JPH1061254A - Three-dimensional vibration isolation device - Google Patents

Three-dimensional vibration isolation device

Info

Publication number
JPH1061254A
JPH1061254A JP22241896A JP22241896A JPH1061254A JP H1061254 A JPH1061254 A JP H1061254A JP 22241896 A JP22241896 A JP 22241896A JP 22241896 A JP22241896 A JP 22241896A JP H1061254 A JPH1061254 A JP H1061254A
Authority
JP
Japan
Prior art keywords
main shaft
air spring
floor
seismic isolation
isolation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22241896A
Other languages
Japanese (ja)
Inventor
Mamoru Tanaka
守 田中
Nobuyuki Kojima
信之 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22241896A priority Critical patent/JPH1061254A/en
Publication of JPH1061254A publication Critical patent/JPH1061254A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conduct three-dimensional vibration isolation effectively by inhibiting the pitching of a structure at the time of horizontal vibrations regarding the three-dimensional vibration isolation device of the structure. SOLUTION: Four air springs 1 are installed on a floor 9, slip pads 5 are fixed onto the upper sections of the springs 1, and an upper structure 6 is placed movably in the horizontal direction through sliding plates 7 on an underside. One ends of each arm 2 are connected at the upper ends of each air spring 1 by pins 8, and the other ends of the arms 2 are coupled at the end sections of a main shaft 3. The main shaft 3 is fixed onto the floor 9 through bearings 4. Since pitching is generated when the upper structure 6 is quaked horizontally in the right direction, the left-side air spring 1 receives downward force and the right-side air spring 1 receives upward force and an angular moment is generated, torsion is generated in the main shaft 3 through the left-right arms 2, and the generation of pitching is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は建築物、鉄鋼構造
物、機械装置、箱状の部屋、床等に加わる水平方向及び
上下方向の地震入力を同時に低減する三次元免震装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional seismic isolation device for simultaneously reducing horizontal and vertical seismic inputs to buildings, steel structures, machinery, box-shaped rooms, floors, and the like.

【0002】[0002]

【従来の技術】水平方向と上下方向に同時に免震効果を
有する三次元免震装置としては従来以下のものが開示さ
れており、それらの概要を説明する。
2. Description of the Related Art The following three-dimensional seismic isolation devices having a seismic isolation effect simultaneously in the horizontal and vertical directions have been disclosed, and their outline will be described.

【0003】実開昭64−2943号のものを図5に
示す。図5(a)は床面を免震装置に載置した全体の側
面図、図5(b)は免震装置の詳細な側面図であり、設
置面402上に設置された空気ばね401と、この空気
ばね401上にすべり板404を固定し、すべり板40
4上にはすべり面404aを有している。このすべり面
404a上にはすべり面405aを介して床板405を
載置し、床板405の外周には近接して衝撃吸収体40
7を配置したものである。
FIG. 5 shows the structure of Japanese Utility Model Laid-Open No. 64-2943. FIG. 5A is an overall side view of the seismic isolation device with the floor mounted thereon, and FIG. 5B is a detailed side view of the seismic isolation device. The sliding plate 404 is fixed on the air spring 401 and the sliding plate 40 is fixed.
4 has a sliding surface 404a. A floor plate 405 is placed on the slip surface 404a via the slip surface 405a, and is close to the outer periphery of the floor plate 405 in the vicinity of the shock absorber 40.
7 are arranged.

【0004】特開平7−71109号のものを図6に
示す。図6は免震装置の断面図であり、水平方向には床
スラブ503上に固定された鋼板518の平面上を転が
る複数の鋼球517を介在せしめた構造であり、上下方
向には空気ばね570を用いて床板501を支持してい
る。
FIG. 6 shows a device disclosed in Japanese Patent Application Laid-Open No. 7-71109. FIG. 6 is a cross-sectional view of the seismic isolation device, which has a structure in which a plurality of steel balls 517 rolling on a plane of a steel plate 518 fixed on a floor slab 503 are interposed in the horizontal direction, and an air spring 570 is used to support the floor plate 501.

【0005】実開平4−6434号のものを図7に示
す。図7(a)は全体の側面図、図7(b)はそのA部
詳細図であり、この免震装置は低床式3次限除振、免震
床構造に係わり、基礎601上に固定した床柱606a
と、床梁607に固定した床柱606bの各先端に滑車
602aと602bとをそれぞれ取り付け、滑車602
a、602b間に両端を基礎から支持されたコイルばね
610に結合したワイヤーロープ603を通して、床梁
607すなわち床を支持する。更に、基礎601上に設
置されたオイルだめ608内の高粘性オイルに床梁60
7の下面に突設した内筒604を浸漬することにより、
有効空間が広くなり、低周波数域まで除振および免震が
可能となる。
FIG. 7 shows an apparatus disclosed in Japanese Utility Model Laid-Open No. 4-6344. FIG. 7 (a) is a side view of the entirety, and FIG. 7 (b) is a detailed view of part A thereof. This seismic isolation device is related to a low-floor type tertiary vibration isolation and seismic isolation floor structure, and is mounted on a foundation 601. Fixed floor column 606a
And pulleys 602a and 602b are attached to respective ends of a floor column 606b fixed to the floor beam 607, respectively.
The floor beam 607, ie, the floor, is supported between a and 602b through a wire rope 603 connected to a coil spring 610 supported at both ends from a foundation. Further, the floor beams 60 are added to the highly viscous oil in the oil sump 608 installed on the foundation 601.
7 by immersing the inner cylinder 604 protruding from the lower surface,
The effective space is widened, and vibration isolation and seismic isolation can be performed up to the low frequency range.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の技術にあっては、次のような問題点がある。即ち、
いずれの構造も上下方向の免震効果を発揮するためには
上下方向の固有振動数を地震動の卓越振動数以下にする
必要があり、必然的に空気ばね等の上下方向の支持部材
のばね定数は、低い値となる。
However, the above-mentioned prior art has the following problems. That is,
In each case, the natural frequency in the vertical direction must be lower than the predominant frequency of the seismic motion in order to exhibit the seismic isolation effect in the vertical direction, and the spring constant of the vertical support members such as air springs is inevitable. Is a low value.

【0007】具体的には、免震装置の上下方向固有振動
数fは免震装置上の構造物の質量mと免震装置の上下方
向ばね定数kから、f=(1/2π)・√(k/m)、
で与えられる。一方、重力によるたわみ量xは、x=m
g/k=g/(2πf)2 、で与えられる。
[0007] Specifically, the vertical natural frequency f of the seismic isolation device is given by f = (1 / 2π) √ from the mass m of the structure on the seismic isolation device and the vertical spring constant k of the seismic isolation device. (K / m),
Given by On the other hand, the deflection amount x due to gravity is x = m
g / k = g / (2πf) 2 .

【0008】従って、上記の式より、例えば免震装置の
固有振動数を1Hzとすると、重力によるたわみ量は約
25cmとなる。このような状況で免震対象の機械、構
造物(以下では上部構造体と呼ぶ)が比較的高い重心を
持つ場合には、水平方向の地震動が加わった場合に上部
構造体が水平方向のみでなく、回転運動を生じるピッチ
ングを生ずるであろう事は容易に想像が付く。ピッチン
グを生ずると、構造物の重心位置では設計通りの免震効
果が得られたとしても、周辺ではピッチングに伴う上下
動および水平動を生じ、免震効果を減じるのみでなく、
最悪の場合には上部構造体の転倒に至る可能性もある。
Therefore, from the above equation, if the natural frequency of the seismic isolation device is 1 Hz, for example, the amount of deflection due to gravity is about 25 cm. In such a situation, if the machine or structure to be seismically isolated (hereinafter referred to as the upper structure) has a relatively high center of gravity, the upper structure will move only in the horizontal direction when a horizontal seismic motion is applied. It is easy to imagine that there would be pitching that would result in rotational movement. When pitching occurs, even if the seismic isolation effect as designed is obtained at the position of the center of gravity of the structure, not only the vertical motion and horizontal motion due to pitching occur around the periphery, but also the seismic isolation effect is reduced,
In the worst case, the superstructure may fall.

【0009】上記の開示例ではいずれもピッチングの抑
制に関する記述がないことから、ピッチングを防止する
ためには上下方向のばね定数を高くするか、上下方向ば
ねの間隔を十分広くする必要がある。前者は免震性能を
低下させることになり、後者は重心の高い上部構造体に
対しては免震装置の設置床面積を大きく取ることを意味
しており、設置スペースやコスト面で不利となる。
[0009] In any of the above-mentioned disclosures, there is no description regarding the suppression of pitching. Therefore, in order to prevent pitching, it is necessary to increase the vertical spring constant or to make the interval between the vertical springs sufficiently wide. The former impairs the seismic isolation performance, and the latter means that the upper structure with a high center of gravity requires a larger floor space for installing the seismic isolation device, which is disadvantageous in terms of installation space and cost. .

【0010】従って、本発明の目的は、過大な設置床面
積の増加や上下方向の免震性能の劣化を伴なわずにピッ
チングの発生を抑止できる三次元免震装置を提供するこ
とである。
Accordingly, it is an object of the present invention to provide a three-dimensional seismic isolation device capable of suppressing the occurrence of pitching without accompanying an excessive increase in floor space for installation and deterioration of seismic isolation performance in the vertical direction.

【0011】[0011]

【課題を解決するための手段】そのため、本発明は、床
面に固定され、上部に滑りパッドを有し、同滑りパッド
の面に免震対象溝造体底面の滑り面を当接して構造体を
載置する複数の空気ばねと;互に隣接する各空気ばねの
上部にそれぞれアームの一端を回動可能に連結し、互に
隣接する同アームの他端間を主軸で接続すると共に、同
主軸を回動可能に床面に取付けてなるトーションバー式
スタビライザとを具備したことを特徴とする三次元免震
装置を提供する。
SUMMARY OF THE INVENTION Therefore, the present invention provides a structure in which a sliding pad is fixed to a floor surface, has a sliding pad on an upper part, and a sliding surface of a bottom surface of a grooved structure to be seismically isolated contacts the surface of the sliding pad. A plurality of air springs on which the body is mounted; one end of each arm is rotatably connected to an upper part of each air spring adjacent to each other, and the other ends of the arms adjacent to each other are connected by a main shaft; Provided is a three-dimensional seismic isolation device, comprising: a torsion bar type stabilizer having the main shaft rotatably mounted on a floor surface.

【0012】上記の本発明の三次元免震装置において
は、構造体に例えば右向きの水平方向の地震動が加わる
と、構造体を支持する左右の空気ばね上で滑りパッドと
滑り面の間で滑りを生じて構造体は水平方向へ移動する
と同時に、重心高さと水平方向の地震荷重で与えられる
回転モーメントを受ける。通常時には各空気ばねに上部
構造体の自重による圧縮荷重が加わっているが、右側の
空気ばねは回転モーメントによって圧縮荷重が増加し、
左側の空気ばねでは圧縮荷重が減少する。
In the above-described three-dimensional seismic isolation device of the present invention, when, for example, a rightward horizontal seismic motion is applied to the structure, the structure slides on the left and right air springs supporting the structure between the sliding pad and the sliding surface. As a result, the structure moves in the horizontal direction and at the same time receives the rotational moment given by the height of the center of gravity and the horizontal seismic load. Normally, a compressive load due to the weight of the upper structure is applied to each air spring, but the right air spring increases the compressive load due to the rotational moment,
The left air spring reduces the compression load.

【0013】その結果、右側の空気ばねでは高さが減少
し、左側の空気ばねでは通常時より高さが増加する方向
に空気ばねが変形する逆相の変形を生じようとするが、
このような変形は、主軸の右側のアームの回転と、左側
のアームの回転とが生ずるので主軸をねじる事になり、
主軸のねじり剛性によってアームの回転が拘束されるた
め、左右の空気ばねの逆相の運動が拘束され、構造体は
回転モーメントに抗して水平方向に運動し、ピッチング
の発生が抑制される。
As a result, the right-side air spring is reduced in height, and the left-side air spring is liable to be deformed in the opposite phase in which the air spring is deformed in a direction in which the height is increased as compared with the normal case.
Such a deformation causes the rotation of the right arm of the main shaft and the rotation of the left arm, so that the main shaft is twisted,
Since the rotation of the arm is restricted by the torsional rigidity of the main shaft, the movement of the left and right air springs in opposite phases is restricted, and the structure moves in the horizontal direction against the rotational moment, and the occurrence of pitching is suppressed.

【0014】一方、上下方向の地震動が作用すると各空
気ばねに同方向の変形が発生する。これにより各空気ば
ねが圧縮され、主軸の両端のアームの先端に取り付けら
れた左右の空気ばねの高さが減少することにより主軸3
は容易に回転することができる。
On the other hand, when vertical seismic motion acts, each air spring is deformed in the same direction. As a result, each air spring is compressed, and the height of the left and right air springs attached to the ends of the arms at both ends of the main shaft decreases, so that the main shaft 3
Can be easily rotated.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基いて具体的に説明する。図1は本発明の実施
の一形態に係る三次元免震装置の側面図、図2はその斜
視図である。図1において、免震対象である上部構造6
は底部に滑り板7を固定し、この滑り板7を介して空気
ばね1の上部に固定された滑りパッド5の上に搭載され
ており、滑りパッド5と滑り板7の間の摩擦力を超える
水平荷重が上部構造体6に加わると、滑りパッド5と滑
り板7の間に滑りを生じ、上部構造体6は水平方向に移
動する。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a side view of a three-dimensional seismic isolation device according to an embodiment of the present invention, and FIG. 2 is a perspective view thereof. In FIG. 1, the upper structure 6 to be seismically isolated
Is mounted on a slide pad 5 fixed to the upper part of the air spring 1 via the slide plate 7 and a frictional force between the slide pad 5 and the slide plate 7 is fixed through the slide plate 7. When an excessive horizontal load is applied to the upper structure 6, a slip occurs between the slide pad 5 and the slide plate 7, and the upper structure 6 moves in the horizontal direction.

【0016】空気ばね1は後述するように床9上に4個
所に設けられており、それぞれの空気ばね1の上端には
アーム2が回転自由なピン8を介して空気ばね1の上端
に取り付けられており、アーム2の他端は主軸3に固定
されている。主軸3は回転自由なベアリング4を介して
床9に固定されている。
The air springs 1 are provided at four places on a floor 9 as will be described later. An arm 2 is attached to the upper end of each air spring 1 via a rotatable pin 8 at the upper end. The other end of the arm 2 is fixed to the main shaft 3. The main shaft 3 is fixed to a floor 9 via a rotatable bearing 4.

【0017】図2は上部構造体6および滑り板7を省略
し、免震部を鳥瞰図で示したものであり、上部構造体の
周辺4個所に空気ばね1A、1B、1C、1Dが設置さ
れている。
FIG. 2 omits the upper structure 6 and the sliding plate 7 and shows the seismic isolation part in a bird's-eye view. Air springs 1A, 1B, 1C and 1D are installed at four locations around the upper structure. ing.

【0018】空気ばね1A、1Bの間はピン8、アーム
2を介して主軸3Aで連結されており、以下同様に空気
ばね1Bと1C間は主軸3Bで、空気ばね1Cと1D間
は主軸3Cで、空気ばね1Dと1A間は主軸3Dでそれ
ぞれ連結されている。各主軸3A、3B、3C、3Dは
床9にベアリング4を介して回転自在に支持されてい
る。
The air springs 1A and 1B are connected by a main shaft 3A via a pin 8 and an arm 2. Similarly, the main shaft 3B is connected between the air springs 1B and 1C, and the main shaft 3C is connected between the air springs 1C and 1D. The main shaft 3D connects between the air springs 1D and 1A. Each main shaft 3A, 3B, 3C, 3D is rotatably supported on a floor 9 via a bearing 4.

【0019】図1、図2で説明したように、本実施の形
態においては、免震対象である上部構造体6を水平方向
には、空気ばね1の上端に取り付けた滑りパッド5と、
上部構造体6の底面に取り付けた滑り板7により免震支
持し、上下方向には、4個の空気ばね1を介して免震支
持するようにし、空気ばね1が同位相で上下方向に振動
する場合は抵抗力を発生せず、異なる位相で振動すると
抵抗力を発生させるスタビライザを構成する。
As described with reference to FIGS. 1 and 2, in the present embodiment, the upper structure 6 to be seismically isolated is provided with a sliding pad 5 attached to the upper end of the air spring 1 in the horizontal direction.
It is seismically isolated and supported by a sliding plate 7 attached to the bottom surface of the upper structure 6, and is vertically seismically supported via four air springs 1 so that the air springs 1 vibrate vertically in the same phase. In this case, a stabilizer that does not generate a resistive force but generates a resistive force when vibrating in different phases is configured.

【0020】第1のスタビライザとしては、高いねじり
剛性を有する棒またはパイプ製の主軸3の両端にアーム
を備えた、いわゆる、トーションバー式スタビライザを
回転自由なベアリング4で支持して床9に設置する。図
2に示すように、4個の空気ばね1A、1B、1C、1
Dの上端にそれぞれピン8で2本のアーム2の一端を回
動自在に取付け、アームの他端を主軸に固定し、1台の
空気ばね1の上端には軸方向が相直行する2本の主軸3
が接続される構成として、4個の空気ばね1A、1B、
1C、1Dと4本の主軸3A、3B、3C、3Dとでス
タビライザを配置している。
As a first stabilizer, a so-called torsion bar type stabilizer provided with arms at both ends of a main shaft 3 made of a rod or a pipe having a high torsional rigidity is installed on a floor 9 supported by a rotatable bearing 4. I do. As shown in FIG. 2, four air springs 1A, 1B, 1C, 1
One end of each of the two arms 2 is rotatably attached to the upper end of D with a pin 8, and the other end of the arm is fixed to the main shaft. Two upper ends of one air spring 1 whose axial directions are orthogonal to each other Spindle 3 of
Are connected, four air springs 1A, 1B,
A stabilizer is arranged between 1C and 1D and four main shafts 3A, 3B, 3C and 3D.

【0021】第2のスタビライザとしては、各空気ばね
1A〜1Dの上端に低い摩擦係数を有する滑りパッド5
を設置し、この滑りパッド5に上部構造体6の対応する
各底面に固着した水平な滑り面を有する滑り板7を当接
せしめ、空気ばね1と上部構造体6を支持する構造とし
ている。
As the second stabilizer, a sliding pad 5 having a low coefficient of friction is provided at the upper end of each of the air springs 1A to 1D.
And a sliding plate 7 having a horizontal sliding surface fixed to each corresponding bottom surface of the upper structure 6 is brought into contact with the sliding pad 5 to support the air spring 1 and the upper structure 6.

【0022】次に、上記に説明の実施の形態における作
用を図3、図4により説明する。図3(a)に示すよう
に水平方向の地震動が加わると、上部構造体6は滑りパ
ッド5と滑り板7の間で滑りを生じて水平方向へ移動す
ると同時に、重心高さと水平方向の地震荷重で与えられ
る回転モーメントを受ける。通常時には各空気ばね1に
上部構造体6の自重による圧縮荷重が加わっているが、
右側の空気ばね1Rでは回転モーメントによって圧縮荷
重が増加し、左側の空気ばね1Lでは圧縮荷重が減少す
る。
Next, the operation of the above-described embodiment will be described with reference to FIGS. When a horizontal earthquake motion is applied as shown in FIG. 3A, the upper structure 6 slides between the sliding pad 5 and the sliding plate 7 and moves in the horizontal direction, and at the same time, the height of the center of gravity and the horizontal earthquake. Receives rotational moment given by load. Normally, a compressive load due to the weight of the upper structure 6 is applied to each air spring 1,
In the right air spring 1R, the compression load increases due to the rotational moment, and in the left air spring 1L, the compression load decreases.

【0023】その結果、右側の空気ばね1Rでは高さが
減少し、左側の空気ばね1Lでは通常時より高さが増加
する方向に空気ばねが変形する逆相の変形を生じようと
するが、このような変形は、図3(b)に示すように主
軸の右側ではアーム2Rに矢印A方向の回転を生じ、左
側のアーム2Lでは矢印B方向の回転を生じるため、主
軸3をねじる事になり、主軸のねじり剛性によってアー
ム2L、2Rの回転が拘束されるため、空気ばね1L、
1Rの逆相の運動が拘束され、上部構造6は回転モーメ
ントに抗して水平方向に運動し、ピッチングの発生が抑
制される。
As a result, the right-side air spring 1R decreases in height, and the left-side air spring 1L attempts to generate a reverse-phase deformation in which the height of the air spring is increased in a direction of increasing the height. Such a deformation causes the arm 2R to rotate in the direction of arrow A on the right side of the main shaft and the rotation in the direction of arrow B on the left arm 2L as shown in FIG. 3 (b), so that the main shaft 3 is twisted. Since the rotation of the arms 2L, 2R is restricted by the torsional rigidity of the main shaft, the air spring 1L,
The 1R reverse phase motion is restrained, and the upper structure 6 moves in the horizontal direction against the rotational moment, thereby suppressing the occurrence of pitching.

【0024】一方、図4(a)に示すように上下方向の
地震動が作用すると各空気ばね1R、1Lに同方向の変
形が発生する。図4では下向きの地震荷重が加わる場合
を示しているが、各空気ばね1R、1Lが圧縮され、図
4(b)に示すように主軸3の両端のアーム2R、2L
の先端に取り付けられた空気ばね1R、1Lの高さが減
少することにより主軸3はベアリング4内で矢印方向に
回転する。
On the other hand, as shown in FIG. 4 (a), when a vertical seismic motion acts, each air spring 1R, 1L is deformed in the same direction. FIG. 4 shows a case where a downward earthquake load is applied. However, the air springs 1R and 1L are compressed, and the arms 2R and 2L at both ends of the main shaft 3 as shown in FIG.
As the heights of the air springs 1R and 1L attached to the ends of the main shaft 3 decrease, the main shaft 3 rotates in the bearing 4 in the direction of the arrow.

【0025】上記に説明の作用により、図2において上
部構造体6にx方向の水平地震力が加わるとx−z面内
でピッチングを生ずるが、その際には主軸3Aおよび3
Cがピッチングを抑制し、y方向の水平地震力が加わる
と、主軸3B及び主軸3Dがy−z面内のピッチングを
抑制する効果を発揮する。
According to the operation described above, when horizontal seismic force in the x direction is applied to the upper structure 6 in FIG. 2, pitching occurs in the xz plane. In this case, the main shafts 3 A and 3
When C suppresses pitting and horizontal seismic force in the y direction is applied, the main shaft 3B and the main shaft 3D exhibit an effect of suppressing pitting in the yz plane.

【0026】上下方向の地震荷重が加わった場合には全
ての空気ばね1A〜1Dが同相で振動するため、各主軸
3A〜3Dベアリング4で支持されて自由に回転するた
め、上下方向の免震機能を阻害しない。
When a vertical seismic load is applied, all the air springs 1A to 1D vibrate in the same phase, and are supported by the main shafts 3A to 3D bearings 4 to rotate freely. Does not interfere with function.

【0027】[0027]

【発明の効果】以上、具体的に説明したように、本発明
は、上部に滑りパッドを有し、滑りパッドの面に構造体
底面の滑り面を当接して構造体を載置する複数の空気ば
ねと、互に隣接する空気ばねの上部にそれぞれアームの
一端を回動可能に連結し、互に隣接するアームの他端間
を主軸で接続すると共に、主軸を回動可能に床面に取付
けてなるトーションバー式スタビライザとを備えた構成
としたので、水平震動時に構造体に生ずるピッチングを
抑制して効果的に三次元免震機能を達成することができ
る。
As specifically described above, the present invention has a plurality of sliding pads having a sliding pad on an upper portion, and a structure on which the sliding surface of the bottom of the structure comes into contact with the surface of the sliding pad. One end of each arm is rotatably connected to the upper part of the air spring and the air spring adjacent to each other, and the other end of the arm adjacent to each other is connected by the main shaft, and the main shaft is rotatably connected to the floor. Since the structure is provided with the torsion bar type stabilizer attached, the three-dimensional seismic isolation function can be effectively achieved by suppressing the pitching generated in the structure during horizontal vibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る三次元免震装置の
側面図である。
FIG. 1 is a side view of a three-dimensional seismic isolation device according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係る三次元免震装置の
斜視図である。
FIG. 2 is a perspective view of a three-dimensional seismic isolation device according to one embodiment of the present invention.

【図3】本発明の実施の一形態に係る三次元免震装置の
水平方向震動時の作用を説明する図で、(a)は側面
図、(b)は斜視図である。
3A and 3B are diagrams illustrating an operation of the three-dimensional seismic isolation device according to the embodiment of the present invention during horizontal vibration, wherein FIG. 3A is a side view and FIG. 3B is a perspective view.

【図4】本発明の実施の一形態に係る三次元免震装置の
上下方向震動時の作用を説明する図で、(a)は側面
図、(b)は斜視図である。
FIGS. 4A and 4B are diagrams illustrating the operation of the three-dimensional seismic isolation device according to the embodiment of the present invention during vertical vibration, wherein FIG. 4A is a side view and FIG.

【図5】従来の三次元免震装置の一例を示し、(a)は
全体の側面図、(b)は空気ばね部の詳細な側面図であ
る。
5A and 5B show an example of a conventional three-dimensional seismic isolation device, wherein FIG. 5A is an overall side view, and FIG. 5B is a detailed side view of an air spring portion.

【図6】従来の三次元免震装置の他の例を示す空気ばね
部の断面図である。
FIG. 6 is a cross-sectional view of an air spring section showing another example of the conventional three-dimensional seismic isolation device.

【図7】従来の三次元免震装置のその他の例を示し、
(a)は全体の側面図、(b)はそのA部詳細図であ
る。
FIG. 7 shows another example of a conventional three-dimensional seismic isolation device,
(A) is an overall side view, and (b) is a detailed view of a portion A thereof.

【符号の説明】[Explanation of symbols]

1 空気ばね 2 アーム 3 主軸 4 ベアリング 5 滑りパッド 6 上部構造体 7 滑り板 8 ピン 9 床 DESCRIPTION OF SYMBOLS 1 Air spring 2 Arm 3 Main shaft 4 Bearing 5 Sliding pad 6 Upper structure 7 Sliding plate 8 Pin 9 Floor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 床面に固定され、上部に滑りパッドを有
し、同滑りパッドの面に免震対象溝造体底面の滑り面を
当接して構造体を載置する複数の空気ばねと;互に隣接
する各空気ばねの上部にそれぞれアームの一端を回動可
能に連結し、互に隣接する同アームの他端間を主軸で接
続すると共に、同主軸を回動可能に床面に取付けてなる
トーションバー式スタビライザとを具備したことを特徴
とする三次元免震装置。
1. A plurality of air springs fixed to a floor surface, having a sliding pad on an upper part, and mounting a structure by abutting a sliding surface of a bottom surface of a seismic isolation target grooved structure on a surface of the sliding pad. One end of each arm is rotatably connected to the upper part of each air spring adjacent to each other, and the other end of each adjacent arm is connected by a main shaft, and the main shaft is rotatably connected to the floor. A three-dimensional seismic isolation device comprising a torsion bar type stabilizer attached thereto.
JP22241896A 1996-08-23 1996-08-23 Three-dimensional vibration isolation device Withdrawn JPH1061254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22241896A JPH1061254A (en) 1996-08-23 1996-08-23 Three-dimensional vibration isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22241896A JPH1061254A (en) 1996-08-23 1996-08-23 Three-dimensional vibration isolation device

Publications (1)

Publication Number Publication Date
JPH1061254A true JPH1061254A (en) 1998-03-03

Family

ID=16782083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22241896A Withdrawn JPH1061254A (en) 1996-08-23 1996-08-23 Three-dimensional vibration isolation device

Country Status (1)

Country Link
JP (1) JPH1061254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904703B1 (en) 2008-01-09 2009-06-29 알엠에스테크놀러지(주) Torsion bar assembly for control of rotational vibration and vibration control table using that
JP2014177963A (en) * 2013-03-13 2014-09-25 Herz Co Ltd Air spring device and vibration-proof device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904703B1 (en) 2008-01-09 2009-06-29 알엠에스테크놀러지(주) Torsion bar assembly for control of rotational vibration and vibration control table using that
JP2014177963A (en) * 2013-03-13 2014-09-25 Herz Co Ltd Air spring device and vibration-proof device

Similar Documents

Publication Publication Date Title
JP5079766B2 (en) Isolation platform
JP2004044748A (en) Vertical base-isolating device
JPH09242819A (en) Base isolation device
JPH0514062B2 (en)
JP4593552B2 (en) Vertical seismic isolation device
JPH0128256B2 (en)
JP3854999B2 (en) Seismic isolation device
JP5111176B2 (en) Vibration suppression device
JPH1061254A (en) Three-dimensional vibration isolation device
JP3026446B2 (en) Seismic isolation device
JP2006342884A (en) Base isolation device
JP4632190B2 (en) Vibration isolator with seismic isolation function
JP6274172B2 (en) Seismic isolation table device
JP2000087592A (en) Small-stroke vibration isolation device
JP3013292B2 (en) Seismic isolation device and structure having this isolation device
JPH11315886A (en) Base isolation device
JPH04113046A (en) Vibration-proof device
KR100904703B1 (en) Torsion bar assembly for control of rotational vibration and vibration control table using that
JP4177991B2 (en) Seismic isolation device
JP2006183681A (en) Vertical base-isolating unit and base-isolating device using the same
JP7461538B1 (en) Tuned mass damper and method for adjusting the natural period of the tuned mass damper
JP3916213B2 (en) Damping method and device using rocking curtain wall
JP2760822B2 (en) Base-isolated floor structure
JP7141638B2 (en) Vibration isolation structure
JP2001271869A (en) Vibration control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104