JP3929215B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3929215B2
JP3929215B2 JP29113699A JP29113699A JP3929215B2 JP 3929215 B2 JP3929215 B2 JP 3929215B2 JP 29113699 A JP29113699 A JP 29113699A JP 29113699 A JP29113699 A JP 29113699A JP 3929215 B2 JP3929215 B2 JP 3929215B2
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29113699A
Other languages
Japanese (ja)
Other versions
JP2001107790A (en
Inventor
茂樹 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29113699A priority Critical patent/JP3929215B2/en
Publication of JP2001107790A publication Critical patent/JP2001107790A/en
Application granted granted Critical
Publication of JP3929215B2 publication Critical patent/JP3929215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関から排出される排気ガスを触媒によって浄化する排気浄化装置に関するものである。
【0002】
【従来の技術】
内燃機関から排出される排気ガス中の有害成分の大気への排出量を低減するための一手段として、触媒の酸化作用あるいは還元作用を利用して有害成分を浄化するシステムがある。
【0003】
ところで、内燃機関には燃料を筒内に直接噴射して希薄燃焼を可能にしたものがあり、この筒内直接噴射式希薄燃焼エンジンでは排気ガスも酸素過剰な状態で排出されるため、その排気浄化には、酸素過剰な雰囲気下でも排気浄化が可能な触媒、いわゆるリーンNOx触媒(以下、NOx触媒という)が用いられる。
【0004】
この筒内直接噴射式希薄燃焼エンジンの排気浄化システムでは、NOx触媒を昇温する必要が生じたときに、その昇温手段として気筒群別空燃比制御を採用することがある。気筒群別空燃比制御とは、多気筒エンジンにおいて一部の気筒をリッチ空燃比で運転させると同時に残る気筒をリーン空燃比で運転させる空燃比制御方法であり、リッチ空燃比で運転した気筒(以下、リッチ気筒という)から排出される十分な量の未燃燃料成分を含む排気ガスとリーン空燃比で運転した気筒(以下、リーン気筒という)から排出される十分な量の酸素を含む排気ガスとの混合ガスをNOx触媒に供給し、その混合ガス中に含まれる未燃燃料成分と酸素とをNOx触媒において酸化反応させることによって、NOx触媒を昇温させる。
【0005】
例えば、特開平8−61052号公報に開示された内燃機関の排気浄化装置では、吸蔵還元型NOx触媒に吸収された硫黄酸化物(SOx)を該NOx触媒から脱離させる際に、SOx脱離可能な温度まで該NOx触媒を昇温する手段として気筒群別空燃比制御を採用している。
【0006】
この気筒群別空燃比制御による触媒の昇温処理では、必要とされる温度上昇の程度によってリッチ気筒における空燃比のリッチ度およびリーン気筒における空燃比のリーン度を変える必要があり、温度上昇の程度が大きいほどリッチ気筒の空燃比のリッチ度を大きくして未燃燃料成分を多くし、これに対応してリーン気筒の空燃比のリーン度を大きくして酸素量を多くする。
【0007】
【発明が解決しようとする課題】
ここで、NOx触媒に昇温処理が要求された時のエンジンの運転状態と温度上昇幅との関係から、リッチ気筒の空燃比を強リッチ(例えば、空燃比6〜7)に設定すべき場合がある。
【0008】
しかしながら、このように空燃比を強リッチにすると燃焼が悪化し、燃費悪化となるばかりでなく、点火プラグに煤が付着する現象(いわゆる、プラグくすぶり)が起こるという問題があった。プラグくすぶりは、着火不良や失火の原因となる虞れもある。
【0009】
本発明はこのような従来の技術の問題点に鑑みてなされたものであり、本発明が解決しようとする課題は、気筒内での燃焼に関わる空燃比については安定燃焼が得られる範囲で設定し、足りない分は副噴射で供給することにより、触媒を温度上昇させるのに必要な排気ガス中の未燃燃料量を確保し、安定燃焼と燃費向上を図り、さらにプラグくすぶりの防止を図ることにある。
【0010】
【課題を解決するための手段】
本発明は前記課題を解決するために、以下の手段を採用した。本発明は、希薄燃焼可能な多気筒内燃機関の気筒を複数の気筒群に分割し、夫々の気筒群に夫々接続された排気通路に夫々設けられた三元触媒と、前記三元触媒よりも下流の前記排気通路が接続する全気筒群共通の合流排気管に設けられた吸蔵還元型NO x 触媒と、前記吸蔵還元型NO x 触媒を昇温すべきときに一部の気筒群をリッチ空燃比で運転し残る気筒群をリーン空燃比で運転すべく空燃比を制御する空燃比制御手段と、を備えた内燃機関の排気浄化装置において、前記触媒を昇温すべきときに前記一部の気筒群については、機関出力を得るための気筒内での燃焼に関わる空燃比が弱リッチにされ、且つ、膨張行程あるいは排気行程で燃料が副噴射されることを特徴とする。
【0011】
触媒を昇温すべきときに前記一部の気筒群について、機関出力を得るための気筒内での燃焼に関わる空燃比を弱リッチとし、且つ、膨張行程あるいは排気行程で燃料を副噴射すると、当該一部の気筒群から排出される排気ガスの空燃比を理論空燃比よりも十分にリッチな強リッチの空燃比にすることができ、触媒を昇温するために触媒において燃焼するのに必要とされる未燃燃料量を確保することができる。その結果、触媒において前記未燃燃料が燃焼して、触媒を所望の温度まで昇温させることができる。一方、機関出力を得るための気筒内での燃焼は弱リッチな空燃比での燃焼であるので安定燃焼が行われ、燃費悪化や失火等を防止することができる。
【0012】
尚、ここで、排気ガスの空燃比とは、機関吸気通路及び触媒よりも上流での排気通路内に供給された空気及び燃料(炭化水素)の比をいう。
本発明において、弱リッチとは、空燃比が11〜14程度のことをいい、強リッチとは空燃比が8〜11程度のことをいう。
【0013】
本出願における触媒としては、酸化触媒、リーンNOx触媒を例示することができ、リーンNOx触媒としては、選択還元型NOx触媒や吸蔵還元型NOx触媒を例示することができる。
【0014】
選択還元型NOx触媒は、酸素過剰の雰囲気で炭化水素の存在下でNOxを還元または分解する触媒をいい、例えば、ゼオライトにCu等の遷移金属をイオン交換して担持した触媒、ゼオライトまたはアルミナに貴金属を担持した触媒、等が含まれる。
【0015】
吸蔵還元型NOx触媒は、流入排気ガスの空燃比がリーンのときはNOxを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOxを放出しN2に還元する触媒をいい、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されてなる。
【0016】
「触媒を昇温すべきとき」には、吸蔵還元型NOx触媒に吸収されたSOxを該NOx触媒から脱離させる際にSOx脱離可能な温度まで該NOx触媒を昇温するときや、アイドル運転放置時に触媒温度を上昇させるときや、機関冷間始動時に触媒を暖機させるときなどが含まれる。ただし、「触媒を昇温すべきとき」はこれらのときだけに限られるものではない。
【0017】
本発明においては、リッチ空燃比で運転すべき前記一部の気筒群における燃料の副噴射は、この一部の気筒群のサイクルにおいて間欠的に実行されるようにすることができる。一部の気筒群のサイクルにおいて間欠的にというのは、例えば、4気筒エンジンにおいて2番気筒と3番気筒をリッチ空燃比で運転する場合、2番気筒と3番気筒の全サイクルについて副噴射を行わずに、2番気筒と3番気筒の3サイクル毎に1サイクルだけ副噴射を行う場合や、2番気筒と3番気筒の4サイクルのうち1〜3サイクルについては副噴射を行い、4サイクル目は副噴射を行わない場合などを含む。
【0018】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気浄化装置の実施の形態を図1から図4の図面に基いて説明する。尚、以下に説明する各実施の形態は、本発明に係る内燃機関の排気浄化装置を、希薄燃焼可能な筒内直接噴射式の車両用リーンバーンガソリンエンジンに適用した例である。
【0019】
〔第1の実施の形態〕
図1は、第1の実施の形態における排気浄化装置の概略構成を示す図であり、この図において、符号1は直列4気筒のエンジン本体を示し、エンジン本体1は1番気筒1A,2番気筒1B,3番気筒1C,4番気筒1Dを備える。各気筒には、点火栓2と燃料噴射弁3が設けられており、このエンジンでは、燃料噴射弁3から燃料が筒内に直接噴射される。
【0020】
エンジン本体1の気筒は二つの気筒群に分割されており、1番気筒1Aと4番気筒1Dにより第1の気筒群が構成され、2番気筒1Bと3番気筒1Cとにより第2の気筒群が構成されている。ここで、このエンジン本体1の排気行程順序は1番気筒1A→3番気筒1C→4番気筒1D→2番気筒1Bに設定されており、各気筒は、排気行程が互いに連続しない気筒同士に分割されていることになる。
【0021】
1番気筒1Aと4番気筒1Dからなる第1の気筒群は排気マニホルド4aを介して始動時触媒5aを収容したケーシング6aに接続され、2番気筒1Bと3番気筒1Cからなる第2の気筒群は排気マニホルド4bを介して始動時触媒5bを収容したケーシング6bに接続されている。これらケーシング6a、6bは共通の合流排気管7を介して吸蔵還元型NOx触媒(以下、NOx触媒と略す)8を収容したケーシング9に接続され、ケーシング9は排気管10を介して図示しないマフラーに接続されている。
【0022】
始動時触媒5a,5bは三元触媒によって構成されている。
NOx触媒8は、流入排気ガスの空燃比がリーンのときはNOxを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOxを放出しN2に還元する触媒であり、例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されてなる。
【0023】
エンジンコントロール用の電子制御ユニット(ECU)20はディジタルコンピュータからなり、双方向性バスによって相互に接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポート及び出力ポートを具備する。
【0024】
各気筒の点火栓2、燃料噴射弁3はECU20によって点火時期、燃料噴射時期、燃料噴射期間を制御される。特に、第1の実施の形態において、ECU20は、エンジンの運転状態に応じて燃料噴射弁3を制御することにより、エンジン出力を得るために筒内で燃焼せしめられる燃料を圧縮上死点近傍で噴射する主噴射の実行と、NOx触媒8を昇温するための未燃燃料成分として膨張行程あるいは排気行程において筒内に燃料を噴射する副噴射の実行を制御する。
【0025】
このガソリンエンジンにおいては、エンジンの運転状態に応じて空燃比を変えて運転する空燃比制御が実行され、ECU20は、エンジン始動時、暖機運転時、加速運転時等には全気筒について理論空燃比制御を実行し、それ以外の時には全気筒についてリーン空燃比制御を実行する。尚、これら通常の運転状態においては、圧縮上死点近傍で燃料噴射弁3から筒内に燃料が主噴射され、エンジン出力を得るための燃焼が行われ、燃料の副噴射は実行されない。
【0026】
始動時触媒5a,5bは、エンジン始動時などにECU20が理論空燃比制御を実行してエンジンからストイキの排気ガスが排出されたときに、その排気ガスを三元活性により浄化する。
【0027】
NOx触媒8は、ECU20がリーン空燃比制御を実行してエンジンからリーン空燃比の排気ガスが排出されたときに、その排気ガス中のNOxを吸収して排気ガスを浄化する。
【0028】
ただし、このNOx触媒8のNOx吸収能力には限界があり、リーン空燃比制御が長時間継続されるとNOx触媒8のNOx吸収能力が飽和するので、この排気浄化装置では、ECU20は、NOx触媒8に吸収されるNOx量をエンジンの運転履歴から推定し、その推定値が所定の限界値に達したと判定されたときに、全気筒に対してリッチ空燃比での運転を短時間行うためのリッチスパイク制御を実行してNOx触媒8に吸収されたNOxの放出及び還元を行う。これが、NOx触媒8をNOxで飽和させることなくNOxの吸収と放出・還元を交互に行うための空燃比制御手法であり、リーン・リッチスパイク制御と称されている。
【0029】
ところで、燃料には硫黄(S)が含まれており、燃料中の硫黄が燃焼するとSO2やSO3などの硫黄酸化物(SOx)が発生し、NOx触媒8は排気ガス中のこれらSOxも吸収する。NOx触媒8に吸収されるSOx量が増大するとNOx触媒8のNOx吸収能力が低下することが知られており、これが所謂SOx被毒である。
【0030】
NOx触媒8に吸収されたSOxを効率的に脱離させるためには、流入する排気ガスの空燃比を理論空燃比もしくはそれよりも若干リッチにし、且つ、NOx触媒8の触媒温度をSOx脱離温度(例えば、550゜C)以上の高温に維持する必要がある。
【0031】
そこで、この実施の形態の排気浄化装置では、ECU20がエンジンの履歴(例えば、走行距離など)に基づいて、NOx触媒8に吸収されたSOx量が所定値に達したと判断したときに、第1の気筒群をリーン空燃比に制御し第2の気筒群をリッチ空燃比に制御する気筒群別空燃比制御を実行して、NOx触媒8を前記SOx脱離温度まで昇温するとともに、NOx触媒8に流入する排気ガスの空燃比を理論空燃比もしくはそれよりも若干リッチな空燃比にする。
【0032】
ところが、SOx脱離温度は非常に高温であるため、気筒群別空燃比制御だけによってNOx触媒8をSOx脱離温度まで昇温しようとすると、リッチ空燃比に制御すべき第2の気筒群を強リッチの空燃比(例えば、8〜11)に制御しなければならない。しかしながら、前述したように、強リッチの空燃比で燃焼させると、燃焼状態が悪くなって燃費悪化となり、プラグくすぶりが発生する虞れがある。
【0033】
そこで、この第1の実施の形態の排気浄化装置では、気筒群別空燃比制御を実行する場合には、ECU20は、1番気筒1Aと4番気筒1Dの第1の気筒群はリーンな空燃比に制御し、2番気筒1Bと3番気筒1Cの第2の気筒群は弱リッチな空燃比(例えば、12.5)に制御すべく、燃料噴射弁3を制御する。この気筒群別空燃比制御によって燃料噴射弁3から主噴射される燃料は、エンジン出力を得るために各気筒内に噴射され燃焼せしめられる燃料であり、筒内で燃焼され得なかった未燃燃料は触媒8の昇温に供される。2番気筒1B及び3番気筒1Cは弱リッチの空燃比に制御されるので、燃焼が非常に安定して燃費もよく、プラグくすぶりのような問題も発生しない。
【0034】
そして、気筒群別空燃比制御で2番気筒と3番気筒の空燃比を弱リッチにしただけでは、触媒8をSOx脱離温度まで昇温させるための未燃燃料量を確保することができないので、ECU20は、この不足分に相当する燃料を2番気筒と3番気筒の膨張行程あるいは排気行程において燃料噴射弁3から副噴射する。副噴射された燃料は気筒内において殆ど燃焼することなく排出され、これにより、2番気筒1Bと3番気筒1Cから排出される排気ガスの空燃比は、触媒8をSOx脱離温度まで昇温させるために必要な量の未燃燃料成分を含む強リッチな空燃比(例えば8〜11)になる。
【0035】
さらに、ECU20は、2番気筒1Bと3番気筒1Cから排出されるリッチ空燃比の排気ガスと、1番気筒1Aと4番気筒1Dから排出されるリーン空燃比の排気ガスが合流してNOx触媒8に流入するときに、合流後の混合ガスの平均空燃比が理論空燃比あるいはそれよりも若干リッチな空燃比となるように、1番気筒1Aと4番気筒1Dの空燃比のリーン度を制御する。
【0036】
その結果、2番気筒1Bと3番気筒1Cから排出される未燃燃料成分を多量に含む強リッチな空燃比の排気ガスと、1番気筒1Aと4番気筒1Dから排出される酸素を多量に含む排気ガスとの混合ガスがNOx触媒8に流入して、混合ガス中に含まれる未燃燃料成分と酸素がNOx触媒8において酸化反応を起こし、その反応熱によってNOx触媒8をSOx脱離温度まで昇温する。これにより、NOx触媒8に吸収されていたSOxが脱離し、NOx触媒8をSOx被毒から回復させることができる。
【0037】
図2は、第1の実施の形態において気筒群別空燃比制御を実行しているときの各気筒の燃料噴射タイミングを表したタイミングチャートである。この図において、Mは主噴射を表し、Sは副噴射を表している。リーン空燃比に制御される1番気筒1Aと4番気筒1Dは主噴射のみ実行され、副噴射は実行されない。リッチ空燃比に制御される2番気筒1Bと3番気筒1Cは、その総てのサイクルにおいて主噴射と副噴射が実行される。
【0038】
〔第2の実施の形態〕
次に、本発明の内燃機関の排気浄化装置における第2の実施の形態を図3を参照して説明する。
【0039】
前述した第1の実施の形態では、ECU20は、気筒群別空燃比制御を実行する場合に、リッチ空燃比に制御すべき2番気筒1Bと3番気筒1Cについてその総てのサイクルにおいて触媒昇温のための副噴射を実行するように制御しているが、第2の実施の形態では、触媒昇温のための副噴射を2番気筒1Bと3番気筒1Cのサイクルにおいて間欠的に実行するように制御する。以下、このような制御のことを、副噴射の間欠制御と称す。
【0040】
詳述すると、図3のタイミングチャートに示すように、第2の実施の形態では、ECU20は、2番気筒1Bについては毎サイクル副噴射を実行し、3番気筒1Cについては1サイクルおきに副噴射を実行するように、副噴射制御を行う。換言すれば、ECU20は、2番気筒1Bと3番気筒1Cについて4サイクル中3サイクルについては副噴射を実行し、4サイクル中1サイクルについては副噴射を実行しないように、副噴射制御を行う。
【0041】
このように、副噴射を間欠制御する理由は次の通りである。燃料噴射弁3は最小噴射量の規制があり、噴射量の精度低下などの理由からこの最小噴射量よりも少ない噴射量に設定することができない。
【0042】
そのため、NOx触媒8の昇温に必要な未燃燃料成分の不足分を副噴射で補うときに、未燃燃料不足分が少ない場合には、2番気筒1Bと3番気筒1Cの毎サイクルにおいて副噴射すると、燃料噴射弁3の噴射量を最小噴射量に設定しても、実際に燃料噴射弁3から副噴射される副噴射量が本来補充すべき未燃燃料不足分よりも多くなる場合もあり得る。これでは、過剰な燃料を副噴射することになり、燃費悪化を引き起こす。
【0043】
そこで、このような場合には、2番気筒1Bと3番気筒1Cの総てのサイクルにおいて副噴射を実行することを避け、間欠的なサイクルで副噴射を実行することによって、副噴射量を燃料噴射弁3の最小噴射量以上に設定できるようにするのである。
【0044】
そして、このように副噴射の間欠制御を行った場合には、例えば1番気筒1Aから4番気筒1Dにおいて連続した8サイクルにおいて第1の気筒群と第2の気筒群の排気ガスの混合ガスの空燃比が理論空燃比もしくはそれよりも若干リッチな空燃比となるように、第1の気筒群の空燃比のリーン度を制御する。
【0045】
尚、副噴射の間欠制御はこの例に限られるものではなく、場合によっては、2番気筒1Bと3番気筒1Cについて3サイクル中2サイクルについて副噴射を実行し、3サイクル中1サイクルについては副噴射を実行しないよう制御することも可能であるし、あるいは、2番気筒1Bと3番気筒1Cについて3サイクル中1サイクルについて副噴射を実行し、3サイクル中2サイクルについては副噴射を実行しないよう制御することも可能である。
【0046】
尚、図4は、副噴射の有無及び副噴射の頻度が、触媒8に対する昇温効果と燃費悪化率に及ぼす影響を求めた実験結果の一例である。黒丸マーク(●)は副噴射無しの場合であり、×マークは毎サイクル副噴射を実行した場合であり、白丸マーク(○)は3サイクル毎に1回副噴射を行う間欠制御を実行した場合であり、四角マーク(□)は5サイクル毎に1回副噴射を行う間欠制御を実行した場合であり、三角マーク(△)は11サイクル毎に1回副噴射を行う間欠制御を実行した場合である。
【0047】
【発明の効果】
本発明によれば、希薄燃焼可能な多気筒内燃機関の気筒を複数の気筒群に分割し、夫々の気筒群に夫々接続された排気通路に夫々設けられた三元触媒と、前記三元触媒よりも下流の前記排気通路が接続する全気筒群共通の合流排気管に設けられた吸蔵還元型NO x 触媒と、前記吸蔵還元型NO x 触媒を昇温すべきときに一部の気筒群をリッチ空燃比で運転し残る気筒群をリーン空燃比で運転すべく空燃比を制御する空燃比制御手段と、を備えた内燃機関の排気浄化装置において、前記触媒を昇温すべきときに前記一部の気筒群については、機関出力を得るための気筒内での燃焼に関わる空燃比が弱リッチにされ、且つ、膨張行程あるいは排気行程で燃料が副噴射されることにより、触媒昇温時に、機関出力を得るための気筒内での燃焼が非常に安定して、燃焼状態が良好で燃費が向上し、プラグくすぶりも防止することができるという優れた効果が奏される。
【0048】
また、前記一部の気筒群における燃料の副噴射が、この一部の気筒群のサイクルにおいて間欠的に行われるようにした場合には、副噴射による燃料の過剰供給を防止することができ、燃費が向上するという優れた効果が奏される。
【図面の簡単な説明】
【図1】 本発明に係る内燃機関の排気浄化装置における第1の実施の形態の概略構成を示す図である。
【図2】 第1の実施の形態において気筒群別空燃比制御を実行しているときの各気筒の燃料噴射タイミングを表したタイミングチャートである。
【図3】 第2の実施の形態において気筒群別空燃比制御を実行しているときの各気筒の燃料噴射タイミングを表したタイミングチャートである。
【図4】 副噴射の有無及び副噴射の頻度が触媒に対する昇温効果と燃費悪化率に及ぼす影響を求めた実験結果の一例である。
【符号の説明】
1 エンジン本体(内燃機関)
1A 1番気筒
1B 2番気筒
1C 3番気筒
1D 4番気筒
2 点火栓
3 燃料噴射弁
7 合流排気管(排気通路)
8 吸蔵還元型NOx触媒
10 排気管(排気通路)
20 ECU(空燃比制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust purification device that purifies exhaust gas discharged from an internal combustion engine with a catalyst.
[0002]
[Prior art]
As a means for reducing the amount of harmful components in the exhaust gas discharged from the internal combustion engine to the atmosphere, there is a system for purifying the harmful components using the oxidizing or reducing action of a catalyst.
[0003]
By the way, some internal combustion engines inject fuel directly into a cylinder to enable lean combustion. In this in-cylinder direct injection lean combustion engine, exhaust gas is also exhausted in an oxygen-excess state. For purification, a catalyst capable of purifying exhaust gas even in an oxygen-excess atmosphere, so-called lean NOx catalyst (hereinafter referred to as NOx catalyst) is used.
[0004]
In this in-cylinder direct injection type lean combustion engine exhaust purification system, when it is necessary to raise the temperature of the NOx catalyst, air-fuel ratio control by cylinder group may be adopted as the temperature raising means. Cylinder group air-fuel ratio control is an air-fuel ratio control method in which some cylinders in a multi-cylinder engine are operated at a rich air-fuel ratio and at the same time the remaining cylinders are operated at a lean air-fuel ratio. Hereinafter, exhaust gas containing a sufficient amount of unburned fuel components discharged from a rich cylinder) and exhaust gas containing a sufficient amount of oxygen discharged from a cylinder operated at a lean air-fuel ratio (hereinafter referred to as lean cylinder) Is supplied to the NOx catalyst, and the NOx catalyst is heated by oxidizing the unburned fuel component and oxygen contained in the mixed gas in the NOx catalyst.
[0005]
For example, in the exhaust gas purification apparatus for an internal combustion engine disclosed in JP-A-8-61052, SOx desorption is performed when sulfur oxide (SOx) absorbed by the NOx storage reduction catalyst is desorbed from the NOx catalyst. Cylinder group air-fuel ratio control is employed as means for raising the temperature of the NOx catalyst to a possible temperature.
[0006]
In the temperature raising process of the catalyst by the air-fuel ratio control for each cylinder group, it is necessary to change the richness of the air-fuel ratio in the rich cylinder and the leanness of the air-fuel ratio in the lean cylinder depending on the required temperature rise. As the degree increases, the richness of the air-fuel ratio of the rich cylinder is increased to increase the amount of unburned fuel components. Correspondingly, the leanness of the air-fuel ratio of the lean cylinder is increased to increase the amount of oxygen.
[0007]
[Problems to be solved by the invention]
Here, the air-fuel ratio of the rich cylinder should be set to be rich (for example, air-fuel ratio 6-7) from the relationship between the engine operating state and the temperature rise when the temperature raising process is required for the NOx catalyst. There is.
[0008]
However, when the air-fuel ratio is made rich in this manner, there is a problem that not only combustion worsens and fuel consumption worsens, but also a phenomenon that soot adheres to the spark plug (so-called plug smoldering) occurs. Plug smoldering can cause poor ignition and misfire.
[0009]
The present invention has been made in view of such problems of the prior art, and the problem to be solved by the present invention is to set an air-fuel ratio related to combustion in a cylinder within a range where stable combustion can be obtained. However, by supplying the shortage by sub-injection, the amount of unburned fuel in the exhaust gas necessary to raise the temperature of the catalyst is secured, stable combustion and fuel efficiency are improved, and plug smoldering is prevented. There is.
[0010]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems. The present invention divides a cylinder of a multi-cylinder internal combustion engine capable of lean combustion into a plurality of cylinder groups, and provides a three-way catalyst provided in each exhaust passage connected to each cylinder group, and more than the three-way catalyst. a storage reduction the NO x catalyst provided in all cylinder groups common junction exhaust pipe in which the exhaust passage is connected downstream, a rich air a portion of the cylinder group when the storage reduction the NO x catalyst should be raising the temperature of the And an air-fuel ratio control means for controlling the air-fuel ratio so as to operate the remaining cylinder group at a lean air-fuel ratio. This cylinder group is characterized in that the air-fuel ratio related to combustion in the cylinder for obtaining engine output is made slightly rich, and fuel is sub-injected in the expansion stroke or the exhaust stroke.
[0011]
When the temperature of the catalyst is to be raised, when the air-fuel ratio related to combustion in the cylinder for obtaining engine output is weakly rich and the fuel is sub-injected in the expansion stroke or the exhaust stroke when the temperature of the catalyst is to be increased, The air-fuel ratio of the exhaust gas discharged from some of the cylinder groups can be made to be a rich rich air-fuel ratio that is sufficiently richer than the stoichiometric air-fuel ratio, and is necessary for combustion in the catalyst to raise the temperature of the catalyst It is possible to secure the amount of unburned fuel. As a result, the unburned fuel burns in the catalyst, and the temperature of the catalyst can be raised to a desired temperature. On the other hand, the combustion in the cylinder for obtaining the engine output is combustion at a weakly rich air-fuel ratio, so that stable combustion is performed, and deterioration of fuel consumption, misfire, etc. can be prevented.
[0012]
Here, the air-fuel ratio of the exhaust gas means a ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the engine intake passage and the catalyst.
In the present invention, weak rich means that the air-fuel ratio is about 11 to 14, and strong rich means that the air-fuel ratio is about 8 to 11.
[0013]
Examples of the catalyst in the present application include an oxidation catalyst and a lean NOx catalyst, and examples of the lean NOx catalyst include a selective reduction type NOx catalyst and an occlusion reduction type NOx catalyst.
[0014]
The selective reduction type NOx catalyst is a catalyst that reduces or decomposes NOx in the presence of hydrocarbons in an oxygen-excess atmosphere. For example, a catalyst in which a transition metal such as Cu is ion-exchanged on zeolite, supported on zeolite or alumina. A catalyst carrying a noble metal is included.
[0015]
NOx storage reduction catalyst refers to catalyst air-fuel ratio of the inflowing exhaust gas is absorbed NOx when the lean, the oxygen concentration in the inflowing exhaust gas is reduced to an N 2 release NOx absorbed and reduced, for example, alumina Is selected from alkali metals such as potassium K, sodium Na, lithium Li and cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, and rare earth materials such as lanthanum La and yttrium Y. Further, at least one and a noble metal such as platinum Pt are supported.
[0016]
“When the temperature of the catalyst is to be increased”, the temperature of the NOx catalyst is increased to a temperature at which SOx can be desorbed when the SOx absorbed by the NOx storage reduction catalyst is desorbed from the NOx catalyst. This includes the case where the catalyst temperature is raised when the operation is left unattended, and the case where the catalyst is warmed up when the engine is cold. However, “when the temperature of the catalyst should be raised” is not limited to these times.
[0017]
In the present invention, the fuel sub-injection in the partial cylinder group to be operated at the rich air-fuel ratio can be intermittently executed in the cycle of the partial cylinder group. Intermittently in the cycle of some cylinder groups means that, for example, when the second and third cylinders are operated at a rich air-fuel ratio in a four-cylinder engine, the sub-injection is performed for all cycles of the second and third cylinders. When performing sub-injection only once every 3 cycles of the 2nd cylinder and the 3rd cylinder without performing the above, or performing sub-injection for 1 to 3 out of 4 cycles of the 2nd cylinder and the 3rd cylinder, The fourth cycle includes the case where the secondary injection is not performed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described below with reference to the drawings of FIGS. Each embodiment described below is an example in which the exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied to a lean burn gasoline engine for a direct in-cylinder vehicle that can perform lean combustion.
[0019]
[First Embodiment]
FIG. 1 is a diagram showing a schematic configuration of an exhaust emission control device according to a first embodiment. In this figure, reference numeral 1 indicates an in-line four-cylinder engine body, and the engine body 1 is the first cylinder 1A, second cylinder. A cylinder 1B, a third cylinder 1C, and a fourth cylinder 1D are provided. Each cylinder is provided with an ignition plug 2 and a fuel injection valve 3. In this engine, fuel is directly injected into the cylinder from the fuel injection valve 3.
[0020]
The cylinders of the engine body 1 are divided into two cylinder groups. The first cylinder group is composed of the first cylinder 1A and the fourth cylinder 1D, and the second cylinder is composed of the second cylinder 1B and the third cylinder 1C. A group is composed. Here, the exhaust stroke order of the engine body 1 is set in the order of the first cylinder 1A → the third cylinder 1C → the fourth cylinder 1D → the second cylinder 1B. It will be divided.
[0021]
A first cylinder group consisting of a first cylinder 1A and a fourth cylinder 1D is connected to a casing 6a containing a start-up catalyst 5a via an exhaust manifold 4a, and a second cylinder consisting of a second cylinder 1B and a third cylinder 1C. The cylinder group is connected via an exhaust manifold 4b to a casing 6b that houses a start-up catalyst 5b. These casings 6a and 6b are connected to a casing 9 containing a NOx storage reduction catalyst (hereinafter abbreviated as NOx catalyst) 8 through a common merged exhaust pipe 7, and the casing 9 is not shown in the figure through an exhaust pipe 10. It is connected to the.
[0022]
The starting catalysts 5a and 5b are constituted by a three-way catalyst.
NOx catalyst 8, the air-fuel ratio of the inflowing exhaust gas is absorbed NOx when the lean, a catalyst concentration of oxygen in the inflowing exhaust gas is reduced to N 2 release NOx absorbed and reduced, for example alumina carriers And at least selected from an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, an alkaline earth such as barium Ba and calcium Ca, and a rare earth such as lanthanum La and yttrium Y. One and a noble metal such as platinum Pt are supported.
[0023]
An electronic control unit (ECU) 20 for engine control is composed of a digital computer, and is connected to each other by a bidirectional bus such as a ROM (Read Only Memory), a RAM (Random Access Memory), a CPU (Microprocessor), an input port, and An output port is provided.
[0024]
The ignition plug 2 and the fuel injection valve 3 of each cylinder are controlled by the ECU 20 for ignition timing, fuel injection timing, and fuel injection period. In particular, in the first embodiment, the ECU 20 controls the fuel injection valve 3 in accordance with the operating state of the engine so that the fuel burned in the cylinder in order to obtain the engine output is near the compression top dead center. Execution of main injection for injection and execution of sub-injection for injecting fuel into the cylinder in the expansion stroke or exhaust stroke as unburned fuel components for raising the temperature of the NOx catalyst 8 are controlled.
[0025]
In this gasoline engine, air-fuel ratio control is performed in which the air-fuel ratio is changed in accordance with the operating state of the engine, and the ECU 20 performs a theoretical empty operation for all cylinders during engine start-up, warm-up operation, acceleration operation, and the like. Fuel ratio control is executed, and at other times, lean air-fuel ratio control is executed for all cylinders. In these normal operating states, fuel is mainly injected from the fuel injection valve 3 into the cylinder in the vicinity of the compression top dead center, combustion for obtaining engine output is performed, and fuel sub-injection is not executed.
[0026]
The start-up catalysts 5a and 5b purify the exhaust gas by three-way activity when the ECU 20 executes the theoretical air-fuel ratio control at the time of engine start or the like and the stoichiometric exhaust gas is discharged from the engine.
[0027]
When the ECU 20 executes lean air-fuel ratio control and exhaust gas having a lean air-fuel ratio is discharged from the engine, the NOx catalyst 8 absorbs NOx in the exhaust gas and purifies the exhaust gas.
[0028]
However, the NOx absorption capacity of the NOx catalyst 8 is limited, and the NOx absorption capacity of the NOx catalyst 8 is saturated when the lean air-fuel ratio control is continued for a long time. In this exhaust purification device, the ECU 20 The amount of NOx absorbed by the engine 8 is estimated from the engine operation history, and when it is determined that the estimated value has reached a predetermined limit value, all cylinders are operated at a rich air-fuel ratio for a short time. The rich spike control is executed to release and reduce the NOx absorbed in the NOx catalyst 8. This is an air-fuel ratio control method for alternately absorbing and releasing / reducing NOx without saturating the NOx catalyst 8 with NOx, and is referred to as lean / rich spike control.
[0029]
By the way, sulfur (S) is contained in the fuel, and when sulfur in the fuel burns, sulfur oxides (SOx) such as SO 2 and SO 3 are generated, and the NOx catalyst 8 also has these SOx in the exhaust gas. Absorb. It is known that when the amount of SOx absorbed by the NOx catalyst 8 increases, the NOx absorption capacity of the NOx catalyst 8 decreases, which is so-called SOx poisoning.
[0030]
In order to efficiently desorb SOx absorbed by the NOx catalyst 8, the air-fuel ratio of the inflowing exhaust gas is made the stoichiometric air-fuel ratio or slightly richer than that, and the catalyst temperature of the NOx catalyst 8 is SOx desorbed. It is necessary to maintain the temperature higher than the temperature (for example, 550 ° C.).
[0031]
Therefore, in the exhaust purification apparatus of this embodiment, when the ECU 20 determines that the amount of SOx absorbed by the NOx catalyst 8 has reached a predetermined value based on the history of the engine (for example, the travel distance, etc.), A cylinder group-specific air-fuel ratio control is performed to control the first cylinder group to a lean air-fuel ratio and the second cylinder group to a rich air-fuel ratio to raise the temperature of the NOx catalyst 8 to the SOx desorption temperature. The air-fuel ratio of the exhaust gas flowing into the catalyst 8 is made the stoichiometric air-fuel ratio or an air-fuel ratio slightly richer than that.
[0032]
However, since the SOx desorption temperature is very high, if the NOx catalyst 8 is raised to the SOx desorption temperature only by the cylinder group-specific air-fuel ratio control, the second cylinder group to be controlled to the rich air-fuel ratio is set. The air-fuel ratio must be controlled to a strong rich (for example, 8 to 11). However, as described above, when the combustion is performed at a strong rich air-fuel ratio, the combustion state is deteriorated, the fuel consumption is deteriorated, and plug smoldering may occur.
[0033]
Therefore, in the exhaust purification system of the first embodiment, when the cylinder group air-fuel ratio control is executed, the ECU 20 determines that the first cylinder group of the first cylinder 1A and the fourth cylinder 1D has a lean empty space. The fuel injection valve 3 is controlled so that the second cylinder group of the second cylinder 1B and the third cylinder 1C is controlled to a slightly rich air-fuel ratio (for example, 12.5). The fuel that is mainly injected from the fuel injection valve 3 by the air-fuel ratio control for each cylinder group is fuel that is injected into each cylinder and burned in order to obtain engine output, and unburned fuel that could not be burned in the cylinder. Is used to raise the temperature of the catalyst 8. Since the second cylinder 1B and the third cylinder 1C are controlled to a slightly rich air-fuel ratio, combustion is very stable, fuel consumption is good, and problems such as plug smolder do not occur.
[0034]
In addition, the amount of unburned fuel for raising the temperature of the catalyst 8 to the SOx desorption temperature cannot be ensured only by making the air-fuel ratios of the second and third cylinders weakly rich by the cylinder group air-fuel ratio control. Therefore, the ECU 20 sub-injects fuel corresponding to this shortage from the fuel injection valve 3 in the expansion stroke or exhaust stroke of the second cylinder and the third cylinder. The sub-injected fuel is discharged with little combustion in the cylinder, and the air-fuel ratio of the exhaust gas discharged from the second cylinder 1B and the third cylinder 1C raises the catalyst 8 to the SOx desorption temperature. Therefore, the air-fuel ratio becomes strong and rich (for example, 8 to 11) including an unburned fuel component in an amount necessary for the control.
[0035]
Further, the ECU 20 joins the rich air-fuel ratio exhaust gas discharged from the second cylinder 1B and the third cylinder 1C and the lean air-fuel ratio exhaust gas discharged from the first cylinder 1A and the fourth cylinder 1D to form NOx. The lean ratio of the air-fuel ratios of the first cylinder 1A and the fourth cylinder 1D so that the average air-fuel ratio of the mixed gas after merging becomes the stoichiometric air-fuel ratio or a slightly richer air-fuel ratio when flowing into the catalyst 8 To control.
[0036]
As a result, a strong rich air-fuel ratio exhaust gas containing a large amount of unburned fuel components discharged from the second cylinder 1B and the third cylinder 1C and a large amount of oxygen discharged from the first cylinder 1A and the fourth cylinder 1D The mixed gas with the exhaust gas contained in the gas flows into the NOx catalyst 8, and the unburned fuel component and oxygen contained in the mixed gas cause an oxidation reaction in the NOx catalyst 8, and the NOx catalyst 8 is SOx desorbed by the reaction heat. Raise to temperature. Thereby, the SOx absorbed in the NOx catalyst 8 is desorbed, and the NOx catalyst 8 can be recovered from the SOx poisoning.
[0037]
FIG. 2 is a timing chart showing the fuel injection timing of each cylinder when the cylinder group air-fuel ratio control is executed in the first embodiment. In this figure, M represents main injection and S represents sub-injection. In the first cylinder 1A and the fourth cylinder 1D controlled to the lean air-fuel ratio, only the main injection is executed, and the sub-injection is not executed. In the second cylinder 1B and the third cylinder 1C controlled to the rich air-fuel ratio, main injection and sub-injection are executed in all cycles.
[0038]
[Second Embodiment]
Next, a second embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to FIG.
[0039]
In the first embodiment described above, when executing the cylinder group air-fuel ratio control, the ECU 20 increases the catalyst in all the cycles of the second cylinder 1B and the third cylinder 1C to be controlled to the rich air-fuel ratio. In the second embodiment, the sub-injection for raising the temperature of the catalyst is intermittently executed in the cycle of the second cylinder 1B and the third cylinder 1C. Control to do. Hereinafter, such control is referred to as sub-injection intermittent control.
[0040]
More specifically, as shown in the timing chart of FIG. 3, in the second embodiment, the ECU 20 executes the sub-injection every cycle for the second cylinder 1B and the sub-cycle every other cycle for the third cylinder 1C. Sub-injection control is performed so that injection is performed. In other words, the ECU 20 performs the sub-injection control so that the second cylinder 1B and the third cylinder 1C perform the sub-injection for 3 cycles in 4 cycles and do not execute the sub-injection for 1 cycle in 4 cycles. .
[0041]
As described above, the reason for intermittently controlling the sub-injection is as follows. The fuel injection valve 3 has a restriction on the minimum injection amount, and cannot be set to an injection amount smaller than the minimum injection amount for reasons such as a decrease in the accuracy of the injection amount.
[0042]
For this reason, when the shortage of unburned fuel necessary for raising the temperature of the NOx catalyst 8 is compensated by sub-injection, and the shortage of unburned fuel is small, in each cycle of the second cylinder 1B and the third cylinder 1C. When sub-injection, even if the injection amount of the fuel injection valve 3 is set to the minimum injection amount, the sub-injection amount actually sub-injected from the fuel injection valve 3 is larger than the shortage of unburned fuel to be replenished originally There is also a possibility. In this case, excessive fuel is sub-injected, resulting in deterioration of fuel consumption.
[0043]
Therefore, in such a case, avoiding the sub-injection in all the cycles of the second cylinder 1B and the third cylinder 1C, and performing the sub-injection in an intermittent cycle, thereby reducing the sub-injection amount. The fuel injection valve 3 can be set to be equal to or greater than the minimum injection amount.
[0044]
When the intermittent control of the sub-injection is performed in this way, for example, the mixed gas of the exhaust gas of the first cylinder group and the second cylinder group in eight consecutive cycles in the first cylinder 1A to the fourth cylinder 1D. The lean ratio of the air-fuel ratio of the first cylinder group is controlled so that the air-fuel ratio becomes the stoichiometric air-fuel ratio or a slightly richer air-fuel ratio.
[0045]
The intermittent control of the sub-injection is not limited to this example. In some cases, the sub-injection is executed for 2 cycles in 3 cycles for the 2nd cylinder 1B and the 1st cylinder 1C, and for 1 cycle in the 3rd cycle. It is possible to control so as not to execute the sub-injection, or for the second cylinder 1B and the third cylinder 1C, the sub-injection is executed for one of the three cycles, and the sub-injection is executed for two of the three cycles. It is also possible to control such that it does not.
[0046]
FIG. 4 is an example of experimental results obtained by determining the influence of the presence or absence of sub-injection and the frequency of sub-injection on the temperature rise effect on the catalyst 8 and the fuel consumption deterioration rate. The black circle mark (●) is when there is no sub-injection, the x mark is when the sub-injection is executed every cycle, and the white circle mark (○) is when the intermittent control is executed once every 3 cycles. The square mark (□) is when intermittent control is performed once every 5 cycles, and the triangular mark (Δ) is when intermittent control is performed once every 11 cycles. It is.
[0047]
【The invention's effect】
According to the present invention, the three-way catalyst provided in the exhaust passages, each of which is divided into a plurality of cylinder groups and each of the cylinders of the multi-cylinder internal combustion engine capable of lean combustion is connected to each of the cylinder groups, and the three-way catalyst a storage reduction the NO x catalyst provided in all cylinder groups common junction exhaust pipe in which the exhaust passage is connected downstream of the a portion of the cylinder group when the storage reduction the NO x catalyst should be raising the temperature of the And an air-fuel ratio control means for controlling the air-fuel ratio so as to operate the remaining cylinder group at a lean air-fuel ratio. For some cylinder groups, the air-fuel ratio related to combustion in the cylinder for obtaining engine output is made slightly rich, and fuel is sub-injected in the expansion stroke or exhaust stroke, so that when the catalyst temperature rises , Combustion in the cylinder to get engine output is very Therefore, it is possible to achieve an excellent effect that the combustion state is good, the fuel consumption is improved, and plug smoldering can be prevented.
[0048]
Further, when the fuel sub-injection in the partial cylinder group is intermittently performed in the cycle of the partial cylinder group, it is possible to prevent an excessive supply of fuel due to the sub-injection, An excellent effect of improving fuel efficiency is achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
FIG. 2 is a timing chart showing fuel injection timing of each cylinder when the cylinder group air-fuel ratio control is executed in the first embodiment.
FIG. 3 is a timing chart showing the fuel injection timing of each cylinder when the cylinder group air-fuel ratio control is executed in the second embodiment.
FIG. 4 is an example of experimental results for determining the influence of the presence or absence of sub-injection and the frequency of sub-injection on the temperature rise effect on the catalyst and the fuel consumption deterioration rate.
[Explanation of symbols]
1 Engine body (internal combustion engine)
1A 1st cylinder 1B 2nd cylinder 1C 3rd cylinder 1D 4th cylinder 2 Spark plug 3 Fuel injection valve 7 Merged exhaust pipe (exhaust passage)
8 NOx storage reduction catalyst 10 Exhaust pipe (exhaust passage)
20 ECU (air-fuel ratio control means)

Claims (2)

希薄燃焼可能な多気筒内燃機関の気筒を複数の気筒群に分割し、夫々の気筒群に夫々接続された排気通路に夫々設けられた三元触媒と、
前記三元触媒よりも下流の前記排気通路が接続する全気筒群共通の合流排気管に設けられた吸蔵還元型NO x 触媒と、
前記吸蔵還元型NO x 触媒を昇温すべきときに一部の気筒群をリッチ空燃比で運転し残る気筒群をリーン空燃比で運転すべく空燃比を制御する空燃比制御手段と、
を備えた内燃機関の排気浄化装置において、前記触媒を昇温すべきときに前記一部の気筒群については、機関出力を得るための気筒内での燃焼に関わる空燃比が弱リッチにされ、且つ、膨張行程あるいは排気行程で燃料が副噴射されることを特徴とする内燃機関の排気浄化装置。
A three-way catalyst provided in exhaust passages each divided into a plurality of cylinder groups and each cylinder group of a lean-burn capable multi-cylinder internal combustion engine connected to each cylinder group;
A storage reduction the NO x catalyst disposed in a common confluent exhaust pipe all cylinder group in which the exhaust passage downstream connecting than the three-way catalyst,
And air-fuel ratio control means for said part of the cylinder groups the storage reduction the NO x catalyst to when to warm operated at a rich air-fuel ratio, to control the air-fuel ratio in order to operate the remaining cylinder groups at a lean air-fuel ratio,
In the exhaust gas purification apparatus for an internal combustion engine, the air-fuel ratio related to combustion in the cylinder for obtaining engine output is weakly rich for the partial cylinder group when the temperature of the catalyst is to be raised. An exhaust gas purification apparatus for an internal combustion engine, wherein fuel is sub-injected in an expansion stroke or an exhaust stroke.
前記一部の気筒群における燃料の副噴射は、この一部の気筒群のサイクルにおいて間欠的に行われることを特徴とする請求項1に記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the sub-injection of fuel in the partial cylinder group is intermittently performed in a cycle of the partial cylinder group.
JP29113699A 1999-10-13 1999-10-13 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3929215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29113699A JP3929215B2 (en) 1999-10-13 1999-10-13 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29113699A JP3929215B2 (en) 1999-10-13 1999-10-13 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001107790A JP2001107790A (en) 2001-04-17
JP3929215B2 true JP3929215B2 (en) 2007-06-13

Family

ID=17764926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29113699A Expired - Lifetime JP3929215B2 (en) 1999-10-13 1999-10-13 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3929215B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274860A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Electronic control device controlling fuel injection during expansion/exhaust stroke
JP6965614B2 (en) 2017-07-21 2021-11-10 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2001107790A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3680611B2 (en) Exhaust gas purification device for internal combustion engine
US6173571B1 (en) Exhaust purifying apparatus for an in-cylinder injection type internal combustion engine
JPH102219A (en) Exhaust emission control device for internal combustion engine
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
JPH11280509A (en) Compression ignition internal combustion engine
JP2001132436A (en) Exhaust gas heating device for internal combustion engine
JP3552489B2 (en) Exhaust gas purification device for internal combustion engine
JP3580180B2 (en) Exhaust gas purification device for internal combustion engine
JP2002161781A (en) Exhaust emission control device for internal combustion engine
JP3929215B2 (en) Exhaust gas purification device for internal combustion engine
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP2000345829A (en) Exhaust emission control device of internal combustion engine
JP3649073B2 (en) Exhaust gas purification device for internal combustion engine
JP4285105B2 (en) Exhaust gas purification method for internal combustion engine
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP3570318B2 (en) Exhaust gas purification device for internal combustion engine
JP3876569B2 (en) Exhaust gas purification device for in-cylinder internal combustion engine
JP4492414B2 (en) Control device for internal combustion engine
JP3613660B2 (en) Exhaust gas purification device for internal combustion engine
JP3512064B2 (en) Exhaust gas purification device for internal combustion engine
JP2000087732A (en) Exhaust emission control device of internal combustion engine
JP2000303825A (en) Exhaust emission control device for lean-burn internal combustion engine
JP4321117B2 (en) Exhaust gas purification device for internal combustion engine
JP2001115829A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070306

R151 Written notification of patent or utility model registration

Ref document number: 3929215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

EXPY Cancellation because of completion of term