10の温度が最適温度T0 となる。NO
X 選択還元触媒10の温度が最適温度T0 以上であると
きにはHC添加手段20のみを作動し、酸化触媒18を
介さずに高沸点HCを直接NOX 選択還元触媒10へ供
給する。このときHC添加手段20により供給されるH
C量は、NOX 選択還元触媒10の触媒温度および排気
ガス中のNOX 量から算出され、最適温度T0 以上にお
いてNOX 選択還元触媒10が最も高い浄化率を示す量
に制御されている。
FIG. 8 shows a second embodiment of the present invention.
You. In the second embodiment, the engine body 1 and the NOXSelective touch
Acid for purifying CO in exhaust gas between the medium 10
The oxidation catalyst 18 is disposed, and the oxidation catalyst 18 and NOXChoice
HC addition means 20 is provided between the catalyst and the reduction catalyst 10.
I have. On the other hand, when the output port 46
It is connected to the C adding means 20. Other configurations are first implementation
Same as the form. As shown in FIG.XChoice
The reduction catalyst 10 has an optimum temperature T at which the purification rate is highest.0But
is there. Therefore, in order to maintain a high purification rate, the catalyst temperature must be increased.
Optimal temperature T 0It is important to maintain. So the real
In the embodiment, NO is determined by the temperature sensor 12.XSelective reduction catalyst 1
0 catalyst temperature is detected, NOXTemperature of selective reduction catalyst 10
Is the optimal temperature T0When lower, as in the first embodiment
The first and second sub-injections B and C are performed, and the low boiling point HC and the high
Exhaust gas flows out of the cylinder with the boiling point HC mixed
I do. At this time, the catalyst temperature T is set to the optimum temperature T.0In order to
HC in which required amounts of low-boiling HC and high-boiling HC are generated
The amount is controlled so as to be supplied by the sub-injection. NOXSelection
When the catalyst temperature of the selective reduction catalyst 10 is low, the oxidation catalyst 18
Of the oxidation catalyst 18 is often relatively low.
And it is difficult to burn HC. However the book
In the embodiment, exhaust gas in which low-boiling HC and high-boiling HC are mixed is described.
Since the gas flows into the oxidation catalyst 18,
Even from a low boiling point HC with high activity even when the medium temperature is relatively low
Combustion starts and then high-boiling HC is burned and generates heat.
You. Exhaust gas whose temperature has been increased in the oxidation catalyst 18
NOXThe temperature of the selective reduction catalyst 10 is increased and NO
XThe temperature of the selective reduction catalyst 10 is the optimum temperature T0Becomes NO
XThe temperature of the selective reduction catalyst 10 is the optimum temperature T0If it is over
At this time, only the HC adding means 20 is operated, and the oxidation catalyst 18 is activated.
High boiling point HC is directly NOXProvided to the selective reduction catalyst 10
Pay. At this time, the H supplied by the HC adding means 20
C amount is NOXCatalyst temperature and exhaust gas of the selective reduction catalyst 10
NO in gasXThe optimum temperature T calculated from the quantity0Above
And NOXThe amount at which the selective reduction catalyst 10 shows the highest purification rate
Is controlled.

【0012】図9には第二実施形態における燃料噴射制
御のフローチャートである。ステップS20において主
噴射Aが行われたあとにステップS22においてNOX
選択還元触媒10の触媒温度Tを検出する。次いでステ
ップS24へ進んで触媒温度Tが最適温度T0 以上であ
るか否かが判別される。ステップS24において触媒温
度Tが最適温度T0 以上であると判別されたときにはス
テップS25へ進んでHC添加手段20を作動してHC
を添加し、処理サイクルを終了する。ステップS24に
おいて触媒温度Tが最低温度T0 より低いと判別された
ときにはステップS28へ進んで第一の副噴射Bを行
い、次いでステップS30へ進んで第二の副噴射Cを行
い、処理サイクルを終了する。
FIG. 9 is a flowchart of the fuel injection control in the second embodiment. NO X in step S22 after the main injection A is performed in step S20
The catalyst temperature T of the selective reduction catalyst 10 is detected. Then whether the catalyst temperature T is the optimum temperature T 0 or more is determined the program proceeds to step S24. When it is determined in step S24 that the catalyst temperature T is equal to or higher than the optimum temperature T 0 , the process proceeds to step S25, in which the HC adding means 20 is operated and the HC
Is added and the processing cycle is terminated. When it is determined in step S24 that the catalyst temperature T is lower than the minimum temperature T 0 , the process proceeds to step S28 to perform the first sub-injection B, and then proceeds to step S30 to perform the second sub-injection C. finish.

【0013】[0013]

【発明の効果】本発明の請求項1によれば第一の副噴射
によって高活性なHCが触媒に供給され、比較的触媒温
度が低い時でも高活性のHCとNOxが触媒内で反応す
る。この反応熱によって第二の副噴射によって生成され
た低活性なHCも連鎖的にNOxと反応して浄化作用が
行われる。その結果、比較的温度が低い触媒であっても
浄化率を向上させることができるとともに副噴射燃料の
燃焼室内での焼失量を最小限に抑えることができ、燃費
の悪化を防ぐことができる。本発明の請求項2によれ
ば、リーンNOx触媒の温度が予め定められた温度より
も低いには筒内にて改質された熱分解物および第二の
副噴射により供給された高沸点HCが酸化触媒において
燃焼されて排気ガス温度を上昇するため、酸化触媒の下
流側に位置するリーンNOx触媒の温度が上昇して予め
定められた温度以上とされ、一方、予め定められた温度
以上となったところでHC添加手段によりリーンNOx
触媒へ高沸点HCが供給されるため、排気ガス中のNO
xを良好に浄化することが可能となる。
According to the first aspect of the present invention, the highly active HC is supplied to the catalyst by the first sub-injection, and the highly active HC and NOx react in the catalyst even when the catalyst temperature is relatively low. . The low-activity HC generated by the second sub-injection by the reaction heat also reacts with NOx in a chain to perform a purification action. As a result, even if the catalyst has a relatively low temperature, the purification rate can be improved, and the amount of sub-injected fuel burned in the combustion chamber can be minimized, so that deterioration in fuel efficiency can be prevented. According to claim 2 of the present invention, high boiling point temperature is supplied by the thermal decomposition product and a second sub-injection that has been modified by a predetermined when lower than the temperature in the cylinder of the lean NOx catalyst Since HC is burned in the oxidation catalyst and the exhaust gas temperature rises, the temperature of the lean NOx catalyst located downstream of the oxidation catalyst rises to a predetermined temperature or higher, and on the other hand, a temperature equal to or higher than the predetermined temperature When it becomes lean NOx by HC addition means
Since high boiling point HC is supplied to the catalyst, NO in the exhaust gas
x can be satisfactorily purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NOX 選択還元触媒を備えたディーゼル内燃機
関を示した図である。
FIG. 1 is a diagram showing a diesel internal combustion engine provided with a NO X selective reduction catalyst.

【図2】NOX 選択還元触媒の触媒温度とNOX 浄化率
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a catalyst temperature of a NO X selective reduction catalyst and a NO X purification rate.

【図3】触媒温度が所定温度以上であると判別されなか
った場合に行われる燃料噴射制御におけるクランク角度
と燃料噴射弁開閉信号との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a crank angle and a fuel injection valve opening / closing signal in fuel injection control performed when it is not determined that the catalyst temperature is equal to or higher than a predetermined temperature.

【図4】触媒温度が所定温度以上であると判別された場
合に行われる燃料噴射制御におけるクランク角度と燃料
噴射弁開閉信号との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a crank angle and a fuel injection valve opening / closing signal in fuel injection control performed when it is determined that the catalyst temperature is equal to or higher than a predetermined temperature.

【図5】機関本体から排出されるNOX 量を示す図であ
る。
FIG. 5 is a diagram showing the amount of NO X discharged from the engine body.

【図6】機関本体から排出されるNOX 量を推定するた
めのマップを示す図である。
FIG. 6 is a diagram showing a map for estimating the NO X amount discharged from the engine body.

【図7】本発明の燃料噴射制御を示すフローチャートで
ある。
FIG. 7 is a flowchart showing fuel injection control according to the present invention.

【図8】NOX 選択還元触媒および酸化触媒を備えたデ
ィーゼル内燃機関を示した図である。
FIG. 8 is a diagram showing a diesel internal combustion engine provided with a NO X selective reduction catalyst and an oxidation catalyst.

【図9】本発明の第二実施形態の燃料噴射制御を示すフ
ローチャートである。
FIG. 9 is a flowchart illustrating fuel injection control according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…NOx選択還元触媒 18…酸化触媒20 …HC添加手段 A…主噴射 B…副噴射 C…第二の副噴射10 NOx selective reduction catalyst 18 Oxidation catalyst 20 HC adding means A Main injection B Sub-injection C Second sub-injection

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01N 3/28 301 F01N 3/28 ZAB 3/36 ZABB ZAB F02D 41/04 385A 3/36 ZAB 45/00 310R F02D 41/04 385 B01D 53/36 ZAB 45/00 310 102H (56)参考文献 特開 平8−74561(JP,A) 特開 平4−231645(JP,A) 特開 平5−214926(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 45/00 395 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI F01N 3/28 301 F01N 3/28 ZAB 3/36 ZABB ZAB F02D 41/04 385A 3/36 ZAB 45/00 310R F02D 41/04 385 B01D 53/36 ZAB 45/00 310 102H (56) Reference JP-A-8-74561 (JP, A) JP-A-4-231645 (JP, A) JP-A-5-214926 (JP, A) ( 58) Field surveyed (Int. Cl. 7 , DB name) F02D 41/00-45/00 395

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リーンNOX 触媒を排気系に具備し、吸
気行程または圧縮行程において筒内へ主噴射を行い、該
主噴射とは別個に筒内へ副噴射を行うようにした筒内直
接噴射式内燃機関の燃料噴射制御装置において、上記副
噴射として膨張行程において第一の副噴射を行い、HC
熱分解物を発生させ、更に前記第一の副噴射後の膨張行
程または排気行程において第二の副噴射を行い、排気ガ
ス中のHC量を増大したことを特徴とする筒内直接噴射
式内燃機関の燃料噴射制御装置。
1. An in-cylinder direct injection system in which a lean NO X catalyst is provided in an exhaust system to perform a main injection into a cylinder during an intake stroke or a compression stroke, and to perform a sub-injection into the cylinder separately from the main injection. In the fuel injection control device for an injection-type internal combustion engine, a first sub-injection is performed in the expansion stroke as the sub-injection,
Direct injection type internal combustion engine characterized by generating a thermal decomposition product and further performing a second sub-injection in an expansion stroke or an exhaust stroke after the first sub-injection to increase the amount of HC in exhaust gas. Engine fuel injection control device.
【請求項2】 前記リーンNOX 触媒の上流側の排気系
に酸化触媒を備えると共に、該酸化触媒と前記リーンN
X 触媒との間にHCを添加するHC添加手段を具備
し、前記リーンNOX 触媒の温度が予め定められた温度
より低いときには前記第一の副噴射と第二の副噴射とを
行い、前記リーンNOX 触媒の温度が予め定められた温
度以上であるときには前記HC添加手段によりHCを添
加するようにしたことを特徴とする請求項1に記載の筒
内直接噴射式内燃機関の燃料噴射制御装置。
2. An exhaust system upstream of the lean NO X catalyst is provided with an oxidation catalyst, and the oxidation catalyst and the lean N
O comprising the HC addition means for adding HC between the X catalyst, when the temperature of the lean NO X catalyst is lower than a predetermined temperature is carried out and the first sub-injection and the second sub-injection, 2. A fuel injection system according to claim 1, wherein said HC adding means adds HC when the temperature of said lean NO X catalyst is equal to or higher than a predetermined temperature. Control device.
JP21864396A 1996-08-20 1996-08-20 Fuel injection control device for in-cylinder direct injection internal combustion engine Expired - Lifetime JP3341592B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21864396A JP3341592B2 (en) 1996-08-20 1996-08-20 Fuel injection control device for in-cylinder direct injection internal combustion engine
US08/911,811 US5839275A (en) 1996-08-20 1997-08-15 Fuel injection control device for a direct injection type engine
EP97114293A EP0831226B1 (en) 1996-08-20 1997-08-19 A fuel injection control device for a direct injection type engine
DE69732461T DE69732461T2 (en) 1996-08-20 1997-08-19 Fuel injection control device for a direct injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21864396A JP3341592B2 (en) 1996-08-20 1996-08-20 Fuel injection control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1061464A JPH1061464A (en) 1998-03-03
JP3341592B2 true JP3341592B2 (en) 2002-11-05

Family

ID=16723172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21864396A Expired - Lifetime JP3341592B2 (en) 1996-08-20 1996-08-20 Fuel injection control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3341592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261489A4 (en) * 2008-02-27 2017-06-28 Isuzu Motors, Ltd. Method for controlling exhaust gas purification system and exhaust gas purification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261489A4 (en) * 2008-02-27 2017-06-28 Isuzu Motors, Ltd. Method for controlling exhaust gas purification system and exhaust gas purification system

Also Published As

Publication number Publication date
JPH1061464A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
US6173571B1 (en) Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
US5839275A (en) Fuel injection control device for a direct injection type engine
US7818960B2 (en) SCR cold start heating system for a diesel exhaust
US6857264B2 (en) Exhaust emission aftertreatment
US6438943B1 (en) In-cylinder injection type internal combustion engine
US6199373B1 (en) Method and apparatus for desulfating a NOx trap
EP2503119B1 (en) Exhaust emission purification system for internal combustion engine
EP0879344B1 (en) System for reducing emissions in catalytic converter exhaust systems
JPH0925815A (en) Post-injection combustion exhaust-gas purifying system and method thereof
GB2342465A (en) Method of purging a lean NOx trap
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
JP3341592B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JPH08296485A (en) In-cylinder injection type internal combustion engine
JP3371707B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP3335278B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP3794179B2 (en) Exhaust gas purification device for internal combustion engine
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP2773341B2 (en) Exhaust gas purification device for internal combustion engine
JP3334636B2 (en) Exhaust gas purification device for internal combustion engine
JPH1150894A (en) Emission control device of internal combustion engine
JP3520789B2 (en) Exhaust gas purification device for internal combustion engine
JP2626333B2 (en) Engine exhaust purification device and exhaust purification method
JP3929215B2 (en) Exhaust gas purification device for internal combustion engine
JP3557842B2 (en) Catalyst regeneration device for internal combustion engine
JP3344320B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term