JPH11148338A - Method to regenerate trap for nitrogen oxides of exhaust system of internal combustion engine - Google Patents

Method to regenerate trap for nitrogen oxides of exhaust system of internal combustion engine

Info

Publication number
JPH11148338A
JPH11148338A JP10270550A JP27055098A JPH11148338A JP H11148338 A JPH11148338 A JP H11148338A JP 10270550 A JP10270550 A JP 10270550A JP 27055098 A JP27055098 A JP 27055098A JP H11148338 A JPH11148338 A JP H11148338A
Authority
JP
Japan
Prior art keywords
nitrogen oxide
trap
regeneration
fuel ratio
regeneration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10270550A
Other languages
Japanese (ja)
Other versions
JP4099272B2 (en
Inventor
Klemens Grieser
クレメンス、グリーザー
Patrick Phlips
パトリック、フィルプス
Roland Erdmann
ローランド、エルドマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of JPH11148338A publication Critical patent/JPH11148338A/en
Application granted granted Critical
Publication of JP4099272B2 publication Critical patent/JP4099272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Abstract

PROBLEM TO BE SOLVED: To conduct lean burn running in an engine speed/load area large to the utmost by avoiding an exhaust peak in a period transient from lean burn to a theoretical air fuel ratio. SOLUTION: This method is related to a method to regenerate a trap for the nitrogen oxides in the exhaust system of an internal combustion engine provided with an electronic engine control unit. In this method, which air/fuel mixture of a lean or nearly theoretical ratio is supplied to an internal combustion engine according to various engine running states is judged by using this electronic engine control unit, and based on the result of the judgment, the basic regeneration cycle of the trap for nitrogen dioxides is started under a specified first starting condition. When transitions 52 and 54 from a lean burn 42 to a theoretical air fuel ratio 48 occur and a specified second starting condition is obtained, the additional regeneration cycle of the trap for nitrogen oxides is started. Through this operation, free liberation of the nitrogen oxides stored can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子エンジン制御
ユニットを有する内燃機関の排気系の窒素酸化物用トラ
ップを再生する方法に関する。ここで、この電子エンジ
ン制御ユニットを用い、多くのエンジン運転状態に応じ
て、内燃機関に対してリーン又は略理論空燃比の空気/
燃料混合気のいずれが供給されているかが判断され、そ
して、これを用いて、所定の第1開始条件のもとでは、
窒素酸化物用トラップの基本再生サイクルが開始され
る。
The present invention relates to a method for regenerating a trap for nitrogen oxides in an exhaust system of an internal combustion engine having an electronic engine control unit. Here, using this electronic engine control unit, depending on many engine operating conditions, the air / fuel ratio of lean or substantially stoichiometric air-fuel
It is determined which of the fuel mixture is being supplied and, using this, under predetermined first starting conditions,
A basic regeneration cycle of the nitrogen oxide trap is started.

【0002】[0002]

【従来の技術】リーン・バーン作動中には特に起こる窒
素酸化物の排出を減らすために、リーン・バーン作動用
に設計された内燃機関(リーン・バーン・エンジン)を
備える自動車においては、上述の窒素酸化物用トラップ
を、一般的な三元触媒と組み合わせて用いるのが好まし
い。窒素酸化物の分子はトラップの被覆に沈殿し、排気
からは除去される。窒素酸化物用トラップの長期間の使
用を可能とするために、ある程度飽和した時点で、再生
サイクルが必要となる。この目的のために、エンジンは
リッチ空気/燃料空燃比(例えばラムダ
2. Description of the Prior Art In order to reduce the emission of nitrogen oxides, which occur particularly during lean burn operation, in motor vehicles equipped with an internal combustion engine designed for lean burn operation (lean burn engine), the above-mentioned problems are encountered. It is preferable to use a nitrogen oxide trap in combination with a general three-way catalyst. Nitrogen oxide molecules settle out of the trap coating and are removed from the exhaust. To allow long-term use of the nitrogen oxide trap, a regeneration cycle is required at some point of saturation. For this purpose, the engine is equipped with a rich air / fuel air-fuel ratio (eg, lambda

【外1】 =0.75)で短時間運転されるのが普通である。この
様な状態において、沈殿した窒素酸化物が、触媒の影響
のもとで、窒素と酸素に分離し、酸素が余剰水素又は一
酸化炭素と共に燃焼して、水または二酸化炭素となる。
[Outside 1] = 0.75) for short-time operation. In such a state, the precipitated nitrogen oxides are separated into nitrogen and oxygen under the influence of the catalyst, and the oxygen is combusted with excess hydrogen or carbon monoxide to form water or carbon dioxide.

【0003】公知の窒素酸化物用トラップの問題点は、
所定の運転状態において、既に固着した窒素酸化物が、
変換することなく、窒素酸化物用トラップから再度遊離
するということである。内燃機関が高回転/高負荷領域
においてリーン・バーン運転から理論空燃比運転へと移
行する時に特に、上述の問題が起こる。この移行時にお
いて窒素酸化物用トラップがかなり大量の窒素酸化物を
既に貯えている場合には、未変換の窒素酸化物の遊離が
起こりやすい。窒素酸化物のこの様に自由な遊離によ
り、定常運転における排気値が満足出来るものであった
としても、厳格な排気試験に不合格となる可能性があ
る。
The problem with known nitrogen oxide traps is that
Under certain operating conditions, the nitrogen oxides already fixed
It is released again from the nitrogen oxide trap without conversion. The above-mentioned problem occurs particularly when the internal combustion engine shifts from the lean burn operation to the stoichiometric air-fuel ratio operation in a high speed / high load region. At this transition, if the nitrogen oxide trap has already stored a considerable amount of nitrogen oxides, liberation of unconverted nitrogen oxides is likely to occur. Such free liberation of nitrogen oxides may fail rigorous emissions tests, even if the emissions at steady state operation are satisfactory.

【0004】この様な排出ピークを避けるため、内燃機
関がリーン混合気で運転される回転速度/負荷のウイン
ドウを小さくし、先に述べた問題が起きない程度に低い
負荷と回転速度においてリーン・バーンから理論空燃比
への移行が起こる程度の大きさとするという提案が知ら
れている。しかしながら一方で、燃料節約の可能性を最
大にするために、エンジンを、出来るだけ大きな回転速
度/負荷においてリーン空燃比で運転することが望まし
い。
In order to avoid such emission peaks, the speed / load window in which the internal combustion engine is operated with a lean mixture is reduced so that at low loads and speeds such that the aforementioned problems do not occur, the engine speed is reduced. There is known a proposal to make the size such that a transition from the burn to the stoichiometric air-fuel ratio occurs. On the other hand, however, it is desirable to operate the engine with a lean air / fuel ratio at the highest possible rotational speed / load in order to maximize the potential for fuel savings.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、リー
ン・バーンから理論空燃比への移行時の排出ピークを避
けることが出来、出来るだけ大きな回転速度/負荷領域
でリーン・バーン運転が行なえることが確実である、上
述の種類の方法を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to avoid a peak emission at the transition from lean burn to the stoichiometric air-fuel ratio, and to perform lean burn operation at a rotational speed / load region as large as possible. It is to provide a method of the kind described above, which is assured that

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、本発明によれば、リーン・バーンから理論空燃比へ
の移行が起こり、所定の第2開始条件が得られると、窒
素酸化物用トラップの追加再生サイクルが開始される。
この追加再生サイクルにより、窒素酸化物用トラップは
理論空燃比への移行前に再生され、貯えられた窒素酸化
物の自由な遊離はもはや起こらない。
In order to achieve this object, according to the present invention, a transition from lean burn to a stoichiometric air-fuel ratio occurs, and when a predetermined second starting condition is obtained, nitrogen oxides are produced. An additional regeneration cycle of the trap is started.
With this additional regeneration cycle, the nitrogen oxide trap is regenerated before the transition to the stoichiometric air-fuel ratio and free liberation of the stored nitrogen oxide no longer occurs.

【0007】本発明の好ましい実施例によれば、リッチ
な空気/燃料混合気が再生サイクル中にエンジンに供給
される。
According to a preferred embodiment of the present invention, a rich air / fuel mixture is supplied to the engine during a regeneration cycle.

【0008】本発明の更に効果的な実施例によれば、窒
素酸化物用トラップのその時点での窒素酸化物トラップ
率と、窒素酸化物用トラップによりトラップされた窒素
酸化物の量に対応する窒素酸化物量値とが、エンジン制
御ユニットにより時間微分を用いて近似的に求められ、
窒素酸化物量値が所定の第1閾値を越えた第1状態にお
いて基本再生サイクルが開始され、窒素酸化物量値が第
1閾値よりも低い第2閾値を越えた第2状態においては
追加再生サイクルが開始され、基本又は追加の再生サイ
クルの各実行後に窒素酸化物量値が初期化される。この
様にして、窒素酸化物用トラップの追加再生はリーン・
バーンと理論空燃比の全ての移行時で行われるのでな
く、それに加えて窒素酸化物のある最小量が窒素酸化物
用トラップに貯えられた時にのみ行われる。燃料消費量
を増大させる不必要な再生サイクルがこの様にして避け
られる。より簡単な代替実施例においては、基本再生サ
イクルは規則的な間隔で行われ、追加再生サイクルはリ
ーン・バーンから理論空燃比への移行の度に開始され
る。更に、最後の再生からある最小期間が経過した追加
開始状態においてのみ追加再生サイクルを可能とする様
にすることも出来る。
In accordance with a further advantageous embodiment of the invention, the nitrogen oxide trapping rate of the nitrogen oxide trap corresponds to the amount of nitrogen oxide trapped by the nitrogen oxide trap. The nitrogen oxide amount value is approximately determined by the engine control unit using time differentiation,
The basic regeneration cycle is started in the first state in which the nitrogen oxide amount exceeds a predetermined first threshold, and the additional regeneration cycle is started in the second state in which the nitrogen oxide amount exceeds a second threshold lower than the first threshold. Beginning and after each execution of a basic or additional regeneration cycle, the nitrogen oxide amount value is initialized. In this way, additional regeneration of nitrogen oxide traps
It does not occur at all transitions between burn and stoichiometric, but only when a certain minimum amount of nitrogen oxides is additionally stored in the nitrogen oxide trap. Unnecessary regeneration cycles that increase fuel consumption are thus avoided. In a simpler alternative embodiment, the basic regeneration cycle is performed at regular intervals and an additional regeneration cycle is initiated at each transition from lean burn to stoichiometric. Further, it is possible to enable an additional reproduction cycle only in an additional start state in which a certain minimum period has elapsed since the last reproduction.

【0009】費用面での許容範囲内で窒素酸化物の実際
のトラップ率の計測を行なうことは殆ど不可能であるの
で、エンジン回転速度、エンジン負荷、空燃比及び窒素
酸化物用トラップ近傍の排気の温度と質量流量に応じ
て、関数関係を用いて、窒素酸化物の現時点でのトラッ
プ率を近似的に決定する方が、より効果的である。その
様な関数関係は、関数形態又はルックアップ・テーブル
としてメモリーに組み込むことが出来、試験台でのデー
タを用いて決定するのが好ましい。
Since it is almost impossible to measure the actual trapping rate of nitrogen oxides within the cost allowable range, the engine speed, the engine load, the air-fuel ratio, and the exhaust gas near the trap for nitrogen oxides are measured. It is more effective to approximately determine the current trapping rate of nitrogen oxides using a functional relationship according to the temperature and the mass flow rate of the nitrogen oxides. Such functional relationships can be incorporated into memory as functional forms or look-up tables, and are preferably determined using data on a test stand.

【0010】窒素酸化物の自由な遊離は基本的にある回
転速度/負荷領域からのリーン・バーン/理論空燃比の
移行時にのみ起こるので、更に別の実施例においては、
所定の回転速度/負荷領域において内燃機関が作動して
いる時に、リーン・バーンの回転速度/負荷領域の所定
の小領域から理論空燃比運転領域への移行が、追加再生
サイクルの開始のための条件とされる。リーン・バーン
運転領域の小領域は、高回転又は高負荷領域にあるのが
好ましい。この追加(第2)開始条件の結果、不必要な
再生サイクルが避けられる。
In yet another embodiment, the free liberation of nitrogen oxides occurs essentially only at the transition of lean burn / stoichiometric from a certain speed / load range.
When the internal combustion engine is operating in the predetermined rotational speed / load region, the transition from the predetermined small region of the lean burn rotational speed / load region to the stoichiometric air-fuel ratio operation region is performed to start the additional regeneration cycle. Condition. The small region of the lean burn operation region is preferably in a high rotation or high load region. As a result of this additional (second) start condition, unnecessary regeneration cycles are avoided.

【0011】更に、窒素酸化物用トラップの再生に必要
なリッチ再生空燃比は、窒素酸化物用トラップの領域内
の排気温度と排気質量流量とに応じた関数関係を用いて
決定出来る。この様にして決定された再生空燃比は、基
本及び追加再生サイクルの両方において用いられるのが
好ましい。
Further, the rich regeneration air-fuel ratio required for regeneration of the nitrogen oxide trap can be determined using a functional relationship according to the exhaust gas temperature and the exhaust mass flow rate in the region of the nitrogen oxide trap. The thus determined regeneration air-fuel ratio is preferably used in both the basic and additional regeneration cycles.

【0012】この再生空燃比を用いての基本再生サイク
ルに必要な基本再生時間は、窒素酸化物用トラップ近傍
の排気温度と排気の質量流量とに応じた関数関係を用い
て決定するのが好ましい。
The basic regeneration time required for the basic regeneration cycle using the regeneration air-fuel ratio is preferably determined using a functional relationship according to the exhaust gas temperature near the nitrogen oxide trap and the exhaust gas mass flow rate. .

【0013】再生空燃比を用いて再生するための追加生
成サイクルを実行するのに必要とされる追加再生時間
は、現時点での窒素酸化物量値の第1閾値に対する比に
よって基本再生時間を乗算することによって計算される
のが好ましい。追加再生サイクルが実行される時に、窒
素酸化物用トラップが貯えている窒素酸化物の量は、基
本再生サイクルの場合よりも少ないのが一般的であるこ
とを考慮すると、それに対応して、追加の燃料消費を最
小にするために、再生時間を短くすることが出来る。本
発明の更に別の実施例において、固定のオフセット値を
上述の方法により決定された再生時間に加算することが
出来る。これは、内燃機関からのリッチ・ピークが三元
触媒を通って窒素酸化物用トラップへと到達するのに要
する時間を考慮している。
The additional regeneration time required to perform an additional generation cycle for regeneration using the regeneration air-fuel ratio is multiplied by the basic regeneration time by the ratio of the current nitrogen oxide amount value to the first threshold. It is preferably calculated by When the additional regeneration cycle is performed, the amount of nitrogen oxide stored in the nitrogen oxide trap is generally smaller than that in the basic regeneration cycle. The regeneration time can be shortened in order to minimize fuel consumption. In yet another embodiment of the present invention, a fixed offset value can be added to the playback time determined by the above method. This takes into account the time required for the rich peak from the internal combustion engine to reach the nitrogen oxide trap through the three-way catalyst.

【0014】以下に本発明を、図面を参照し、例を用い
て、より詳細に説明する。
The invention will be described in more detail hereinafter with reference to the drawings and by way of example.

【0015】[0015]

【発明の実施の形態】最初に図1を参照すると、多気筒
内燃機関10は電子エンジン制御ユニット12により制
御され、電子エンジン制御ユニット12は現在のエンジ
ン現在回転速度、吸入通路中の空気質量流量センサー3
0からの信号又はドライバーのアクセル・ペダルの現在
位置などの複数の入力信号24を受信する。エンジン制
御ユニットは、電子スロットル弁20、点火システム1
8及び噴射システム26を制御するアルゴリズムを実行
する。電子スロットル弁20と噴射システム18によっ
て、シリンダーへと供給される混合気の空燃比ラムダを
広い範囲にわたって変化させることが出来、特にある運
転状態においては、リーンな空燃比を設定することが出
来る。エンジンからの排気は、排気処理システムへと供
給される。これは、三元触媒コンバーター14と窒素酸
化物用トラップ16とからなる。温度センサー22を用
いて、排気処理システムの空間的近傍における排気温度
が計測される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring first to FIG. 1, a multi-cylinder internal combustion engine 10 is controlled by an electronic engine control unit 12, which controls the current engine speed, the air mass flow in the intake passage. Sensor 3
A plurality of input signals 24 are received, such as a signal from zero or the current position of the driver's accelerator pedal. The engine control unit includes the electronic throttle valve 20, the ignition system 1
8 and the algorithm controlling the injection system 26 is executed. The electronic throttle valve 20 and the injection system 18 allow the air-fuel ratio lambda of the mixture supplied to the cylinder to be varied over a wide range, and in particular under certain operating conditions a lean air-fuel ratio can be set. Exhaust from the engine is supplied to an exhaust treatment system. It comprises a three-way catalytic converter 14 and a nitrogen oxide trap 16. Using the temperature sensor 22, the exhaust gas temperature in the spatial vicinity of the exhaust treatment system is measured.

【0016】図2は、窒素酸化物用トラップによりトラ
ップされた窒素酸化物の量値X、設定された空気/燃料
比率ラムダ(
FIG. 2 shows the amount X of nitrogen oxide trapped by the nitrogen oxide trap and the set air / fuel ratio lambda (

【外2】 )及び窒素酸化物排出量を表す値NOxの時間的変化を
質的に示している。図2に示されたシーケンスの開始時
に、内燃機関は空燃比ラムダが1.5であるリーン・バ
ーン・モードで運転されている。エンジン制御ユニット
は時間間隔毎に、窒素酸化物の現在のトラップ率を、エ
ンジン回転速度、エンジン負荷、空燃比、排気温度及び
排気質量流量に応じた関数関係を用いて計算し、この比
率を微分して窒素酸化物量値Xを与える。この値が閾値
S1(60)を越えた場合には、期間TR1の間、再生
用空燃比が0.75で基本再生サイクルが実行され、窒
素酸化物量値Xはゼロに初期化される。
[Outside 2] ) And the time change of the value NOx representing the nitrogen oxide emission amount are qualitatively shown. At the start of the sequence shown in FIG. 2, the internal combustion engine is operating in lean burn mode with an air / fuel lambda of 1.5. At each time interval, the engine control unit calculates the current trapping rate of nitrogen oxides using a functional relationship according to engine speed, engine load, air-fuel ratio, exhaust temperature and exhaust mass flow rate, and differentiates this ratio. To give a nitrogen oxide amount value X. When this value exceeds the threshold value S1 (60), the basic regeneration cycle is executed at the regeneration air-fuel ratio of 0.75 during the period TR1, and the nitrogen oxide amount value X is initialized to zero.

【0017】図2に示す例において、リーン・バーンか
ら理論空燃比運転モードへの移行は時点tsにおいて起
こる。この時点において、窒素酸化物量値Xは第2閾値
S2よりも上にあるので、TR1よりも短い期間TR2
の間、再生用空燃比が0.75である追加再生サイクル
が実行され、値Xはゼロへと初期化される。この追加再
生サイクルの後でのみ、理論空燃比つまり
In the example shown in FIG. 2, the transition from the lean burn to the stoichiometric air-fuel ratio operation mode occurs at time ts. At this time, since the nitrogen oxide amount value X is above the second threshold value S2, the period TR2 shorter than TR1 is used.
During this period, an additional regeneration cycle in which the regeneration air-fuel ratio is 0.75 is executed, and the value X is initialized to zero. Only after this additional regeneration cycle is the stoichiometric air-fuel ratio

【0018】[0018]

【式1】 (Equation 1)

【0019】に設定される。Is set to

【0020】追加再生サイクルの無い従来技術の方法に
おいては、図2における破断曲線により示される様に、
本発明の方法と対比して、望ましくない窒素酸化物の排
出ピーク66が起こる。
In the prior art method without additional regeneration cycles, as shown by the break curve in FIG.
Undesired nitrogen oxide emission peaks 66 occur in contrast to the method of the present invention.

【0021】図3において、エンジンの回転速度/負荷
の概略図が示されている。各エンジン回転速度nにおけ
る最大エンジン・トルクMDが、全負荷曲線46により
与えられる。領域42において、エンジン制御ユニット
により内燃機関のリーン・バーン運転が許可され、この
領域の上又は右側においては、符号48において示され
た領域においてエンジンが理論空燃比で運転される。リ
ーン・バーン領域42の小領域50からの移行(例えば
52、54)においてのみ、未変換の窒素酸化物の自由
な遊離が起こる。それで、エンジン制御ユニットが小領
域50から領域48への移行を検出した時にのみ、追加
再生サイクルが開始される。
FIG. 3 shows a schematic diagram of the rotational speed / load of the engine. The maximum engine torque MD at each engine speed n is given by the full load curve 46. In region 42, lean burn operation of the internal combustion engine is permitted by the engine control unit, and above or to the right of this region the engine is operated at the stoichiometric air-fuel ratio in the region indicated by reference numeral 48. Only at the transition of the lean burn region 42 from the small region 50 (eg 52, 54) free liberation of unconverted nitrogen oxides takes place. Thus, only when the engine control unit detects the transition from the small area 50 to the area 48, the additional regeneration cycle is started.

【0022】図4に示される様に、本発明の方法により
エンジンの運転中に継続的に実行される監視ループの遂
行は、ステップ82における窒素酸化物量値Xの決定に
より始まる。ステップ84において、Xは第1閾値S1
と比較される。この値を超えると、基本再生サイクルが
開始される。この目的のために、ステップ86におい
て、窒素酸化物用トラップ近傍の排気温度と質量流量に
応じて、再生に必要とされる空燃比
As shown in FIG. 4, the execution of the monitoring loop, which is continuously performed during operation of the engine according to the method of the present invention, begins with the determination of the nitrogen oxide value X in step 82. In step 84, X is the first threshold value S1
Is compared to If this value is exceeded, a basic regeneration cycle is started. For this purpose, in step 86, the air-fuel ratio required for regeneration is determined according to the exhaust gas temperature and the mass flow rate near the nitrogen oxide trap.

【外3】 と必要な基本再生時間TR1とが各々、計算される。こ
れらのパラメータを用いて、基本再生サイクルがステッ
プ88において実行され、窒素酸化物量値Xはゼロへと
初期化される。ステップ84においてS1を越えていな
い場合に、Xは更にステップ90において第2の低い閾
値S2と比較される。エンジン制御ユニットが図2に示
す小領域50から領域48への移行を検出し更にXが閾
値S2を越えた場合には、エンジン制御ユニットは追加
再生サイクルを開始する。追加再生時間TR2はTR1
と比較して、ステップ94に示す様に、現在の窒素酸化
物量値Xの閾値S1に対する比率だけ小さい。そしてス
テップ96において、追加再生サイクルが開始され、窒
素酸化物量値Xはゼロへと初期化される。
[Outside 3] And the required basic reproduction time TR1 are calculated. With these parameters, a basic regeneration cycle is performed at step 88 and the nitrogen oxide amount value X is initialized to zero. If S1 is not exceeded in step 84, X is further compared in step 90 with a second lower threshold S2. When the engine control unit detects the transition from the small area 50 to the area 48 shown in FIG. 2 and X exceeds the threshold value S2, the engine control unit starts an additional regeneration cycle. Additional playback time TR2 is TR1
Is smaller by the ratio of the current nitrogen oxide amount value X to the threshold value S1, as shown in step 94. Then, in step 96, the additional regeneration cycle is started, and the nitrogen oxide amount value X is initialized to zero.

【0024】[0024]

【発明の効果】窒素酸化物用トラップは理論空燃比への
移行前に再生され、貯えられた窒素酸化物の自由な遊離
は起こらない。
The trap for nitrogen oxides is regenerated before the transition to the stoichiometric air-fuel ratio and free liberation of the stored nitrogen oxides does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関及び本発明による方法を実行するエン
ジン制御システムの概略図である。
FIG. 1 is a schematic diagram of an internal combustion engine and an engine control system for performing the method according to the invention.

【図2】エンジン特性の時間的変化を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a temporal change in engine characteristics.

【図3】本発明による方法を説明するための回転速度/
負荷特性の概略マップである。
FIG. 3 shows the rotational speed / value for explaining the method according to the invention.
4 is a schematic map of a load characteristic.

【図4】本発明による方法の概略的なフローチャートで
ある。
FIG. 4 is a schematic flowchart of a method according to the present invention.

【符号の説明】[Explanation of symbols]

10 内燃機関 12 エンジン制御ユニット 16 窒素酸化物用トラップ Reference Signs List 10 internal combustion engine 12 engine control unit 16 trap for nitrogen oxide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 パトリック、フィルプス ドイツ連邦共和国ケルン、フォーゲルザン ガー・ベック、12 (72)発明者 ローランド、エルドマン ドイツ連邦共和国プルハイム、デルホフェ ネル・シュトラーセ ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Patrick, Philps Cologne, Germany, Vogelzangar Beck, 12 (72) Inventor Roland, Erdman Pulheim, Germany, Delhofen ner Straße

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 エンジン制御ユニット(12)を有する
内燃機関(10)の排気系の窒素酸化物用トラップ(1
6)を再生する方法であって、上記エンジン制御ユニッ
トを用いて、多くのエンジン運転パラメーターに応じ
て、上記内燃機関に対してリーン又は略理論空燃比の空
気/燃料混合気のいずれかが供給されているかが判断さ
れ、上記エンジン制御ユニットを用いて所定の第1開始
条件のもとでは上記窒素酸化物用トラップの基本再生サ
イクルが開始され、リーン・バーン運転モードから理論
空燃比運転モードへの移行があり所定の第2開始条件が
得られると、窒素酸化物用トラップの追加再生サイクル
が開始されることを特徴とする方法。
A trap for nitrogen oxide in an exhaust system of an internal combustion engine having an engine control unit.
6) The method of claim 6, wherein the engine control unit is used to supply either a lean or substantially stoichiometric air / fuel mixture to the internal combustion engine depending on a number of engine operating parameters. The basic regeneration cycle of the nitrogen oxide trap is started under the predetermined first start condition using the engine control unit, and the lean air condition mode is switched from the lean burn operation mode to the stoichiometric air / fuel ratio operation mode. The additional regeneration cycle of the trap for nitrogen oxides is started when the predetermined second start condition is obtained after the transition of (i).
【請求項2】 上記両方の再生サイクル中において、リ
ッチな空気/燃料混合気が内燃機関(10)に供給され
ることを特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein a rich air / fuel mixture is supplied to the internal combustion engine during both regeneration cycles.
【請求項3】 上記窒素酸化物用トラップ(16)のそ
の時点での窒素酸化物トラップ率と、窒素酸化物用トラ
ップによりトラップされた窒素酸化物の量に対応する窒
素酸化物量値(X)とが、上記エンジン制御ユニットに
より時間微分を用いて近似的に求められ、上記窒素酸化
物量値が所定の第1閾値(S1)を越えた状態において
基本再生サイクルが開始され、上記窒素酸化物量値が上
記第1閾値よりも低い第2閾値を越えた状態において追
加再生サイクルが開始され、上記基本又は追加再生サイ
クルの各実行後に上記窒素酸化物量値(X)が初期化さ
れることを特徴とする請求項1又は2に記載の方法。
3. The nitrogen oxide trap rate of the nitrogen oxide trap (16) at that time and a nitrogen oxide amount value (X) corresponding to the amount of nitrogen oxide trapped by the nitrogen oxide trap. The basic regeneration cycle is started in a state where the nitrogen oxide amount exceeds a predetermined first threshold value (S1), and the basic regeneration cycle is started by the engine control unit. The additional regeneration cycle is started in a state where the second threshold value lower than the first threshold value is exceeded, and the nitrogen oxide amount value (X) is initialized after each execution of the basic or additional regeneration cycle. The method according to claim 1 or 2, wherein
【請求項4】 上記窒素酸化物の現時点のトラップ率の
近似的な決定は、現時点のエンジン回転速度、エンジン
負荷、空燃比及び上記窒素酸化物用トラップ(16)の
近傍における排気の温度と質量流量に応じた関数関係を
用いて実行されることを特徴とする請求項3に記載の方
法。
4. The approximate determination of the current nitrogen oxide trap rate includes the current engine speed, engine load, air-fuel ratio, and the temperature and mass of the exhaust near the nitrogen oxide trap (16). 4. The method according to claim 3, wherein the method is performed using a functional relationship depending on the flow rate.
【請求項5】 上記内燃機関がリーン混合気で所定の回
転速度/負荷領域(42)において運転される時には、
リーン・バーンの回転速度/負荷領域(42)の所定の
小領域(50)から理論空燃比での運転領域(48)へ
の移行状態において追加再生サイクルが開始されること
を特徴とする請求項1から4のいずれかに記載の方法。
5. When the internal combustion engine is operated at a predetermined rotational speed / load region (42) with a lean mixture,
The additional regeneration cycle is started in a transition state from a predetermined small area (50) of the lean burn rotation speed / load area (42) to an operation area (48) at the stoichiometric air-fuel ratio. 5. The method according to any one of 1 to 4.
【請求項6】 上記リーン・バーン運転領域(42)の
上記小領域(50)は、回転速度及び/又は負荷が高い
領域にあることを特徴とする請求項5に記載の方法。
6. The method according to claim 5, wherein the sub-region (50) of the lean-burn operation region (42) is in a region where the rotational speed and / or load is high.
【請求項7】 上記窒素酸化物用トラップの再生に必要
なリッチ再生空燃比が、窒素酸化物用トラップ近傍の排
気温度と排気質量流量とに応じた関数関係を用いて決定
されることを特徴とする請求項3から6のいずれかに記
載の方法。
7. A rich regeneration air-fuel ratio required for regeneration of the nitrogen oxide trap is determined using a functional relationship according to an exhaust gas temperature and an exhaust mass flow rate in the vicinity of the nitrogen oxide trap. The method according to any one of claims 3 to 6, wherein
【請求項8】 上記再生空燃比を用いての基本再生サイ
クルに必要とされる基本再生時間(TR1)が、上記窒
素酸化物用トラップ近傍の排気温度及び排気質量流量に
基づいた関数関係を用いて決定されることを特徴とする
請求項7に記載の方法。
8. A basic regeneration time (TR1) required for a basic regeneration cycle using the regeneration air-fuel ratio is determined by using a functional relationship based on an exhaust gas temperature and an exhaust mass flow rate in the vicinity of the nitrogen oxide trap. 8. The method according to claim 7, wherein the method is determined by:
【請求項9】 上記再生空燃比を用いての追加再生サイ
クルを実行するのに必要な追加再生時間は、上記現時点
の窒素酸化物量値(X)の上記第1閾値(S1)に対す
る比によって上記基本再生時間(TR2)を乗算しその
積に所定のオフセット時間を加算することによって決定
されることを特徴とする請求項8に記載の方法。
9. The additional regeneration time required to execute an additional regeneration cycle using the regeneration air-fuel ratio is determined by the ratio of the current nitrogen oxide amount value (X) to the first threshold value (S1). Method according to claim 8, characterized in that it is determined by multiplying the basic playback time (TR2) and adding a predetermined offset time to the product.
JP27055098A 1997-09-18 1998-09-07 Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine Expired - Fee Related JP4099272B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19741079.0 1997-09-18
DE19741079A DE19741079C2 (en) 1997-09-18 1997-09-18 Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11148338A true JPH11148338A (en) 1999-06-02
JP4099272B2 JP4099272B2 (en) 2008-06-11

Family

ID=7842756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27055098A Expired - Fee Related JP4099272B2 (en) 1997-09-18 1998-09-07 Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine

Country Status (3)

Country Link
EP (1) EP0903477B1 (en)
JP (1) JP4099272B2 (en)
DE (2) DE19741079C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211454A (en) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 Control device of internal combustion engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259711B2 (en) * 1999-05-18 2002-02-25 トヨタ自動車株式会社 Control device for internal combustion engine
DE10020789C2 (en) * 1999-05-19 2003-05-08 Ford Global Tech Inc Method and system for the transition between lean and stoichiometric air-fuel ratio in a lean-burn engine
JP3854013B2 (en) * 1999-06-10 2006-12-06 三菱電機株式会社 Exhaust gas purification device for internal combustion engine
DE19932301A1 (en) * 1999-07-10 2001-01-11 Volkswagen Ag Method for regulating a regeneration of a storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
DE19942270A1 (en) * 1999-09-04 2001-03-15 Bosch Gmbh Robert Method for operating an internal combustion engine
JP2001082135A (en) * 1999-09-09 2001-03-27 Toyota Motor Corp Exhaust emisson control device for internal combustion engine
DE19963938A1 (en) * 1999-12-31 2001-07-12 Bosch Gmbh Robert Method for operating a three-way catalytic converter of an internal combustion engine
DE10054005A1 (en) 2000-11-01 2002-05-08 Daimler Chrysler Ag The system to clean exhaust gas emissions from an IC motor has a nitrogen oxide accumulator, and desulfurizing operating in full and partial modes according to registered temperatures
US6915630B2 (en) * 2003-01-27 2005-07-12 Ford Global Technologies, Llc Engine control for a vehicle equipped with an emission control device
EP2836688B1 (en) * 2012-04-10 2016-08-17 Volvo Lastvagnar AB A self-diagnosing method for diagnosing a scr system
DE202013008389U1 (en) * 2013-09-21 2014-12-22 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Control arrangement for controlling an internal combustion engine of a motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993025806A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
WO1993025805A1 (en) * 1992-06-12 1993-12-23 Toyota Jidosha Kabushiki Kaisha Exhaust emission control system for internal combustion engine
JP2692530B2 (en) * 1992-09-02 1997-12-17 トヨタ自動車株式会社 Internal combustion engine
DE19626835A1 (en) * 1995-07-08 1997-01-09 Volkswagen Ag Operating diesel engine with nitrogen oxide buffer store - which is located in first branch of exhaust gas system, with exhaust gas flow directed via second branch
DE19607151C1 (en) * 1996-02-26 1997-07-10 Siemens Ag Regeneration of nitrogen oxide storage catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211454A (en) * 2015-05-11 2016-12-15 トヨタ自動車株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
EP0903477B1 (en) 2002-03-20
EP0903477A3 (en) 2000-03-08
JP4099272B2 (en) 2008-06-11
DE19741079C2 (en) 2001-10-18
DE59803414D1 (en) 2002-04-25
DE19741079A1 (en) 1999-04-01
EP0903477A2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
JP3067685B2 (en) Exhaust purification system for spark ignition type direct injection type internal combustion engine
US6718756B1 (en) Exhaust gas purifier for use in internal combustion engine
US7013637B2 (en) Exhaust purification apparatus and method for internal combustion engine
JP4099272B2 (en) Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine
JP2003522893A (en) Apparatus and method for determining the need for regeneration of a NOx storage catalyst
WO1998012423A1 (en) Engine control device
US6418713B1 (en) Method for generating additional engine loads during start-up
JP2000352336A (en) Exhaust emission control system for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
JP4127585B2 (en) Exhaust gas purification device for internal combustion engine
JP3675198B2 (en) Exhaust gas purification device for internal combustion engine
JP4092940B2 (en) Internal combustion engine control device
JP4154596B2 (en) Exhaust gas purification device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
KR100187783B1 (en) Engine control apparatus
JP3680241B2 (en) Exhaust gas purification device for internal combustion engine
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP4134398B2 (en) Internal combustion engine
JP3890775B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004346844A (en) Exhaust emission control system
JP2000080914A (en) Internal combustion engine
JP2000120483A (en) Lean-burn internal combustion engine
JP2018044454A (en) Exhaust emission control system of internal combustion engine
JP3550803B2 (en) Internal combustion engine stability control device
JP3835071B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees