JP3335278B2 - Fuel injection control device for in-cylinder direct injection internal combustion engine - Google Patents

Fuel injection control device for in-cylinder direct injection internal combustion engine

Info

Publication number
JP3335278B2
JP3335278B2 JP20151396A JP20151396A JP3335278B2 JP 3335278 B2 JP3335278 B2 JP 3335278B2 JP 20151396 A JP20151396 A JP 20151396A JP 20151396 A JP20151396 A JP 20151396A JP 3335278 B2 JP3335278 B2 JP 3335278B2
Authority
JP
Japan
Prior art keywords
injection
sub
cylinder
amount
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20151396A
Other languages
Japanese (ja)
Other versions
JPH1047146A (en
Inventor
信也 広田
一哉 木部
達司 水野
洋一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP20151396A priority Critical patent/JP3335278B2/en
Publication of JPH1047146A publication Critical patent/JPH1047146A/en
Application granted granted Critical
Publication of JP3335278B2 publication Critical patent/JP3335278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は筒内直接噴射式内燃
機関の燃料噴射制御装置に関する。
The present invention relates to a fuel injection control device for a direct injection type internal combustion engine.

【0002】[0002]

【従来の技術】高い燃費を確保するために空燃比を非常
に大きくしたリーン混合気を大部分の機関運転領域にお
いて燃焼するようにしたリーンバーン内燃機関が知られ
ている。リーンバーン内燃機関では多量のNOX を排出
するため、このNOX を浄化するための浄化触媒を排気
系に配置する必要がある。従来から三元触媒が良く知ら
れているが、これは排気ガスの空燃比が理論空燃比のと
きに良好な浄化特性を示すため、排気ガス中の酸素濃度
が非常に高いリーンバーン内燃機関において三元触媒を
用いてNOX を良好に浄化することができない。従って
リーンバーン内燃機関では排気ガスの空燃比がリーンの
ときに適量のHC、CO等の存在下でNO X をHC、C
Oと選択的に反応させるリーンNOX 触媒としてNOX
選択還元触媒が用いられる。上述のようにNOX 選択還
元触媒でNOX を浄化するためには触媒内に適量のHC
成分等が吸着されていることが必要とされる。ところが
リーンバーン内燃機関の通常運転時の排気ガスの空燃比
は大幅なリーンであるため、排気中のHC成分等の量は
極めて少なくなる。このため通常のリーン空燃比運転状
態が続くと吸着されたHC成分等が排気中のNOX の還
元に消費されてNOX 選択還元触媒内のHC吸着量が減
少してしまい、触媒のNOX 浄化能力が低下してしま
う。これを防止するためにはリーン空燃比運転実施時に
定期的にNOX 選択還元触媒にHC成分等を供給するこ
とにより、常にNOX 選択還元触媒内に適量のHC成分
等を吸着させておく必要がある。例えば特開平4−23
1645号公報では、リーンバーンタイプの筒内直接噴
射式内燃機関において機関駆動力を得るために通常筒内
へ行われる噴射(以下、主噴射)のあとに別個の噴射
(以下、副噴射)を筒内へ行うことにより、未燃HCを
NOX 選択還元触媒へ供給している。
2. Description of the Related Art In order to ensure high fuel efficiency, an air-fuel ratio is extremely low.
The lean mixture to most engine operating areas.
There is a known lean-burn internal combustion engine
ing. Large amounts of NO in lean burn internal combustion enginesXDischarge
This NOXExhaust purification catalyst to purify
Must be placed in the system. Well known three-way catalyst
This is because the air-fuel ratio of the exhaust gas is
Oxygen concentration in exhaust gas to show good purification characteristics
Use three-way catalysts in lean burn internal combustion engines
NO usingXCannot be satisfactorily purified. Therefore
In a lean burn internal combustion engine, the air-fuel ratio of the exhaust
Sometimes NO in the presence of appropriate amounts of HC, CO, etc. XTo HC, C
Lean NO that selectively reacts with OXNO as catalystX
A selective reduction catalyst is used. NO as described aboveXReturn
NO with original catalystXIn order to purify the catalyst, an appropriate amount of HC
It is necessary that components and the like are adsorbed. However
Air-fuel ratio of exhaust gas during normal operation of lean burn internal combustion engine
Is very lean, so the amount of HC component etc. in the exhaust
Extremely low. For this reason, the normal lean air-fuel ratio
If the state continues, the adsorbed HC components etc. will cause NO in the exhaustXReturn of
NO originally consumedXHC adsorption in the selective reduction catalyst is reduced
The catalyst NOXPurification ability has decreased
U. To prevent this, perform lean air-fuel ratio operation.
NO on a regular basisXSupplying HC components etc. to the selective reduction catalyst
And always NOXAppropriate amount of HC component in selective reduction catalyst
Must be adsorbed. For example, JP-A-4-23
Japanese Patent No. 1645 discloses a lean burn type direct injection in a cylinder.
In-cylinder internal combustion engine
Injection (hereinafter referred to as “main injection”) followed by separate injection
(Hereinafter, sub-injection) into the cylinder to reduce unburned HC
NOXSupplying to the selective reduction catalyst.

【0003】[0003]

【発明が解決しようとする課題】しかしながらNOX
択還元触媒の浄化作用にとって適量のHC量を副噴射に
より筒内へ供給しても、筒内温度が高温であると供給し
たHCの一部が焼失してしまい、所望量の未燃HCをN
X 選択還元触媒へ供給できず、高い浄化率を確保でき
ないという問題がある。本発明の目的はNOX 選択還元
触媒の高い浄化率を確保することにある。
Supplying a suitable amount of HC amount for purification action of however the NO X selective reducing catalyst [0006] to the sub-injection by the cylinder, a part of HC cylinder temperature was fed as a high temperature It burns away and the desired amount of unburned HC
Can not be supplied to the O X selective reducing catalyst, it is impossible to secure a high purification rate. An object of the present invention is to secure a high purification rate of the NO X selective reducing catalyst.

【0004】[0004]

【課題を解決するための手段】本発明の一番目の発明
よれば、リーンNOX 触媒を排気系に具備し、吸気行程
または圧縮行程において筒内へ主噴射を行い、該主噴射
とは別個に膨張行程または排気行程中の予め定められた
噴射タイミングにおいて筒内へ副噴射を行うようにし、
順次到来する噴射タイミングのうちで一部の噴射タイミ
ングにおける副噴射を停止すると共に、噴射タイミング
が一定回数到来する間に副噴射が停止される停止割合を
制御し、該停止割合が増大するにしたがって副噴射量を
増大した筒内直接噴射式内燃機関の燃料噴射制御装置に
おいて、排気温度が高いほど前記停止割合を増大する
これにより排気温度が高くなるにつれて副噴射一回当た
りのHC量が増大される
According to a first aspect of the present invention, in order to solve the problems], comprising a lean NO X catalyst in the exhaust system performs a main injection into the cylinder in the intake stroke or compression stroke, the main injection At a predetermined injection timing during the expansion stroke or the exhaust stroke separately to perform sub-injection into the cylinder ,
Among the sequentially arriving injection timings, the sub-injection at some injection timings is stopped, and the stop ratio at which the sub-injection is stopped while the injection timing reaches a certain number of times is controlled. As the stop ratio increases, In- cylinder direct injection type internal combustion engine fuel injection control device with increased sub injection quantity
Here, the higher the exhaust gas temperature, the higher the stop ratio .
As a result, one sub-injection was applied as the exhaust temperature increased
The amount of HC is increased .

【0005】[0005]

【発明の実施の形態】図1を参照すると、1は筒内直接
噴射式のディーゼル内燃機関の機関本体、2はピスト
ン、3は燃焼室、4は排気弁、5は排気ポートを夫々示
す。各気筒には夫々燃焼室3内に向けて燃料を噴射する
燃料噴射弁6が取り付けられる。排気ポート5はエキゾ
ーストマニホルド7および排気管8を介してリーンNO
X 触媒としてのNOX 選択還元触媒10に接続される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, reference numeral 1 denotes an engine body of a direct injection type diesel internal combustion engine, 2 denotes a piston, 3 denotes a combustion chamber, 4 denotes an exhaust valve, and 5 denotes an exhaust port. A fuel injection valve 6 for injecting fuel into the combustion chamber 3 is attached to each cylinder. The exhaust port 5 is provided with a lean NO through an exhaust manifold 7 and an exhaust pipe 8.
It is connected to a NO X selective reduction catalyst 10 as an X catalyst.

【0006】電子制御ユニット40はデジタルコンピュ
ータからなり双方向性バス41を介して相互に接続され
たCPU(マイクロプロセッサ)42、RAM(ランダ
ムアクセスメモリ)43、ROM(リードオンメモリ)
44、入力ポート45および出力ポート46を具備す
る。NOX 選択還元触媒10には触媒温度に比例した出
力電圧を発生する温度センサ12が取り付けられ、この
温度センサ12の出力電圧はAD変換器47を介して入
力ポート45に入力される。排気管8には排気温度に比
例した出力電圧を発生する温度センサ14が取り付けら
れ、この温度センサ14の出力電圧はAD変換器48を
介して入力ポート45に入力される。また、入力ポート
45には機関本体1のクランクシャフトが例えば30度
回転する毎に出力パルスを発生するクランク角センサ1
6がAD変換器49を介して接続される。更に、入力ポ
ート45にはアクセル踏込量Dに比例した出力電圧を発
生するアクセル踏込量センサ18が取り付けられ、この
アクセル踏込量センサ18の出力電圧がAD変換器50
を介して入力ポート45に入力される。CPU42では
この出力パルスに基づいて機関本体1の機関回転数が算
出される。一方、出力ポート46は対応する駆動回路5
0を介して燃料噴射弁6に接続される。
The electronic control unit 40 is composed of a digital computer and is connected to each other via a bidirectional bus 41. A CPU (microprocessor) 42, a RAM (random access memory) 43, and a ROM (read-on memory).
44, an input port 45 and an output port 46. A temperature sensor 12 for generating an output voltage proportional to the catalyst temperature is attached to the NO X selective reduction catalyst 10, and the output voltage of the temperature sensor 12 is input to an input port 45 via an AD converter 47. A temperature sensor 14 that generates an output voltage proportional to the exhaust gas temperature is attached to the exhaust pipe 8, and the output voltage of the temperature sensor 14 is input to an input port 45 via an AD converter 48. The input port 45 has a crank angle sensor 1 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 30 degrees.
6 is connected via an AD converter 49. Further, the input port 45 is provided with an accelerator pedal depression amount sensor 18 for generating an output voltage proportional to the accelerator pedal depression amount D, and the output voltage of the accelerator pedal depression amount sensor 18 is converted to an AD converter 50.
Through the input port 45. The CPU 42 calculates the engine speed of the engine body 1 based on the output pulse. On the other hand, the output port 46 is connected to the corresponding drive circuit 5.
0 is connected to the fuel injection valve 6.

【0007】次に本発明の第一実施形態の燃料噴射制御
装置の作動について説明する。本実施形態では圧縮上死
点の直後に燃料噴射弁6から筒内へ主噴射が行われ、主
噴射のあとの膨張行程または排気行程に燃料噴射弁6か
ら筒内へ副噴射が行われる。副噴射に関して、NOX
択還元触媒10の触媒温度、排気温度および排気ガス中
のNOX 量に応じて副噴射のタイミング、頻度、および
副噴射一回当たりに噴射するHC量とを制御する。但
し、触媒温度を排気温度から推定してもよい。まず副噴
射のタイミングについて説明する。NOX 選択還元触媒
10には浄化作用を行う適正温度範囲あるが、本願では
NOX 選択還元触媒10の温度が適正温度範囲内におい
て比較的低いときには、比較的低い触媒温度からでもN
X 選択還元触媒の浄化作用を引き出す低沸点HCをN
X 選択還元触媒へ供給すればよいことが分かってい
る。HCは筒内温度が高ければ高いほど多量の低沸点H
Cへ改質される傾向があることから、筒内温度の高い膨
張行程初期から膨張行程中期のタイミングで副噴射を行
い、多量の低沸点HCをNOX 選択還元触媒10へ供給
する。更に、NOX 選択還元触媒10の温度が高くなる
につれて、副噴射の噴射タイミングを次第に遅らせ、改
質されずに残る高沸点HCを低沸点HCよりも多くす
る。触媒温度が比較的低い温度にあっても一旦、低沸点
HCにより浄化作用が始まったあとは高沸点HCにより
浄化作用を行ったほうがNOX 選択還元触媒において消
費されるHC量を低減するうえで都合がよい。これは、
高沸点HCが熱分解された低沸点HCは、高沸点HCよ
りも活性が高いため、NOX 選択還元触媒の温度が比較
的低くてもNOX 浄化作用を引き出すという利点がある
が、その一方でNOX 選択還元触媒へ流入して浄化作用
を行うまえに焼失してしまうことが多く、浄化作用に必
要なHC量を低沸点HCでまかなうには多量の燃料を必
要とするからである。このため、NOX 選択還元触媒1
0の温度が高くなるにつれて副噴射のタイミングを遅ら
せ、NOX 選択還元触媒10へ供給されるHCにおける
高沸点HCの割合を高くするのである。
Next, the operation of the fuel injection control device according to the first embodiment of the present invention will be described. In the present embodiment, the main injection is performed from the fuel injection valve 6 into the cylinder immediately after the compression top dead center, and the sub-injection is performed from the fuel injection valve 6 into the cylinder during the expansion stroke or the exhaust stroke after the main injection. Regarding the sub-injection, the timing and frequency of the sub-injection and the amount of HC injected per sub-injection are controlled according to the catalyst temperature of the NO X selective reduction catalyst 10, the exhaust temperature, and the NO X amount in the exhaust gas. However, the catalyst temperature may be estimated from the exhaust gas temperature. First, the timing of the sub-injection will be described. Although the NO X selective reduction catalyst 10 has an appropriate temperature range in which the purifying action is performed, in the present application, when the temperature of the NO X selective reduction catalyst 10 is relatively low within the appropriate temperature range, N
O X selects the low-boiling HC elicit purification action of the reduction catalyst N
O X has been found that may be supplied to the selective reduction catalyst. The higher the in-cylinder temperature, the greater the amount of low boiling point H
Since there is a tendency to be modified to C, subjected to sub injection at a timing of the expansion stroke from the mid high expansion stroke initial of cylinder temperature, and supplies a large amount of low-boiling HC to the NO X selective reducing catalyst 10. Furthermore, as the temperature of the NO X selective reducing catalyst 10 becomes high, delaying the injection timing of the sub injection is gradually, to increase the high-boiling HC that remains without modified than the low-boiling HC. Once even a catalyst temperature is relatively low temperature, after the cleaning effect by the low-boiling HC began in reducing the amount of HC better to perform purification action by the high-boiling HC is consumed in the NO X selective reducing catalyst convenient. this is,
Low boiling HC high boiling HC is pyrolyzed has higher activity than the high-boiling HC, there is a advantage that the temperature of the NO X selective reducing catalyst is relatively low draw the NO X purification action, while in often resulting in burned before performing the purification effect and flows into the NO X selective reducing catalyst, to cover the amount of HC necessary for purification effect of low-boiling HC is because that requires a large amount of fuel. Therefore, NO X selective reducing catalyst 1
Delaying the timing of the sub injection as the temperature of 0 becomes higher, it is to increase the proportion of high-boiling HC in the HC supplied to the NO X selective reducing catalyst 10.

【0008】次に副噴射の頻度と副噴射一回当たりに噴
射されるHC量との制御について説明する。図2に示し
たように、排気温度Tが第一温度範囲T1 にあるときに
は順次到来する副噴射の噴射タイミングで毎回副噴射を
行う。排気温度Tが第二温度範囲T2 にあるときには順
次到来する副噴射の噴射タイミングの二回に一回の割合
で副噴射を行う。以下、第三温度範囲T3 では三回に一
回、第四温度範囲T4では四回に一回副噴射を行う。こ
れと同時に、副噴射を行う副噴射頻度が少なくなるにし
たがって副噴射一回当たりに噴射されるHC量を増大す
る。また予め定められた回数の噴射タイミングにおいて
副噴射を停止する回数を制御してもよい。例えば図3に
示したように、排気温度Tが第一温度範囲T1 にあると
きには機関サイクル五回当たり五回の副噴射を行い、第
二温度範囲T2 にあるときには機関サイクル五回当たり
四回の副噴射を行う。即ち、第二温度範囲T 2 において
は副噴射を一回停止する。以下順次、第三温度範囲T3
にあるときには副噴射を二回停止し、第四温度範囲T4
にあるときには副噴射を三回停止する。更に、このよう
に排気温度Tが上昇するにしたがって副噴射の停止割合
を増大させると同時に副噴射一回当たりに噴射されるH
C量を増大する。副噴射一回当たりに噴射されるHC量
を増大すると筒内雰囲気に晒されないHC量が増大する
ため、予め定められた回数の噴射タイミングにわたって
副噴射により供給されたHCのうち筒内にて焼失される
HC量が従来に比べ低減され(図4参照)、NOX 選択
還元触媒10へ供給されるHC量を所望の量に制御でき
る。更に副噴射により実際に噴射するHC量を減らして
も、焼失されるHC量が少ないため、少ない副噴射量で
適量のHC量を確保することができるという利点もあ
る。
Next, the frequency of sub-injections and the number of injections per sub-injection
Control of the amount of HC to be emitted will be described. Shown in FIG.
As described above, when the exhaust gas temperature T falls within the first temperature range T1When in
Indicates that the sub-injection should be
Do. The exhaust temperature T is in the second temperature range TTwoIn order
Ratio of injection timing of sub-injection that arrives next twice
Performs sub injection. Hereinafter, the third temperature range TThreeThen one in three
Times, fourth temperature range TFourThen, the sub-injection is performed once every four times. This
At the same time, the frequency of sub-injection
Therefore, the amount of HC injected per sub-injection is increased.
You. Also, at a predetermined number of injection timings,
The number of times the sub-injection is stopped may be controlled. For example, in FIG.
As shown, the exhaust gas temperature T falls within the first temperature range T.1In
5 sub-injections per 5 engine cycles
Two temperature range TTwoFive times per engine cycle
Four sub injections are performed. That is, the second temperature range T TwoAt
Stops the sub-injection once. In the following, the third temperature range TThree
, The sub-injection is stopped twice and the fourth temperature range TFour
, The sub-injection is stopped three times. Furthermore, like this
Rate of sub-injection as exhaust temperature T rises
That is injected simultaneously with each sub-injection
Increase C content. HC amount injected per sub-injection
The amount of HC that is not exposed to the in-cylinder atmosphere increases
Therefore, over a predetermined number of injection timings
Of the HC supplied by the sub-injection, it is burned in the cylinder
The amount of HC is reduced as compared with the conventional case (see FIG. 4), and NOXChoice
The amount of HC supplied to the reduction catalyst 10 can be controlled to a desired amount.
You. Further reduce the amount of HC actually injected by the sub-injection
However, since the amount of HC that is burned is small,
There is also an advantage that an appropriate amount of HC can be secured.
You.

【0009】副噴射一回当たりに噴射するHC量を決定
するために排気ガス中のNOX 量を用いるが、排気ガス
中のNOX 量を直接求めることは困難である。そこで本
発明では機関運転状態から排気ガス中のNOX 量を推定
するようにしている。即ち、機関回転数Nが高くなるほ
ど機関から単位時間当たり排出される排気ガス量が増大
するので機関回転数Nが高くなるにつれて機関から単位
時間当たり排出されるNOX 量は増大する。また、機関
負荷が高くなるほど、即ちアクセル踏込量Dが高くなる
ほど各燃焼室3から排出される排気ガス量が増大し、し
かも燃焼温度が高くなるので機関負荷が高くなるほど、
即ちアクセル踏込量Dが高くなるほど機関から単位時間
当たり排出されるNOX 量が増大する。図5は実験によ
り求められた単位時間当たりに機関から排出されるNO
X 量と、アクセル踏込量D、機関回転数Nとの関係を示
しており、図5において各曲線は同一NOX 量を示して
いる。図5に示されるように単位時間当たり機関から排
出されるNOX 量はアクセル踏込量Dが高くなるほど多
くなり、機関回転数Nが高くなるほど多くなる。なお、
図5に示されるNOX 量は図6に示すようなマップの形
で予めROM44内に記憶されている。
[0009] using the amount of NO X in the exhaust gas to determine the amount of HC to be injected per sub injection once, it is difficult to determine the amount of NO X in the exhaust gas directly. Therefore, in the present invention, the NO X amount in the exhaust gas is estimated from the operating state of the engine. That is, as the engine speed N increases, the amount of exhaust gas discharged from the engine per unit time increases. Therefore, as the engine speed N increases, the NO X amount discharged from the engine per unit time increases. Further, as the engine load increases, that is, as the accelerator depression amount D increases, the amount of exhaust gas discharged from each combustion chamber 3 increases, and the combustion temperature increases.
That is, as the accelerator depression amount D increases, the NO X amount discharged from the engine per unit time increases. FIG. 5 shows the NO discharged from the engine per unit time determined by the experiment.
The relationship between the X amount, the accelerator depression amount D, and the engine speed N is shown. In FIG. 5, each curve shows the same NO X amount. As shown in FIG. 5, the NO X amount discharged from the engine per unit time increases as the accelerator depression amount D increases, and increases as the engine speed N increases. In addition,
The NO X amount shown in FIG. 5 is stored in the ROM 44 in advance in the form of a map as shown in FIG.

【0010】本願ではディーゼル内燃機関に適用した場
合の燃料噴射制御装置を挙げたが、リーンバーン型であ
れば筒内直接噴射火花点火式の内燃機関にも適用でき
る。更に排気ガスの空燃比がリーンのときにはNOX
吸収し、排気ガス中の酸素濃度が低下すると吸収したN
X を放出するNOX 触媒に本発明を適用することも可
能である。
In the present application, a fuel injection control device applied to a diesel internal combustion engine has been described. However, a lean-burn type direct injection spark ignition type internal combustion engine can also be applied. Moreover the air-fuel ratio of the exhaust gas is absorbed NO X when the lean, the oxygen concentration in the exhaust gas absorbed and reduced N
It is also possible to apply the present invention to a NO X catalyst that releases O X.

【0011】図は本発明の第二実施形態を示す。第二
実施形態では、第二気筒♯2、第三気筒♯3および第四
気筒♯4(以下、気筒群)には夫々燃料噴射弁6b、6
cおよび6dが取り付けられる。また気筒群はエキゾー
ストマニホルド7および排気管8bを介して第一NOX
選択還元触媒10aに接続される。本実施形態では全体
のNOX 浄化率を向上させるために、第一NOX 選択還
元触媒10aの下流側に第二NOX 選択還元触媒10b
を配置する。一方、第一気筒♯1には燃料噴射弁6aが
取り付けられる。第一気筒♯1は排気管8aを介して第
一NOX 選択還元触媒10aと第二NOX 選択還元触媒
10bとの間の排気管8cへ接続される。更に第一NO
X 選択還元触媒10aには触媒温度に比例した出力電圧
を発生する第一温度センサ12aが取り付けられ、第二
NOX 選択還元触媒10bには同様に第二温度センサ1
2bが取り付けられる。これら第一および第二温度セン
サ12a、12bはAD変換器47、48を介して入力
ポート45に入力される。一方、出力ポート46はそれ
ぞれ対応する駆動回路50を介して各燃料噴射弁6a〜
6dに接続される。ここでは気筒を第一気筒♯1と、第
二気筒♯2、第三気筒♯3および第四気筒♯4とに分割
したが、これは本発明を限定するものではなく、第三気
筒♯3と第四気筒♯4とを上流側の第一NOX 選択還元
触媒10aを介して下流側の第二NOX 選択還元触媒1
0bへ接続される第一の気筒群とし、第一気筒♯1と第
二気筒♯2とを上流側の第一NOX 選択還元触媒10a
をバイパスして直接下流側の第二NOX 選択還元触媒1
0bへ接続される第二の気筒群とすることも可能であ
る。
FIG. 7 shows a second embodiment of the present invention. In the second embodiment, the second cylinder # 2, the third cylinder # 3, and the fourth cylinder # 4 (hereinafter, cylinder group) have fuel injection valves 6b, 6 respectively.
c and 6d are attached. The cylinder group is connected to the first NO X via an exhaust manifold 7 and an exhaust pipe 8b.
It is connected to the selective reduction catalyst 10a. In this embodiment, in order to improve the overall NO X purification rate, the second NO X selective reduction catalyst 10b is provided downstream of the first NO X selective reduction catalyst 10a.
Place. On the other hand, a fuel injection valve 6a is attached to the first cylinder # 1. The first cylinder # 1 is connected to an exhaust pipe 8c between the first NO X selective reduction catalyst 10a and the second NO X selective reduction catalyst 10b via an exhaust pipe 8a. Furthermore, the first NO
A first temperature sensor 12a for generating an output voltage proportional to the catalyst temperature is attached to the X selective reduction catalyst 10a, and a second temperature sensor 1
2b is attached. These first and second temperature sensors 12a and 12b are input to an input port 45 via AD converters 47 and 48. On the other hand, the output port 46 is connected to each of the fuel injection valves 6a to 6a through the corresponding drive circuit 50.
6d. Here, the cylinders are divided into the first cylinder # 1, the second cylinder # 2, the third cylinder # 3, and the fourth cylinder # 4, but this does not limit the present invention, and the third cylinder # 3 When the second downstream and a fourth cylinder ♯4 via the first the NO X selective reducing catalyst 10a on the upstream side the NO X selective reducing catalyst 1
The first cylinder group connected to 0b, the first cylinder ♯1 a second cylinder ♯2 the first upstream the NO X selective reducing catalyst 10a
The a and bypass downstream two the NO X selective reducing catalyst 1
It is also possible to use a second group of cylinders connected to 0b.

【0012】第二実施形態では次のように副噴射の噴射
制御を行う。第一気筒♯1では第二NOX 選択還元触媒
10bが適正温度範囲内にあるときに副噴射を行う。一
方、気筒群では第一NOX 選択還元触媒10aが適正温
度範囲内にあるときに副噴射を行う。このように触媒温
度に応じて副噴射を行うべき気筒または気筒群を選択す
ることにより、各NOX 選択還元触媒10a、10bへ
供給されるHC量をNOX 選択還元触媒毎に正確に制御
することができる。従来のように、例えば全気筒を先ず
第一NOX 選択還元触媒へ接続し、第一NOX 選択還元
触媒の下流側に第二NOX 選択還元触媒を配置した形態
では、第一NOX 選択還元触媒の温度が適正温度範囲以
上であるとき、副噴射により供給したHCが第一NOX
選択還元触媒で焼失してしまう。従って、仮に下流側の
第二NOX 選択還元触媒が適正温度範囲にあったとして
も、排気ガスを浄化することができないという問題があ
る。しかしながら本実施形態では供給するHC量をNO
X 選択還元触媒毎に制御可能であるため、上記従来の問
題は解決される。
In the second embodiment, the injection control of the sub-injection is performed as follows. In the first cylinder ♯1 second the NO X selective reducing catalyst 10b performs sub injection when in the appropriate temperature range. On the other hand, performs the sub injection when the first the NO X selective reducing catalyst 10a is within the proper temperature range is cylinder group. By selecting in this manner the cylinder or cylinder group to perform a sub injection according to the catalyst temperature, to precisely control each the NO X selective reducing catalyst 10a, the amount of HC supplied to 10b each the NO X selective reducing catalyst be able to. As in the prior art, for example, to connect all the cylinders first to the first the NO X selective reducing catalyst, in the form of arranging the second the NO X selective reducing catalyst on the downstream side of the first the NO X selective reducing catalyst, selected first NO X When the temperature of the reduction catalyst is equal to or higher than the appropriate temperature range, the HC supplied by the sub-injection becomes the first NO X
It burns off with the selective reduction catalyst. Therefore, even if the downstream side of the second the NO X selective reducing catalyst had the appropriate temperature range, it is impossible to purify the exhaust gas. However, in this embodiment, the supplied HC amount is set to NO.
Since the control can be performed for each X selective reduction catalyst, the above conventional problem is solved.

【0013】[0013]

【発明の効果】一番目の発明によれば、HCが焼失する
か否かに係わる排気温度に応じて副噴射一回当たりのH
C量を制御する。このため、一定回数到来するタイミン
グにわたりNO X 選択還元触媒に供給すべき所望のHC
量をより正確に制御することができ、NO X 選択還元触
媒の高い浄化率を確保できる。
According to the first invention , HC is burned off.
H per sub-injection depending on the exhaust gas temperature
Control the amount of C. Therefore, a certain number of times
It desired HC to be supplied to the NO X selective reducing catalyst over grayed
Can be more accurately control the amount, NO X selective reducing catalyst
A high purification rate of the medium can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NOX 選択還元触媒を備えた筒内直接噴射式内
燃機関を示した図である。
FIG. 1 is a view showing an in-cylinder direct injection internal combustion engine equipped with a NO X selective reduction catalyst.

【図2】NOX 選択還元触媒の触媒温度と副噴射間隔と
の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a catalyst temperature of a NO X selective reduction catalyst and a sub-injection interval.

【図3】触媒温度と噴射回数との関係を示す図である。FIG. 3 is a diagram showing a relationship between a catalyst temperature and the number of injections.

【図4】排気温度とHC濃度との関係を示す図である。FIG. 4 is a diagram showing a relationship between exhaust gas temperature and HC concentration.

【図5】機関本体から排出されるNOX 量を示す図であ
る。
FIG. 5 is a diagram showing the amount of NO X discharged from the engine body.

【図6】機関本体から排出されるNOX 量を推定するた
めのマップを示す図である。
FIG. 6 is a diagram showing a map for estimating the NO X amount discharged from the engine body.

【図7】本発明の第二実施形態の筒内直接噴射式内燃機
関を示す図である。
FIG. 7 is a view illustrating a direct injection type internal combustion engine according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

6…燃料噴射弁 10…NOX 選択還元触媒 10a…第一NOX 選択還元触媒 10b…第二NOX 選択還元触媒6: fuel injection valve 10: NO X selective reduction catalyst 10a: first NO X selective reduction catalyst 10b: second NO X selective reduction catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩田 洋一 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 審査官 所村 陽一 (56)参考文献 特開 平4−231645(JP,A) 特開 平6−117225(JP,A) 特開 平9−112251(JP,A) 特開 平8−261052(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/34 ZAB F01N 3/20 ZAB F01N 3/24 ZAB F02D 41/02 301 F02D 41/04 330 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoichi Iwata 1st Toyota Town, Toyota City, Aichi Prefecture Examiner at Toyota Motor Corporation Inspector Yoichi Tokomura (56) References JP-A-6-117225 (JP, A) JP-A-9-112251 (JP, A) JP-A-8-261052 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41 / 34 ZAB F01N 3/20 ZAB F01N 3/24 ZAB F02D 41/02 301 F02D 41/04 330

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リーンNOX 触媒を排気系に具備し、吸
気行程または圧縮行程において筒内へ主噴射を行い、該
主噴射とは別個に膨張行程または排気行程中の予め定め
られた噴射タイミングにおいて筒内へ副噴射を行うよう
し、順次到来する噴射タイミングのうちで一部の噴射
タイミングにおける副噴射を停止すると共に、噴射タイ
ミングが一定回数到来する間に副噴射が停止される停止
割合を制御し、該停止割合が増大するにしたがって副噴
射量を増大した筒内直接噴射式内燃機関の燃料噴射制御
装置において、排気温度が高いほど前記停止割合を増大
したことを特徴とする筒内直接噴射式内燃機関の燃料噴
射制御装置。
1. An exhaust system comprising a lean NO X catalyst for performing a main injection into a cylinder during an intake stroke or a compression stroke, and a predetermined injection timing during an expansion stroke or an exhaust stroke separately from the main injection. In the cylinder, the sub-injection is performed, the sub-injection is stopped at a part of the injection timings sequentially arrived , and the sub-injection is stopped while the injection timing reaches a certain number of times. Fuel injection control for an in- cylinder direct injection internal combustion engine in which a sub injection amount is increased as the stop ratio is increased.
In the device, the higher the exhaust temperature, the higher the stop ratio
The fuel injection control apparatus for a cylinder direct injection internal combustion engine, characterized in that the.
JP20151396A 1996-07-31 1996-07-31 Fuel injection control device for in-cylinder direct injection internal combustion engine Expired - Fee Related JP3335278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20151396A JP3335278B2 (en) 1996-07-31 1996-07-31 Fuel injection control device for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20151396A JP3335278B2 (en) 1996-07-31 1996-07-31 Fuel injection control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1047146A JPH1047146A (en) 1998-02-17
JP3335278B2 true JP3335278B2 (en) 2002-10-15

Family

ID=16442297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20151396A Expired - Fee Related JP3335278B2 (en) 1996-07-31 1996-07-31 Fuel injection control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3335278B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358552B2 (en) 1998-08-04 2002-12-24 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP4568991B2 (en) * 2000-02-23 2010-10-27 マツダ株式会社 Engine exhaust purification device and fuel injection timing setting method
US9689331B1 (en) * 2016-03-24 2017-06-27 GM Global Technology Operations LLC Method and apparatus to control fuel injection in an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010134349A (en) * 2008-12-08 2010-06-17 Sony Corp Liquid crystal display device
JP2011039093A (en) * 2009-08-06 2011-02-24 Sumitomo Chemical Co Ltd Liquid crystal display device and optical member set for liquid crystal display device

Also Published As

Publication number Publication date
JPH1047146A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
US6173571B1 (en) Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
EP1028243B1 (en) Control apparatus for direct injection engine
US20040118107A1 (en) Exhaust emission aftertreatment
EP0971104A3 (en) An exhaust gas purification device for an internal combustion engine
JPH10317946A (en) Exhaust emission control device
US6334306B1 (en) Exhaust gas purification apparatus in combustion engine
JP2006336477A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP3870430B2 (en) In-cylinder internal combustion engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
JP3052777B2 (en) In-cylinder injection internal combustion engine
JP3460503B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3335278B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP4539439B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3796919B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP3371707B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP3582415B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4525479B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3341592B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP2773341B2 (en) Exhaust gas purification device for internal combustion engine
JP2001115883A (en) Exhaust gas temperature raising device for internal combustion engine
JP4581867B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JPH11200852A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees