JPH1060598A - Seawater resistant precipitation strengthening type duplex stainless steel - Google Patents

Seawater resistant precipitation strengthening type duplex stainless steel

Info

Publication number
JPH1060598A
JPH1060598A JP21716496A JP21716496A JPH1060598A JP H1060598 A JPH1060598 A JP H1060598A JP 21716496 A JP21716496 A JP 21716496A JP 21716496 A JP21716496 A JP 21716496A JP H1060598 A JPH1060598 A JP H1060598A
Authority
JP
Japan
Prior art keywords
stainless steel
less
strength
value
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21716496A
Other languages
Japanese (ja)
Inventor
Hideto Kimura
秀途 木村
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21716496A priority Critical patent/JPH1060598A/en
Publication of JPH1060598A publication Critical patent/JPH1060598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop precipitation hardening type duplex stainless steel excellent in seawater resistance and the balance of strength/toughness, in a Cr-Ni series stainless steel, by specifying the PT value showing the total content of Cr, Mo, W and N contained therein and the G value of a austenite fractional rate. SOLUTION: In Cr-Ni series stainless steel contg., by weight, <0.03% C, <1% Si, <1.5% Mn, <0.04% P, <0.01% S, 20 to 26% Cr, 3 to 7% Ni, <0.03% sol.Al, <0.25% N and 1 to 4% Cu, furthermore contg. 2 to 6% Mo and 4 to 10% W and moreover contg. specified amounts of Ca, Mg, Zr and B according to necessary, the PT value as the index of seawater resistance expressed by Cr%+3.3Mo%+1.7W%+16N% is regulated to >=35, and the G value of the austenite fractional rate expressed by 152C%-6.1Si%-2.8Mn%-5.7Cr%+6.5Ni%-3.8Mo%-1.9W%+0.6Cu%+209N%+130 is limited to 70>=G>=30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に臨海構造物、
橋梁、水門、海水利用熱交換器、海水淡水化装置等の、
耐海水性と構造強度を同時に要求される用途向けの析出
強化型二相ステンス鋼に関する。
The present invention relates to a seaside structure,
Bridges, sluices, seawater heat exchangers, seawater desalination equipment, etc.
The present invention relates to a precipitation-strengthened duplex stainless steel for applications requiring both seawater resistance and structural strength.

【0002】[0002]

【従来の技術】近年、臨海地域の利用開発、水回り用途
の構造材もしくは海水利用装置等のメンテナンスフリー
化等の需要増大に伴い、耐海水性を有し構造材として使
用できる高強度材が求められている。現在、主として海
洋構造物等の部材は、構造用鋼に重防食塗装をして使用
されているが、頻繁な塗り替え等で発生する莫大なラン
ニングコストの低減が課題となっており、また、機能上
あるいは外観上の理由から無塗装使用せざるを得ない場
合もあり、耐海水性が高く応力腐食割れの問題も少ない
二相ステンレス鋼での対応には期待がかかっている。し
かし、一般に、海水に耐える高耐食性を有する合金鋼種
は強度が高くなく、ASTM N06625(21%C
r−9%Mo−4%Nb−64%Ni)、N08825
(22%Cr−3%Mo−1.7%Cu−30%Fe−
42%Ni)など、いずれも引張破断強度では高々50
0MPa程度を有するに過ぎない上、耐力は250〜3
00MPaと低い。従来型の二相ステンレス鋼も強度的
には700MPa強と、構造物として有望であるが、高
価な材料であるため、今後、薄肉/軽量化という観点か
ら、強度向上が期待されている。
2. Description of the Related Art In recent years, along with the increasing demand for utilization development in waterfront areas and maintenance-free use of structural materials for plumbing or seawater utilization equipment, etc., high-strength materials which have seawater resistance and can be used as structural materials have been developed. It has been demanded. At present, marine structures and other members are mainly used by applying heavy corrosion protection to structural steel.However, the enormous reduction in running costs caused by frequent repainting has become an issue. In some cases, it is unavoidable to use unpainted for reasons of appearance or appearance, and it is expected that the use of duplex stainless steel with high seawater resistance and few problems of stress corrosion cracking will be supported. However, in general, alloy steels having high corrosion resistance to withstand seawater do not have high strength, and ASTM N06625 (21% C
r-9% Mo-4% Nb-64% Ni), N08825
(22% Cr-3% Mo-1.7% Cu-30% Fe-
42% Ni), and all have a tensile rupture strength of at most 50.
It only has about 0 MPa and the proof stress is 250-3.
It is as low as 00 MPa. Conventional duplex stainless steel is also promising as a structural material with a strength of more than 700 MPa, but is an expensive material, and therefore, from the viewpoint of thinning and lightening, improvement in strength is expected in the future.

【0003】[0003]

【発明が解決しようとする課題】以上を背景に、二相ス
テンレス鋼を時効析出により強化させることで、耐食性
と高強度を両立させようとする試みが行なわれている。
特開昭61−157626号公報に開示されている油井
管向け二相ステンレス鋼は、時効熱処理により、高耐食
性の母相を析出強化しているものである。しかしこの技
術では強度の向上は100MPa程度にとどまるのみな
らず、靭性の低下を伴う等の問題がある。また高強度油
井管に関しては特開昭61−23713号公報、特開平
6−271939号公報、特開平7−207337号公
報に開示されている鋼等もあるが、高耐食性と高強度は
両立させているものの、靭性に関する配慮はいずれも不
十分である。さらに、特開昭63−4045号公報に開
示されている鋼でも、耐全面腐食性、強度の両立を図っ
ているものの、部品製作時の機械加工性を重視している
ためオーステナイト率が15〜35%と低く、やはり靭
性に問題が残る。特開平5−302151号公報に開示
されている鋼は耐孔食性への配慮が定量的でなく、安定
した耐食性を期待することはできない。
With the above background, attempts have been made to achieve both corrosion resistance and high strength by strengthening duplex stainless steel by aging precipitation.
The duplex stainless steel for oil country tubular goods disclosed in Japanese Patent Application Laid-Open No. 61-157626 is one in which a parent phase having high corrosion resistance is precipitated and strengthened by aging heat treatment. However, in this technique, there is a problem that not only improvement in strength is limited to about 100 MPa but also reduction in toughness. As for high-strength oil country tubular goods, there are steels disclosed in JP-A-61-23713, JP-A-6-271939, and JP-A-7-207337, etc., but both high corrosion resistance and high strength are achieved. However, all of the considerations regarding toughness are insufficient. Further, even in the steel disclosed in Japanese Patent Application Laid-Open No. 63-4045, although the overall corrosion resistance and the strength are both compatible, the austenite rate is 15 to As low as 35%, there still remains a problem in toughness. In the steel disclosed in Japanese Patent Application Laid-Open No. 5-302151, consideration for pitting corrosion resistance is not quantitative, and stable corrosion resistance cannot be expected.

【0004】本発明の目的は、耐海水用途の構造材料に
適用可能な耐海水性、強度/靭性のバランスに優れ、且
つ圧延製造時の熱間加工性に優れた耐海水性用析出強化
型二相ステンレス鋼を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a seawater-resistant precipitation-strengthened type having excellent seawater resistance, strength / toughness balance which can be applied to structural materials for seawater resistance, and excellent hot workability during rolling production. It is to provide a duplex stainless steel.

【0005】[0005]

【課題を解決するための手段】前記課題を解決し目的を
達成するために、本発明は以下に示す手段を用いてい
る。
In order to solve the above problems and achieve the object, the present invention uses the following means.

【0006】(1)本発明の耐海水性用析出強化型二相
ステンレス鋼は、実質的に、重量%で、C:0.03%
以下と、Si:1%以下と、Mn:1.5%以下と、
P:0.04%以下と、S:0.01%以下と、Cr:
20〜26%と、Ni:3〜7%と、Sol.Al:0.03
%以下と、N:0.25%以下と、Cu:1〜4%とを
含み、さらに、Mo:2〜6%及びW:4〜10%のう
ち1種または2種と、Ca:0〜0.005%(無添加
の場合も含む)と、Mg:0〜0.05%(無添加の場
合も含む)と、B:0〜0.03%(無添加の場合も含
む)と、Zr:0〜0.3%(無添加の場合も含む)
と、Y、La及びCeを合計含有量として0〜0.03
%(無添加の場合も含む)とを含有し、下記の(1)、
(2)式を満たす鋼である。
(1) The precipitation-strengthened duplex stainless steel for seawater resistance of the present invention has a C content of 0.03% by weight.
Or less, Si: 1% or less, Mn: 1.5% or less,
P: 0.04% or less, S: 0.01% or less, Cr:
20 to 26%, Ni: 3 to 7%, and Sol. Al: 0.03
%, N: 0.25% or less, Cu: 1 to 4%, and one or two of Mo: 2 to 6% and W: 4 to 10%, and Ca: 0 0.005% (including the case without addition), Mg: 0 to 0.05% (including the case without addition), and B: 0 to 0.03% (including the case without addition). , Zr: 0 to 0.3% (including the case of no addition)
And Y, La and Ce as a total content of 0 to 0.03
% (Including the case of no addition) and the following (1),
It is steel satisfying the expression (2).

【0007】PT=Cr%+3.3Mo%+1.7W%
+16N%とするとき、 PT≧35…(1) G=152C%−6.1Si%−2.8Mn%−5.7
Cr%+6.5Ni%−3.8Mo%−1.9W%+
0.6Cu%+209N%+130とするとき、 70
≧G≧30…(2)
PT = Cr% + 3.3Mo% + 1.7W%
When +16 N%, PT ≧ 35 (1) G = 152 C% −6.1 Si% −2.8 Mn% −5.7
Cr% + 6.5Ni% -3.8Mo% -1.9W% +
When 0.6 Cu% + 209 N% + 130, 70
≧ G ≧ 30 (2)

【0008】[0008]

【発明の実施の形態】本発明者は、二相ステンレス鋼を
時効析出させて、耐海水用途の構造材料に適用可能な耐
海水性、強度/靭性のバランスに優れ、且つ圧延製造時
の熱間加工性に優れた耐海水性用析出強化型二相ステン
レス鋼について鋭意研究を重ねた。
BEST MODE FOR CARRYING OUT THE INVENTION The inventor of the present invention has made it possible to precipitate a duplex stainless steel by aging to obtain a seawater-resistant material having an excellent balance between strength and toughness applicable to a structural material for seawater-resistant applications, and to have a heat resistance during rolling production. The authors conducted extensive research on precipitation-strengthened duplex stainless steel for seawater with excellent hot workability.

【0009】その結果、まず母相の十分な耐海水性を確
保する為には十分なCr、Mo、W、Nの添加が必要で
あるとの知見から、Cr≧20%、Mo≧2%、W≧4
%、N≦0.25%の添加が必要であり、しかもこれら
の添加量が(1)式を満足するとき、即ちPT=Cr%
+3.3Mo%+1.7W%+16N%≧35…(1)
であれば十分な耐海水性が確保できることを確認した。
しかも、同時に、フェライト安定化元素とオーステナイ
ト安定化元素のバランスをとり、オーステナイト分率を
30%〜70%とすれば、材料の強度と靭性が良好にバ
ランスし、構造材料として十分な信頼性を発揮できる事
を見いだした。これは、元素の添加量からオーステナイ
ト分率を表すG値:G=152C%−6.1Si%−
2.8Mn%−5.7Cr%+6.5Ni%−3.8M
o%−1.9W%+0.6Cu%+209N%+130
と計算するとき、70≧G≧30…(2)が成立するこ
とが必要である。
As a result, first, from the knowledge that sufficient addition of Cr, Mo, W, and N is necessary to ensure sufficient seawater resistance of the mother phase, Cr ≧ 20% and Mo ≧ 2% , W ≧ 4
%, N ≦ 0.25% is required, and when the addition amounts satisfy the expression (1), ie, PT = Cr%
+ 3.3Mo% + 1.7W% + 16N% ≧ 35 (1)
Then, it was confirmed that sufficient seawater resistance could be secured.
In addition, at the same time, by balancing the ferrite stabilizing element and the austenite stabilizing element and setting the austenite fraction to 30% to 70%, the strength and toughness of the material are well balanced, and sufficient reliability as a structural material is obtained. I found something that I could demonstrate. This is because the G value representing the austenite fraction based on the amount of the element added: G = 152 C% −6.1 Si% −
2.8Mn% -5.7Cr% + 6.5Ni% -3.8M
o% -1.9W% + 0.6Cu% + 209N% + 130
When it is calculated, it is necessary that 70 ≧ G ≧ 30 (2) is satisfied.

【0010】実際の鋼材製造過程においては、熱間加工
性が重要であり、Ca、Mg、B、Zr、Y、La、C
eの添加は、すべて熱間加工時の粒界割れの低減に有効
であることが明かとなったが、これらはいずれも、鋼が
厚板圧延等の熱間加工+徐冷過程を経て製作される場
合、選択添加できる元素である。発明者らの解析によれ
ば、析出強化するタイプの高強度二相ステンレス鋼にお
いて、熱間加工に問題がある場合、一部の析出相が冷却
中に析出し、結晶粒内強度が上昇しているケース、もし
くはフェライト/オーステナイトの各相の強度に食い違
いを生じて、相界面に亀裂を生じるケースがあるが、こ
れらのいずれについても、Ca、Mg、B、Zr、Y、
La、Ceの添加は、粒界強度、相境界強度を上げるの
に有効であったものと考えられた。
In the actual steel material manufacturing process, hot workability is important, and Ca, Mg, B, Zr, Y, La, C
It has been found that the addition of e is effective in reducing grain boundary cracking during hot working, but all of these are manufactured by subjecting steel to hot working such as plate rolling and slow cooling. In this case, it is an element that can be selectively added. According to the analysis of the inventors, in the high-strength duplex stainless steel of the precipitation strengthening type, if there is a problem in hot working, some of the precipitated phases precipitate during cooling, and the intracrystalline strength increases. In some cases, there is a case where the strength of each phase of ferrite / austenite is inconsistent, and a crack is generated in the phase interface. In any of these cases, Ca, Mg, B, Zr, Y,
It is considered that the addition of La and Ce was effective in increasing the grain boundary strength and the phase boundary strength.

【0011】以上の知見に基づき、本発明者は特定の条
件の下で、PT値(Cr,Mo,W,Nの総量)の下限
値を規定して耐海水性を確保し、G値(オーステナイト
分率)を特定値に制御して材料の強度と靭性を良好にバ
ランスさせることにより、耐海水性、強度/靭性のバラ
ンスに優れ、且つ圧延製造時の熱間加工性に優れた耐海
水性用析出強化型二相ステンレス鋼を見出だし、本発明
を完成させた。
Based on the above findings, the present inventor has defined the lower limit of the PT value (the total amount of Cr, Mo, W, and N) under specific conditions to ensure seawater resistance, and to maintain the G value ( By controlling the austenitic fraction) to a specific value and balancing the strength and toughness of the material well, seawater with excellent seawater resistance, strength / toughness balance, and excellent hot workability during rolling production. A precipitation-strengthened duplex stainless steel for steel has been found and the present invention has been completed.

【0012】すなわち、本発明は特定の条件の下でPT
値(Cr,Mo,W,Nの総量)及びG値(オーステナ
イト分率)を下記範囲に限定することにより、耐海水
性、強度/靭性のバランスに優れ、且つ圧延製造時の熱
間加工性に優れた耐海水性用析出強化型二相ステンレス
鋼を得ることができる。
That is, the present invention provides a PT
Value (total amount of Cr, Mo, W, N) and G value (austenite fraction) are limited to the following ranges, so that seawater resistance, strength / toughness balance is excellent, and hot workability during rolling production is achieved. A precipitation-strengthened duplex stainless steel for seawater resistance excellent in seawater resistance can be obtained.

【0013】以下に本発明の合金の成分添加理由及び成
分限定理由について説明する。
The reasons for adding the components of the alloy of the present invention and the reasons for limiting the components will be described below.

【0014】(1)成分組成範囲 Cは、Cr炭化物を形成して合金の耐食性を低下させる
元素であり、添加量は少ないほうがよいが、0.03%
以下であれば耐食性の劣化は許容できるので、その含有
量は0.03%以下である。
(1) Component composition range C is an element which forms a Cr carbide and lowers the corrosion resistance of the alloy.
If the content is less than or equal to the above, the deterioration of the corrosion resistance can be tolerated, so the content is 0.03% or less.

【0015】Siは、脱酸に有効な元素であるため1%
以下を含んでもよいが、1%を超えて含有すると熱間加
工性を阻害するため、含有量は1%以下である。
Since Si is an element effective for deoxidation, 1%
The content may be as follows, but if it exceeds 1%, hot workability is impaired, so the content is 1% or less.

【0016】Mnは、相安定性に有効な元素であるため
1.5%以下を含んでよいが、1.5%を超えて含有す
ると熱間加工性を阻害するため、含有量は1.5%以下
である。
Mn is an element effective for phase stability and may contain 1.5% or less. However, if it exceeds 1.5%, it impairs hot workability. 5% or less.

【0017】Pは、粒界偏析して圧延時の延性を害する
元素であって、その含有量は少ないほど良い。圧延時に
おける延性の低下による割れを防止するため、その含有
の許容量は0.04%以下である。
P is an element that segregates at the grain boundaries and impairs the ductility during rolling. The smaller the content, the better. In order to prevent cracking due to a decrease in ductility during rolling, the allowable amount of the content is 0.04% or less.

【0018】SもP同様に、粒界偏析して圧延時の延性
を害する元素である。その含有量は少ないほど良い。圧
延時における延性の低下による割れを防止するため、そ
の含有の許容量は0.01%以下である。
S, like P, is an element that segregates at grain boundaries and impairs ductility during rolling. The smaller the content, the better. In order to prevent cracking due to a decrease in ductility during rolling, the allowable amount of the content is 0.01% or less.

【0019】Crは、合金に耐海水性を与える基本元素
として重要である。その含有量は20%未満の場合は、
耐海水性への作用が十分でない。一方、26%を超えて
含有すると、後出の限定式によっても相バランスを適性
に維持するのが困難となるため、含有量は20%以上、
26%以下である。
Cr is important as a basic element that imparts seawater resistance to the alloy. If its content is less than 20%,
Insufficient effect on seawater resistance. On the other hand, if the content exceeds 26%, it becomes difficult to maintain a proper phase balance even by the limiting formula described below.
26% or less.

【0020】Niは、オーステナイト安定性を高める主
要元素であり、含有量は、鋼の靭性維持の観点から少な
くとも3%以上を必要とするが、7%を超えて添加する
と、後出の限定式によっても相バランスを適性に維持す
るのが困難となる上、経済性を著しく阻害するため、含
有量は3%以上、7%以下である。
Ni is a main element that enhances austenite stability. The content of Ni is required to be at least 3% or more from the viewpoint of maintaining the toughness of the steel. In this case, it is difficult to maintain an appropriate phase balance, and the economical efficiency is significantly impaired.

【0021】Alは、脱酸に有効な元素であるためSo
l.Alで0.03%以下を含んでもよいが、0.03
%を超えて含有すると、熱間加工性、地疵等の問題が発
生するため、含有量は0.03%以下である。
Since Al is an element effective for deoxidation, So
l. Al may contain 0.03% or less, but 0.03% or less.
If the content exceeds 0.2%, problems such as hot workability and ground flaws occur, so the content is 0.03% or less.

【0022】Nは、添加によってオーステナイト安定性
を高め、耐孔食性を高める元素であるが、0.25%を
超えて添加すると、靭性、熱間加工性を劣化させるた
め、含有量は0.25%以下である。
N is an element that enhances austenite stability and pitting corrosion resistance when added, but when added in excess of 0.25%, toughness and hot workability are deteriorated. 25% or less.

【0023】Cuは、母相に均一析出し、強化作用を持
つ元素である。しかし、過剰の添加は合金の靭性、延
性、熱間加工性低下につながることから、添加量は1%
以上、4%以下である。
Cu is an element that precipitates uniformly in the matrix and has a strengthening action. However, excessive addition leads to a decrease in the toughness, ductility, and hot workability of the alloy.
Not less than 4%.

【0024】Mo、Wは、合金に耐海水性を与える元素
である。その含有量が少なすぎる場合は十分な特性を得
ることができず、過剰に含有するとオーステナイト相が
不安定になり靭性の不足に繋がるため、2〜6%のMo
及び4〜10%のWのうち1〜2種を含有する。Caは
微量添加すると脱硫、脱酸効果により熱間加工性を改善
する元素として有効であるが、0.005%を超えると
清浄性を損ない熱間加工性を低下するため、含有量は
0.005%以下である。
Mo and W are elements that impart seawater resistance to the alloy. If the content is too small, sufficient properties cannot be obtained, and if the content is excessive, the austenite phase becomes unstable, leading to insufficient toughness.
And 1 to 2 of 4 to 10% W. When Ca is added in a small amount, it is effective as an element for improving hot workability due to desulfurization and deoxidation effects. 005% or less.

【0025】Mgは微量添加すると脱酸効果により熱間
加工性を改善する元素として有効であるが、0.05%
を超えると熱間加工性を低下するため0.05%以下で
ある。 B、Zrは、粒界を強化し熱間加工性を改善す
るのに有効な元素であるが、過剰に添加すると熱間加工
性、溶接性を劣化させるので、Bは0.03%以下、Z
rは0.3%以下である。
When a small amount of Mg is added, it is effective as an element for improving hot workability by a deoxidizing effect.
If it exceeds, the hot workability is reduced, so that the content is 0.05% or less. B and Zr are effective elements for strengthening grain boundaries and improving hot workability. However, if added excessively, hot workability and weldability are deteriorated, so that B is 0.03% or less. Z
r is 0.3% or less.

【0026】Y、La、Ce等の希土類元素は、脱硫、
脱酸効果により熱間加工性を改善する元素であり、これ
らのうち一種以上を含有してもよい。含有量は、合計で
0.03%を超えて含有すると、逆に熱間加工性を害す
るので、合計量0.03%以下である。
Rare earth elements such as Y, La and Ce are desulfurized,
It is an element that improves hot workability by a deoxidizing effect, and may contain one or more of these elements. If the content exceeds 0.03% in total, the hot workability is adversely affected, so the total content is 0.03% or less.

【0027】また、Ca、Mg、B、Zr、Y、La、
Ceは必要に応じて添加することができるため、無添加
の場合も含む。以上に加え、前述したように耐海水性に
ついては(1)式を満足することが必要である。即ちP
T=Cr%+3.3Mo%+1.7W%+16N%とす
るとき、 PT≧35…(1) また、強度特性、靭性バランスの確保には、さらに
(2)式の規定範囲内に添加しフェライト/オーステナ
イトの分率を抑制することが必要である。即ちオーステ
ナイト分率は、G=152C%−6.1Si%−2.8
Mn%−5.7Cr%+6.5Ni%−3.8Mo%−
1.9W%+0.6Cu%+209N%+130と表す
ことができ、次の(2)式を満足することが必要であ
る。
Further, Ca, Mg, B, Zr, Y, La,
Since Ce can be added as needed, the case without addition is also included. In addition to the above, it is necessary that the seawater resistance satisfies the expression (1) as described above. That is, P
When T = Cr% + 3.3Mo% + 1.7W% + 16N%, PT ≧ 35 (1) In order to ensure the strength characteristics and toughness balance, ferrite is further added within the specified range of the expression (2). It is necessary to control the fraction of / austenite. That is, the austenite fraction is G = 152C% -6.1Si% -2.8.
Mn% -5.7Cr% + 6.5Ni% -3.8Mo%-
It can be expressed as 1.9 W% + 0.6 Cu% + 209 N% + 130, and it is necessary to satisfy the following expression (2).

【0028】70≧G≧30…(2) 上記の成分組成範囲に調整することにより、耐海水性、
強度/靭性のバランスに優れ、且つ圧延製造時の熱間加
工性に優れた特性を得ることが可能である。
70 ≧ G ≧ 30 (2) By adjusting to the above-mentioned component composition range, seawater resistance,
It is possible to obtain characteristics excellent in strength / toughness balance and excellent in hot workability during rolling production.

【0029】以下に本発明の実施例を挙げ、本発明の効
果を立証する。
Hereinafter, the effects of the present invention will be proved by giving examples of the present invention.

【0030】[0030]

【実施例】表1と表3に検討を行った鋼の化学成分を示
す。表1は本発明の成分範囲を満足する発明鋼種(No.1
〜21)であり、表3は比較鋼種(No.26 〜47)である。
EXAMPLES Tables 1 and 3 show the chemical compositions of the steels studied. Table 1 shows the invention steel grade (No. 1) satisfying the component range of the present invention.
21), and Table 3 shows comparative steel types (Nos. 26 to 47).

【0031】表2、4には、各々の鋼種の(1)式で定
義されるPT値、(2)式で定義されるG値、適用した
溶体化熱処理温度(TS)(時間は全て15分水冷)を
示す。 これらの鋼は、50kgw真空溶解炉で溶製/
鋳造後、1125℃に加熱して熱間圧延し、複数パスで
圧下比10を加えて板厚12mmとして冷却後、圧延に
伴う板の耳割れ最大長さを測定し、耐圧延割れ性を評価
した。溶体化熱処理につづき時効熱処理(480℃×4
時間)後、試験片を切り出し、引張試験、衝撃試験、孔
食試験を実施した。
Tables 2 and 4 show the PT value defined by the equation (1), the G value defined by the equation (2), the applied solution heat treatment temperature (TS) (time is 15 Water cooling). These steels were melted in a 50 kgw vacuum melting furnace /
After casting, the plate was heated to 1125 ° C and hot rolled. After a plurality of passes, a reduction ratio of 10 was applied to cool the plate to a plate thickness of 12 mm. did. Aging heat treatment (480 ° C x 4)
After time, the test piece was cut out and subjected to a tensile test, an impact test, and a pitting corrosion test.

【0032】引張試験は平行部寸法φ6×13mmLの
丸棒引張試験片を用い、引張強さ(TS)および0.2
%耐力(PS)を測定した。衝撃試験はVノッチシャル
ピー(JIS4号)フルサイズ試験片を用い、−165
〜50℃の結果から破面遷移温度を求めた。孔食試験は
JIS G0578に準拠し、温度50℃で実施し腐食
減量で評価した。
In the tensile test, a round bar tensile test piece having a parallel part size of φ6 × 13 mmL was used.
% Proof stress (PS) was measured. The impact test uses a V-notch Charpy (JIS No. 4) full-size test piece, and is -165.
The fracture surface transition temperature was determined from the results of 破 50 ° C. The pitting corrosion test was carried out at a temperature of 50 ° C. in accordance with JIS G0578, and the corrosion loss was evaluated.

【0033】試験結果も同じ表2、4中に、引張強さ、
耐力(以上単位MPa)、圧延板の耳割れ最大長さから
評価した耐圧延割れ性(◎:良好、△:微小割れ発生
(<1mm)、×:割れ発生(≧1mm)で示す。)、
シャルピー衝撃試験に於ける破面遷移温度(単位℃)、
孔食試験における腐食減量(単位g/m2 .h)の順に
まとめて示す。表2から判るように、No.1〜21の
発明鋼は、耐圧延割れ性は良好で、引張強度と靭性のバ
ランスが特に優れているのが特徴である。これは前述の
G値の制御に因るところのものであり、図1にG値とT
S、PS、破面遷移温度の関係を示す。また、耐食性も
良好で、孔食試験での腐食減量はいずれも0.2g/m
2 .h以下と、耐孔食性も良好である。これは一定量以
上のCr、Mo、W、Nを含有して十分なPT値を満た
していることによるもので、PT値と孔食試験での腐食
減量の関係を図2に示す。以上、発明鋼は強度と靭性の
バランス、耐食性との両立の何れの観点からも優れてい
る。
The test results are also shown in Tables 2 and 4, where the tensile strength,
Rolling resistance (evaluated by 最大: good, Δ: generation of microcracks (<1 mm), ×: generation of cracks (≧ 1 mm)) evaluated from the proof stress (unit MPa or more) and the maximum length of the edge cracks of the rolled sheet.
Fracture transition temperature (in ° C) in Charpy impact test,
The results are collectively shown in the order of the corrosion weight loss (unit: g / m 2 .h) in the pitting corrosion test. As can be seen from Table 2, no. The invention steels Nos. 1 to 21 are characterized by good rolling crack resistance and particularly excellent balance between tensile strength and toughness. This is due to the control of the G value described above.
The relationship between S, PS, and fracture surface transition temperature is shown. In addition, the corrosion resistance is good, and the corrosion weight loss in the pitting test is 0.2 g / m2.
2 . h or less, the pitting corrosion resistance is also good. This is because a sufficient PT value is satisfied by containing Cr, Mo, W, and N in a certain amount or more. FIG. 2 shows the relationship between the PT value and the corrosion weight loss in the pitting corrosion test. As described above, the inventive steel is excellent from the viewpoints of balance between strength and toughness and compatibility with corrosion resistance.

【0034】これに対し、表3、4を参照すると、比較
鋼No.26はCの過多により、PT値は十分であるに
も拘らず十分な耐食性が得られていない。比較鋼No.
27、28、29、30は、それぞれSi、Mn、P、
Sの添加量が多すぎ、圧延時に割れを生じ、加工性の低
下が示された。比較鋼No.35、41、42、43、
47も、過剰に添加すると熱間加工性を劣化させる元素
であるAl、Ca、Mg、B、Y+La+Ce(合計
量)のそれぞれの添加量過多により、熱間圧延時に大き
な耳割れが生じた点で同様である。
On the other hand, referring to Tables 3 and 4, comparative steel No. In No. 26, due to an excessive amount of C, sufficient corrosion resistance was not obtained although the PT value was sufficient. Comparative steel No.
27, 28, 29, and 30 represent Si, Mn, P,
The added amount of S was too large, cracks occurred during rolling, and workability was reduced. Comparative steel No. 35, 41, 42, 43,
47 also has a large edge crack during hot rolling due to excessive addition of Al, Ca, Mg, B, and Y + La + Ce (total amount), which are elements that deteriorate hot workability when added in excess. The same is true.

【0035】比較鋼No.31、37、39では、それ
ぞれCr、Mo、W量が不足したため耐孔食性が十分で
なく、またそれぞれの添加量が規定範囲内に収まってい
る場合も、PT値が十分大きくない比較鋼No.44で
は、耐孔食性は不十分である。 一方、前述したように
G値で定量化されるオーステナイト分率が適性範囲内に
ないと、構造物としての機械的性質が損なわれる。比較
鋼No.32、46はG値が不足し靭性が良くない。比
較鋼No.34、45では逆にG値が大きすぎ、十分な
強度や耐力が得られていない。また、Niは単独でも靭
性への影響が大きく、比較鋼No.33ではG値が規定
範囲内でも靭性が劣化している。比較鋼No.38、4
0では、それぞれMo、Wの添加が過多で、やはり靭性
が不足している。
Comparative steel No. In Comparative Steel Nos. 31, 37, and 39, the pitting corrosion resistance was not sufficient because the Cr, Mo, and W amounts were insufficient, and the PT values were not sufficiently large even when the respective addition amounts were within the specified ranges. . At 44, the pitting corrosion resistance is insufficient. On the other hand, if the austenite fraction quantified by the G value is not within the appropriate range as described above, the mechanical properties of the structure will be impaired. Comparative steel No. In Nos. 32 and 46, the G value is insufficient and the toughness is not good. Comparative steel No. On the other hand, in the case of Nos. 34 and 45, the G value was too large, and sufficient strength and proof stress were not obtained. Also, Ni alone has a large effect on toughness, and the comparative steel No. In No. 33, the toughness is deteriorated even when the G value is within the specified range. Comparative steel No. 38, 4
In the case of 0, the addition of Mo and W is excessive, and the toughness is also insufficient.

【0036】以上の実施例及び比較例から明らかなよう
に、発明鋼の成分設定によれば、経済性の高い成分であ
りながら、高い耐孔食性、強度/靭性バランスが得ら
れ、かつ圧延製造時の熱間加工性の優れた合金を得るこ
とが出来る。なお、本発明鋼は溶接時には既存の二相系
の溶接材料を適用することが可能で、溶接性は良好であ
る。
As is clear from the above Examples and Comparative Examples, according to the composition of the invention steel, high pitting corrosion resistance and strength / toughness balance can be obtained, while being a component of high economical efficiency, and the rolling production An alloy excellent in hot workability at the time can be obtained. In addition, the present invention steel can apply an existing two-phase welding material at the time of welding, and has good weldability.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明は、合金組成を特定することによ
り、耐海水用途の構造材料として適性があり、溶接が可
能で900MPaレベルの高強度を有するFe−Cr−
Ni系析出強化型二相ステンレス鋼を、安価に、また歩
留まり良く提供することができ、工業上、有益な効果を
もたらすものである。
According to the present invention, by specifying the alloy composition, the present invention is suitable as a structural material for seawater resistance use, is weldable, and has a high strength of 900 MPa level.
The present invention can provide a Ni-based precipitation strengthened duplex stainless steel at a low cost and with a good yield, and has an industrially beneficial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るオーステナイト分率(G
値)と、引張強さ(TS)、耐力(PS)及びシャルピ
ー破面遷移温度の関係を示す図。
FIG. 1 shows an austenite fraction (G) according to an embodiment of the present invention.
FIG. 4 is a diagram showing a relationship between the tensile strength (TS), the proof stress (PS), and the transition temperature of the Charpy fracture surface.

【図2】本発明の実施例に係る鋼成分のパラメータPT
値と、孔食試験における腐食減量(ΔW)の関係を示す
図。
FIG. 2 shows a parameter PT of a steel component according to an embodiment of the present invention.
The figure which shows the relationship between a value and corrosion weight loss ((DELTA) W) in a pitting corrosion test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実質的に、重量%で、C:0.03%以
下と、Si:1%以下と、Mn:1.5%以下と、P:
0.04%以下と、S:0.01%以下と、Cr:20
〜26%と、Ni:3〜7%と、Sol.Al:0.03%
以下と、N:0.25%以下と、Cu:1〜4%とを含
み、さらに、Mo:2〜6%及びW:4〜10%のうち
1種または2種と、Ca:0〜0.005%(無添加の
場合も含む)と、Mg:0〜0.05%(無添加の場合
も含む)と、B:0〜0.03%(無添加の場合も含
む)と、Zr:0〜0.3%(無添加の場合も含む)
と、Y、La及びCeを合計含有量として0〜0.03
%(無添加の場合も含む)とを含有し、下記の(1)、
(2)式を満たす耐海水性用析出強化型二相ステンレス
鋼。PT=Cr%+3.3Mo%+1.7W%+16N
%とするとき、 PT≧35…(1) G=152C%−6.1Si%−2.8Mn%−5.7
Cr%+6.5Ni%−3.8Mo%−1.9W%+
0.6Cu%+209N%+130とするとき、 70
≧G≧30…(2)
1. Substantially, by weight%, C: 0.03% or less, Si: 1% or less, Mn: 1.5% or less, P:
0.04% or less, S: 0.01% or less, Cr: 20
~ 26%, Ni: 3 ~ 7%, Sol.Al:0.03%
And N: 0.25% or less, Cu: 1 to 4%, and one or two of Mo: 2 to 6% and W: 4 to 10%; 0.005% (including the case without addition), Mg: 0 to 0.05% (including the case without addition), B: 0 to 0.03% (including the case without addition), Zr: 0 to 0.3% (including the case of no addition)
And Y, La and Ce as a total content of 0 to 0.03
% (Including the case of no addition) and the following (1),
A precipitation strengthened duplex stainless steel for seawater resistance that satisfies the formula (2). PT = Cr% + 3.3Mo% + 1.7W% + 16N
%, PT ≧ 35 (1) G = 152 C% −6.1 Si% −2.8 Mn% −5.7
Cr% + 6.5Ni% -3.8Mo% -1.9W% +
When 0.6 Cu% + 209 N% + 130, 70
≧ G ≧ 30 (2)
JP21716496A 1996-08-19 1996-08-19 Seawater resistant precipitation strengthening type duplex stainless steel Pending JPH1060598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21716496A JPH1060598A (en) 1996-08-19 1996-08-19 Seawater resistant precipitation strengthening type duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21716496A JPH1060598A (en) 1996-08-19 1996-08-19 Seawater resistant precipitation strengthening type duplex stainless steel

Publications (1)

Publication Number Publication Date
JPH1060598A true JPH1060598A (en) 1998-03-03

Family

ID=16699868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21716496A Pending JPH1060598A (en) 1996-08-19 1996-08-19 Seawater resistant precipitation strengthening type duplex stainless steel

Country Status (1)

Country Link
JP (1) JPH1060598A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
WO2005014872A1 (en) * 2003-08-07 2005-02-17 Sumitomo Metal Industries, Ltd. Duplex stainless steel and method for production thereof
US7396421B2 (en) 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
JP2010513708A (en) * 2006-12-14 2010-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ plate
JP4640536B1 (en) * 2009-09-10 2011-03-02 住友金属工業株式会社 Duplex stainless steel
CN102011067A (en) * 2010-12-14 2011-04-13 江苏大学 Cavitation corrosion resistant dual-phase stainless steel
WO2012111536A1 (en) 2011-02-14 2012-08-23 住友金属工業株式会社 Duplex stainless steel, and process for production thereof
CN103429776A (en) * 2011-03-10 2013-12-04 新日铁住金株式会社 Duplex stainless steel sheet
WO2016063974A1 (en) * 2014-10-24 2016-04-28 新日鐵住金株式会社 Two-phase stainless steel and production method therefor
JP2018059157A (en) * 2016-10-06 2018-04-12 新日鐵住金株式会社 Two-phase stainless steel
CN109852885A (en) * 2019-03-08 2019-06-07 河南科技大学 A kind of two phase stainless steel and preparation method thereof
CN110408842A (en) * 2018-08-08 2019-11-05 日本冶金工业株式会社 The two phase stainless steel of excellent in low temperature toughness
EP3978641A4 (en) * 2019-05-29 2022-10-26 JFE Steel Corporation Duplex stainless steel and method for manufacturing same, and duplex stainless steel pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
WO2005014872A1 (en) * 2003-08-07 2005-02-17 Sumitomo Metal Industries, Ltd. Duplex stainless steel and method for production thereof
US7396421B2 (en) 2003-08-07 2008-07-08 Sumitomo Metal Industries, Ltd. Duplex stainless steel and manufacturing method thereof
JP2010513708A (en) * 2006-12-14 2010-04-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ plate
JP4640536B1 (en) * 2009-09-10 2011-03-02 住友金属工業株式会社 Duplex stainless steel
WO2011030709A1 (en) * 2009-09-10 2011-03-17 住友金属工業株式会社 Two-phase stainless steel
CN102011067A (en) * 2010-12-14 2011-04-13 江苏大学 Cavitation corrosion resistant dual-phase stainless steel
US9771628B2 (en) 2011-02-14 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Duplex stainless steel and production method therefor
WO2012111536A1 (en) 2011-02-14 2012-08-23 住友金属工業株式会社 Duplex stainless steel, and process for production thereof
CN103429776A (en) * 2011-03-10 2013-12-04 新日铁住金株式会社 Duplex stainless steel sheet
JP5962878B1 (en) * 2014-10-24 2016-08-03 新日鐵住金株式会社 Duplex stainless steel and manufacturing method thereof
WO2016063974A1 (en) * 2014-10-24 2016-04-28 新日鐵住金株式会社 Two-phase stainless steel and production method therefor
JP2018059157A (en) * 2016-10-06 2018-04-12 新日鐵住金株式会社 Two-phase stainless steel
CN110408842A (en) * 2018-08-08 2019-11-05 日本冶金工业株式会社 The two phase stainless steel of excellent in low temperature toughness
CN109852885A (en) * 2019-03-08 2019-06-07 河南科技大学 A kind of two phase stainless steel and preparation method thereof
EP3978641A4 (en) * 2019-05-29 2022-10-26 JFE Steel Corporation Duplex stainless steel and method for manufacturing same, and duplex stainless steel pipe

Similar Documents

Publication Publication Date Title
EP1867743B9 (en) Austenitic stainless steel
JP5817832B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
WO2003044239A1 (en) Use of a super-austenitic stainless steel
KR20070073870A (en) Duplex stainless steel
EP3722448B1 (en) High-mn steel and method for manufacturing same
KR102520119B1 (en) Welded structure and its manufacturing method
WO2018139513A1 (en) Two-phase stainless-clad steel and method for producing same
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
WO2011114963A1 (en) Martensitic stainless steel with excellent weld characteristics, and mertensitic stainless steel material
JPH1060598A (en) Seawater resistant precipitation strengthening type duplex stainless steel
JPWO2018181381A1 (en) Clad steel plate and method of manufacturing the same
WO2020004410A1 (en) Clad steel sheet and production method thereof
KR20160127808A (en) High-tensile-strength steel plate and process for producing same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
US6918967B2 (en) Corrosion resistant austenitic alloy
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JPH1060526A (en) Production of seawater resistant precipitation strengthening type duplex stainless steel
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2007138203A (en) High tensile strength thick steel plate having excellent weldability and its production method
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JPH09272956A (en) Seawater resistant precipitation hardening type high alloy steel and its production
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP2946992B2 (en) Method for producing duplex stainless steel excellent in strength, toughness and corrosion resistance
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate