WO2005014872A1 - Duplex stainless steel and method for production thereof - Google Patents

Duplex stainless steel and method for production thereof Download PDF

Info

Publication number
WO2005014872A1
WO2005014872A1 PCT/JP2004/011070 JP2004011070W WO2005014872A1 WO 2005014872 A1 WO2005014872 A1 WO 2005014872A1 JP 2004011070 W JP2004011070 W JP 2004011070W WO 2005014872 A1 WO2005014872 A1 WO 2005014872A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
mass
oxide
duplex stainless
Prior art date
Application number
PCT/JP2004/011070
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiko Omura
Satoshi Matsumoto
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to CNB2004800009689A priority Critical patent/CN100427627C/en
Priority to AU2004262702A priority patent/AU2004262702B2/en
Priority to BRPI0406423-2A priority patent/BRPI0406423B1/en
Priority to JP2005512929A priority patent/JP4155300B2/en
Priority to KR1020057004913A priority patent/KR100661328B1/en
Priority to EP04748203A priority patent/EP1561834B1/en
Publication of WO2005014872A1 publication Critical patent/WO2005014872A1/en
Priority to NO20052266A priority patent/NO336117B1/en
Priority to US11/135,448 priority patent/US7396421B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a duplex stainless steel having excellent corrosion resistance in seawater.
  • This steel may be steel pipes or steel plates, such as heat exchange piping, piping or structures for chemical plants, line pipes, casings or tubing for oil or gas wells, or umbilical tubes (piping for controlling offshore oil wells). Used for etc.
  • Patent Document 1 discloses that in general, the content of Cr, Mo and N (nitrogen) effective for improving the pitting corrosion resistance of a duplex stainless steel is adjusted, and that W is contained to improve the pitting corrosion resistance.
  • An enhanced, so-called super duplex stainless steel is disclosed.
  • the pitting corrosion resistance index PRE Pitting Resistance Equivalent
  • the pitting resistance index PRE or PREW is adjusted to be 35 or more, and further, in a super duplex stainless steel, it is adjusted to be 40 or more.
  • Conventional techniques for improving pitting resistance have been based on the ability to increase the pitting resistance index PRE or PREW.
  • Oxide-based inclusions contained in stainless steel are generally A1 oxide (Al ⁇ ), Si
  • a composite oxide composed of oxides such as 23 oxide (SiO 2) and Cr oxide (Cr 2 O 3). They are also possible.
  • Patent Document 1 JP-A-5-132741
  • Non-patent document 1 J.E.Castle, et al., "Studies by Auger Spectroscopy of Pitlnitiation at the site of Inclusions in Stainless Steel ,,, Corrosion Science ⁇ Volume 30, No. 4/5, p. 409
  • the present invention has been made to solve these problems, and an object of the present invention is to provide a duplex stainless steel capable of stably obtaining good pitting corrosion resistance and a method for producing the same. Means to solve
  • the present inventors have investigated metallurgical factors affecting pitting resistance of a duplex stainless steel in detail. As a result, even if the oxide inclusions formed during the melting process only by the conventional causes of pitting corrosion described above, those containing Ca and Mg and those containing S, Has a significant effect on The findings obtained by the study of the present inventors are as follows.
  • oxide-based inclusions formed in the steel mainly contain insoluble Al 2 O 3.
  • the oxide-based inclusions formed in the steel include Al O and (Ca, Mg) 0 and coexistence
  • pitting corrosion may or may not occur depending on the size and number of oxide-based inclusions formed in the steel I found that.
  • S is an element inevitably present in steel, and its content cannot be made completely zero by current steelmaking technology.
  • S is contained in a large amount in oxide-based inclusions formed in steel, S deteriorates pitting corrosion resistance. It has been found that the occurrence of pitting can be suppressed by adjusting the size and the number.
  • the present invention provides a chemical composition of a steel material capable of securing performance as a duplex stainless steel, It was completed based on the state of oxide inclusions that greatly improve pitting corrosion resistance and the manufacturing conditions for achieving high cleanliness.
  • the gist of the present invention is a method for producing a duplex stainless steel shown in the following (a) and (b) and a duplex stainless steel shown in the following (c).
  • oxide inclusions having a total content of Ca and Mg of 2040% by mass and a major axis of not less than 7 ⁇ m have a cross section lmm 2 perpendicular to the processing direction.
  • a duplex stainless steel characterized in that there are no more than 10 per steel.
  • Oxide inclusions that are stainless steel and have a total content of Ca and Mg of 20-40% by mass and a major axis of 7 ⁇ m or more in the inclusions contained therein Vertical cross section Not more than 10 pieces per lmm 2 , and oxide inclusions with an S content of 15% by mass or more and a major axis of 1 ⁇ m or more are perpendicular to the processing direction.
  • Duplex stainless steel characterized in that there are no more than 10 per 2 .
  • the steel described in (a) or (b) above has a Cu, B and W content of 0.2-2%, 0.001 0.01% and 0.1-4% in mass%, respectively. Desired Les ,. Further, it is desirable that the pitting resistance index PREW represented by the following formula (1) is 40 or more. However, each element symbol in the formula (1) means the content (% by mass) of each element.
  • Equation (3) AO denotes the cross-section ⁇ ⁇ before deformation in the plastic deformation process, and A denotes the cross-sectional area after deformation in the plastic deformation process, and each subscript n (l, 2, ⁇ ) means the order of each stand in the plastic deformation process.
  • a duplex stainless steel having good porosity resistance can be stably obtained.
  • the chemical composition of the steel material must be in the following range to ensure sufficient pitting resistance as duplex stainless steel.
  • “% of the content” means I ”mass 0 / oj.
  • C is inevitably present in steel. If the content exceeds 0.03%, carbides are liable to precipitate and pitting corrosion resistance is reduced. Therefore, the content of C is set to 0.03% or less.
  • Si is an element effective for deoxidizing steel and must be contained at 0.01% or more. However, if its content exceeds 2%, it promotes the formation of intermetallic compounds and lowers pitting resistance. Therefore, the content of Si 0.01 ⁇ 2 ⁇ / ⁇ .
  • is effective in stabilizing the austenite phase like Ni, and contains 0.1% or more. Need to be done. On the other hand, if Mn exceeds 2%, pitting corrosion resistance is reduced. Therefore, the content of Mn was set to 0.1-2%.
  • P is inevitably present in steel as an impurity, and dissolves actively to lower pitting corrosion resistance. If the content exceeds 0.05%, this effect becomes remarkable, so it is necessary to reduce the content to 0.05% or less. It is desirable that the content of P be as low as possible.
  • A1 is an element necessary for deoxidation of steel and must be contained at 0.003% or more. On the other hand, when contained excessively, A1 nitride precipitates and absorbs N (nitrogen), which is an element effective in improving pitting corrosion resistance, and lowers pitting corrosion resistance. Therefore, the content of A1 was set to 0.003-0.05%.
  • A1 means "sol.Al (acid soluble A1)".
  • M is an element that stabilizes the austenitic phase, and its effect is insufficient if less than 4%. On the other hand, if it exceeds 12%, the austenite phase becomes excessive and the mechanical properties of the duplex stainless steel deteriorate. Therefore, the content of M was set to 412%.
  • Cr is effective in improving pitting corrosion resistance, and if its content is less than 18%, pitting corrosion resistance becomes insufficient. On the other hand, if the content exceeds 32%, the ferrite phase becomes excessive and the mechanical properties of the duplex stainless steel are impaired. Therefore, the content of Cr was set to 1832%.
  • Mo is also an element that enhances pitting corrosion resistance like Cr, and its effect is not sufficient if it is less than 0.2%. On the other hand, if it exceeds 5%, an intermetallic compound is precipitated, and on the contrary, pitting corrosion resistance is reduced. Therefore, the content of Mo is set to 0.25%.
  • N (nitrogen), like Ni, is an element that has the effect of stabilizing the austenite phase.
  • N (nitrogen) is also an element having an effect of improving pitting corrosion resistance, like Cr and Mo.
  • the content is less than 0.05%, these effects are insufficient.
  • the content exceeds 0.4%, the hot workability decreases. Therefore, the content of N (nitrogen) was set to 0.05 0.4%.
  • o Oxygen
  • Oxygen is inevitably present in steel, as in S, and exists as oxide inclusions. As described later, depending on the composition, the oxide becomes a starting point of pitting corrosion and lowers pitting resistance. In particular, when the content exceeds 0.01%, coarse oxides increase and this tendency becomes remarkable. Therefore, o (oxygen) must be limited to 0.01% or less. It is desirable that the content of ⁇ (oxygen) be as low as possible.
  • Ca and Mg are elements that have the effect of improving the hot workability of steel by fixing S as sulfide. As described above, in a duplex stainless steel containing Ca: 0.0005-0.005% and Mg: 0.0001-0.005%, A1 ⁇ and (Ca, Mg) 0
  • the contents of Ca and Mg are specified as 0.0005-0.005% and 0.0001-0.005%, respectively, in which the pitting corrosion resistance tends to deteriorate.
  • the pitting corrosion resistance of the duplex stainless steel of the present invention is improved by regulating the state of the oxide inclusions, as described later.
  • the duplex stainless steel of the present invention is a steel having the above chemical composition, with the balance being Fe and impurities. Further, the duplex stainless steel of the present invention may contain one or more of Cu, B and W as optional additional elements.
  • Cu like Ni, stabilizes the austenitic phase. It also stabilizes the sulfide film in a hydrogen sulfide environment and improves pitting resistance. Therefore, Cu may be included if necessary. To obtain the above effects, it is desirable to contain 0.2% or more, but if it exceeds 2%, the hot workability decreases. Therefore, when Cu is contained, the content is desirably 0.2 to 2%. [0040] B: 0-0.01%
  • B is an element effective for improving hot workability, it may be contained as necessary. In order to obtain this effect, it is desirable that the content is 0.001% or more, but if the content exceeds 0.01%, the effect is saturated. Therefore, when B is contained, its content is preferably set to 0.001 to 0.01%.
  • W is an element that is effective in improving pitting corrosion resistance, like Cr and Mo, and therefore may be included as necessary. These effects become remarkable when the content is 0.1% or more. However, if the content exceeds 4%, an intermetallic compound is precipitated and the pitting corrosion resistance is rather lowered. Therefore, when W is contained, its content is desirably 0.1-4%.
  • the duplex stainless steel of the present invention is desirably a super duplex stainless steel having the above chemical composition and having a pitting resistance index of 40 or more as defined below.
  • each element symbol in the formula (1) means the content (% by mass) of each element.
  • the present inventors investigated the effect of oxide-based inclusions on pitting corrosion resistance by the following method.
  • Molten steel having the chemical composition shown in Tables 3 and 4 described below was processed under various conditions to produce a duplex stainless steel pipe having a wall thickness of 1.4 to 16 (mm). After flattening these steel pipes, test pieces having a pipe wall thickness of X10 mm X 10 mm were cut out. After the resin was loaded in a cross section perpendicular to the processing direction of the test piece (the “observation surface” shown in FIG. 1), the cross section was mirror-polished. The polished surface was observed using a scanning electron microscope (SEM), and the major diameter and chemical composition of the oxide-based inclusions were measured.
  • SEM scanning electron microscope
  • the major axis of the oxide-based inclusion is, as shown in Fig. 2, the length of the longest straight line (al or al) among two straight lines connecting two different points on the interface between the base material and the inclusion. means a2).
  • the composition of the oxide-based inclusions is EDX (energy dispersive X-ray analysis) near the center of the inclusion (bl or b2 in the example shown in Fig. 2), ie, near the center of gravity of the cross-sectional shape of the inclusion.
  • EDX energy dispersive X-ray analysis
  • oxide-based inclusions After observing the oxide-based inclusions, they were immersed in a 6% ferric chloride aqueous solution at 80 ° C. for 6 hours, and the corrosion state around the oxide-based inclusions was observed. Pitting corrosion originating from oxide inclusions was observed.
  • the oxide inclusions that have caused pitting are Al O and (Ca,
  • FIG. 3 is a diagram showing the relationship between the major axis of the oxide-based inclusions and the total content of Ca and Mg. Note that “X” in FIG. 3 indicates an oxide-based inclusion that started pitting, and “ ⁇ ” indicates an oxide-based inclusion that did not start pitting.
  • Oxides of not less than / im were the starting point of pitting corrosion. However, oxides having a total content of Ca and Mg of less than 20% were mainly composed of A1 oxides, and eluted as a starting point of pitting corrosion. Oxides with a total content of Ca and Mg exceeding 40% were completely eluted, but did not progress to pitting, where the effect of forming gaps with the base material was small. Furthermore, even for oxide-based inclusions with a total Ca and Mg content of 20-40%, if the major axis is less than 7 ⁇ m, the gaps will not be sufficiently large and oxide will elute. Did not progress to pitting
  • the pitting corrosion temperature was investigated by focusing on oxide-based inclusions having a total content of Ca and Mg of 20 to 40% and a major axis of 7 ⁇ m or more.
  • the critical pitting temperature is the maximum temperature at which pitting did not occur, after immersing for 24 hours in a 6% ferric salt aqueous solution of 35 ° C-80 ° C with the temperature changed every 5 ° C for 24 hours. Means As a result, the number of oxide-based inclusions with a total Ca and Mg content of 20-40% and a major axis of 7 ⁇ m or more was reduced to 10 per lmm 2 in a cross section perpendicular to the processing direction. If it exceeds, the critical pitting temperature is remarkably lowered, and it has been found that the corrosion resistance in the above severe corrosive environment becomes insufficient.
  • the content of Ca and Mg is 2040% in total, and the number of oxide-based inclusions having a major axis of 7 ⁇ m or more is 10 or less per lmm 2 in a cross section perpendicular to the processing direction.
  • the tendency of pitting to occur for various oxide-based inclusions was arranged in the same way as for Ca and Mg.
  • FIG. 4 is a diagram showing the relationship between the major axis of the oxide-based inclusions and the S content.
  • oxide inclusions having an S content of 15% or more and a major axis of 1 ⁇ m or more became pitting initiation points.
  • the oxide-based inclusions containing S are minute and completely eluted after the pitting test, but the hydrogen sulfide generated after the elution accelerated the corrosion and progressed to pitting.
  • oxide inclusions having a major axis of less than 1 zm and oxide inclusions having an S content of less than 15% did not become pitting corrosion starting points.
  • the same critical pitting temperature was investigated by focusing on oxide-based inclusions having an S content of 15% or more and a major axis of 1 ⁇ m or more. It was found that the pitting corrosion resistance was improved when the number of the inclusions was 10 or less per 0.1 mm 2 in a cross section perpendicular to the processing direction.
  • each compound in the formula (2) means the concentration of each compound in slag (% by mass).
  • the slag basicity represented by the above formula (2) needs to be 0.5 or more.
  • the slag basicity in order to minimize the S content in the oxide-based inclusions, it is desirable that the slag basicity be 1.0 or more.
  • the slag basicity if the slag basicity is too high, the fluidity becomes poor as the melting point rises, and oxide inclusions with a total content of Ca and Mg of 2040% tend to remain in the steel. As a result, the pitting corrosion resistance of the steel decreases. From this viewpoint, the upper limit must be 3.0.
  • the slag basicity is desirably 2.5 or less.
  • the above-mentioned reduction treatment with slag basicity is usually performed only once, but in order to further reduce oxygen and sulfur, it is desirable to repeat this reduction period two or more times.
  • the slag generated in the first reduction treatment is discharged out of the furnace before performing the second reduction by tilting the secondary refining furnace body and extracting it with an appropriate jig. This is important for removing desulfurized slag generated in the first reduction phase, thereby increasing the desulfurization capacity in the second reduction phase.
  • Killing after the reduction treatment is performed at a temperature of 1500 ° C or more for 5 minutes or more.
  • the molten steel that has been subjected to secondary refining by fine adjustment to a predetermined component is tapped into a ladle and manufactured. Until the molten steel is tapped, the molten steel is floated on the molten steel, moved to a place where it is mixed with the slag again, or moved to a place where it is filled. This treatment is called killing, and during the killing, a part of the oxide suspended in the molten steel floats due to the difference in specific gravity and is absorbed and separated in the slag. In order to give the desired state of oxide-based inclusions to the duplex stainless steel, it is necessary to separate large oxides by flotation.
  • the killing temperature is set to 1500 ° C or higher, and the killing time is reduced. You need to wait at least 5 minutes. To further promote the floating removal of these oxides, it is desirable to set the killing temperature to 1550 ° C or more and the killing time to 10 minutes or more.
  • Equation (3) Processing after fabrication is performed under the condition that the total working ratio R expressed by the following equation (3) is 10 or more.
  • AO in equation (3) is the cross-sectional area before deformation in the plastic deformation process, and A is the change in the plastic deformation process.
  • the produced piece is made by hot rolling and 1 / ⁇ hot rolling or cold rolling! After being processed, it is molded to the specified product dimensions. At this time, as the material is deformed in the processing direction by the processing, the oxide-based inclusion is crushed and miniaturized. In order to give the desired state of oxide inclusions to the duplex stainless steel, it is necessary to make the total processing ratio R from the single strength to the final product 10 or more.
  • the plastic deformation step does not include a cutting step or any other processing step that does not involve elongation. Therefore, even when a cutting step is included between the plastic deformation steps, the calculation of the above equation (3) is performed without considering the change in the cross section ⁇ ⁇ ⁇ due to the cutting step.
  • Duplex stainless steel having the composition shown in Table 1 (super duplex stainless steel with a pitting resistance index PREW of 40 or more) was melted in a 500 kg induction melting furnace, then transferred to an AOD furnace, and subjected to secondary » I got it. At this time, the slag basicity in the reduction phase was set to 2.0. Slag and molten steel were sampled after the end of the reduction period, respectively. Further, after was allowed measured immediately mono- Mokappuru molten steel is tapped into a ladle, to measure the time until ⁇ inclusive initiation D
  • the ladle was allowed to stand still at a certain position and the vibration was not applied to perform the killing until the ladle was lifted with a ladle crane to start the loading.
  • the killing conditions at this time are as shown in Table 2.
  • the molten steel was formed into a steel ingot having an average size of 160 mm on one side by a lower casting method or into a round piece having an outer diameter of 180 mm by a continuous forming method. ⁇
  • the forged steel slab is subjected to forging, hot extrusion, and cold rolling to various degrees of processing to form a seamless steel pipe with an outer diameter of 16-280 mm and a wall thickness of 1.4--16 mm. After holding at C for 3 minutes, a water-cooled solution heat treatment was performed.
  • the major axis of the oxide-based inclusion was measured according to the definition in Fig. 2, and the composition analysis of the vicinity of the center of the oxide-based inclusion (bl or b2 in Fig. 2) by EDX (energy dispersive X-ray analysis) was performed. did.
  • EDX energy dispersive X-ray analysis
  • the measured value of ⁇ (oxygen) had low reliability in accuracy, so the mass ratio of Al, Ca, Mg, S, and Mn excluding O (oxygen) was measured.
  • the tube was cut into 10 mm lengths, and the cut end face was polished with No. 600 emery paper and subjected to a pitting corrosion test. It was immersed for 24 hours in a 6% ferric chloride aqueous solution of 35 ° C. to 80 ° C., the temperature of which was changed every 5 ° C., and the maximum temperature at which no pitting occurred was measured. The measurement was performed using five test pieces per test tube, and the lowest value was defined as the critical pitting temperature, which was used as a measure of pitting resistance.
  • Example 13 of the present invention since the starting temperature of the killing was 1500 ° C. or more and the temperature was maintained for 5 minutes or more, the total content of Ca and Mg among the inclusions was 20 to 40% and the major axis was long. Good pitting corrosion resistance was obtained when the number of oxide-based inclusions having a diameter of 7 ⁇ m or more was 10 or less per lmm 2 of the cross section perpendicular to the processing direction. In particular, in Examples 1 and 2 of the present invention, the content of S was 15% or more, and the oxide-based inclusions having a long diameter of 1 ⁇ m or more were 10 pieces or less per 0.1 mm 2 in a cross section perpendicular to the processing direction. As a result, the critical pitting temperature was 80 ° C, showing extremely good pitting resistance.
  • Duplex stainless steels having the compositions shown in Tables 3 and 4 were melted in a 500 kg induction melting furnace, transferred to an AOD furnace, and subjected to secondary refining. At this time, the slag basicity in the reduction phase was varied. Slag and molten steel were sampled after the completion of the reduction phase and immediately after the fine adjustment of the components, respectively, and their composition was analyzed by chemical analysis. Also, go out to the ladle Immediately after the temperature of the steel melted was measured with a thermo cup, the time until the start of filling was measured.
  • the ladle was placed blue at a fixed position so as not to vibrate until the ladle was lifted by a ladle crane to start loading.
  • the molten steel was formed into a steel ingot with an average size of 160 mm on one side by the sub-casting method or a round piece with an outer diameter of 180 mm by the continuous manufacturing method.
  • the forged, hot extruded, and cold-rolled steel slabs are added to various degrees of work to obtain an outer diameter of 16
  • the solution was kept at 1100 ° C. for 3 minutes, and then subjected to a water-cooled solution heat treatment. Tables 5 and 6 show the slag basicity during the reduction phase, the killing conditions and the total processing ratio.
  • the tube was cut into 10 mm lengths, and the cut end faces were polished with No. 600 emery paper and subjected to a pitting corrosion test.
  • the specimens were immersed in a 6% ferric salt aqueous solution of 35 ° C-80 ° C for 24 hours with the temperature changed every 5 ° C for 24 hours, and the maximum temperature at which no pitting occurred was measured. The measurement was performed using five test pieces per test tube, and the lowest value was defined as the critical pitting temperature, which was used as a measure of pitting resistance.
  • the target value of pitting corrosion resistance is a normal duplex stainless steel having a pitting resistance index PRE (or PREW) of less than 40 (steel Nos. 1-8, 10, and 21 shown in Tables 3 and 4).
  • a super duplex stainless steel with a critical pitting temperature of 35 ° C and a pitting resistance index PRE (or PREW) of 40 or more (Steel No. 9 in Tables 3 and 4) , 11-12, 28-41, 44, 45, 47 and 48), the critical pitting temperature was 70 ° C.
  • the results are shown in Tables 5 and 6.
  • the total content of Ga and Mg is meant a 20-40% der Li, and the cross section perpendicular 1 mm 2 number per the working direction of the oxide inclusions is major axis 7 U m or more .
  • Oxide-based inclusions whose S content is 15% or more and whose major axis is 1 m or more
  • the chemical composition and the total number of oxide-based inclusions having a total content of Ca and Mg of 20 to 40% and a major axis of 7 ⁇ m or more are defined by the present invention. It was within the specified range. For this reason, excellent pitting corrosion resistance exceeding the above-mentioned target values was obtained for both ordinary stainless steel and super stainless steel.
  • Comparative Example 2031 in which the chemical composition was out of the range specified in the present invention could not secure sufficient corrosion resistance as a two-phase stainless steel. Further, the chemical group defined in the present invention In Comparative Example 419, in which the production conditions are not suitable, the pitting corrosion resistance was poor because a large amount of oxide inclusions harmful to pitting remained.
  • a duplex stainless steel having good pitting corrosion resistance can be stably obtained.
  • pipes or structures for heat exchange for example, pipes or structures for chemical plants, line pipes, casings or tubing for oil wells or gas wells, or steel pipes or steel plates such as umbilical tubes (pipes for controlling submarine oil wells)
  • umbilical tubes pipes for controlling submarine oil wells
  • FIG. 1 is a view showing an observation surface of an oxide-based inclusion.
  • FIG. 2 is a diagram that defines the measurement points of the major axis and the composition of oxide-based inclusions.
  • FIG. 3 is a graph showing the relationship between the major axis of oxide-based inclusions and the total content of Ca and Mg.
  • FIG. 4 is a graph showing the relationship between the major axis of oxide-based inclusions and the S content.

Abstract

A duplex stainless steel which has a chemical composition, in mass %, that C: 0.03 % or less, Si: 0.01 to 2 %, Mn: 0.1 to 2 %, P: 0.05 % or less, S: 0.001 % or less, Al: 0.003 to 0.05 %, Ni: 4 to 12 %, Cr: 18 to 32 %, Mo: 0.2 to 5 %, N (nitrogen): 0.05 to 0.4 %, O (oxygen): 0.01 % or less, Ca: 0.0005 to 0.005 %, Mg: 0.0001 to 0.005 %, Cu: 0 to 2 %, B: 0 to 0.01 %, W: 0 to 4 %, and the balance: Fe and impurities, characterized in that it contains oxide type inclusions having a total content of Ca and Mg of 20 to 40 mass % and having a longer diameter of 7 μm or more in an amount of 10 pieces or less per 1 mm2 of the cross section perpendicular to the working direction, or further in that it contains oxide type inclusions having a content of S of 15 mass % or more and having a longer diameter of 1 μm or more in an amount of 10 pieces or less per 0.1 mm2 of the cross section perpendicular to the working direction. In particular, it is desirable that contents of Cu, B and W are 0.2 to 2 %, 0.001 to 0.01 % and 0.1 to 4 %, respectively.

Description

明 細 書  Specification
二相ステンレス鋼およびその製造方法  Duplex stainless steel and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、海水中で優れた耐食性を有する二相ステンレス鋼に関する。この鋼は、 熱交換用配管、化学プラント用の配管もしくは構造物、ラインパイプ、油井用もしくは ガス井用のケーシングもしくはチュービング、または、アンビリカルチューブ (海底油 井の制御用配管)等の鋼管もしくは鋼板等に用いられる。  The present invention relates to a duplex stainless steel having excellent corrosion resistance in seawater. This steel may be steel pipes or steel plates, such as heat exchange piping, piping or structures for chemical plants, line pipes, casings or tubing for oil or gas wells, or umbilical tubes (piping for controlling offshore oil wells). Used for etc.
背景技術  Background art
[0002] 従来、海底油井等から採掘される原油や天然ガスは作業環境が過酷なため、敬遠 されてきたが、近年のエネルギー事情の逼迫に伴い、これらの原油や天然ガスを活 用せざるを得ない情勢となってきている。このため、海水中で使用される鋼管または 構造物等の材料として、耐孔食性に優れたステンレス鋼、特に二相ステンレス鋼の需 要が高まっている。  [0002] Conventionally, crude oil and natural gas mined from offshore oil wells and the like have been shunned due to the harsh working environment. However, due to the recent tightening of the energy situation, these crude oil and natural gas cannot be used. The situation is getting worse. For this reason, there is an increasing demand for stainless steel, particularly duplex stainless steel, having excellent pitting corrosion resistance as a material for steel pipes or structures used in seawater.
[0003] 特許文献 1には、一般に二相ステンレス鋼の耐孔食性を向上に有効な Cr、 Moおよ び N (窒素)の含有量を調整するとともに、 Wを含有させて耐孔食性を高めた、いわゆ るスーパー二相ステンレス鋼が開示されている。この文献には、二相ステンレス鋼の 耐孔食性を表す指標として、一般に知られている下記の (A)式の耐孔食性指標 PRE ( Pitting Resistance Equivalent)のほ力、、 Wを含む下記の (B)式の PREWが提案されて いる。  [0003] Patent Document 1 discloses that in general, the content of Cr, Mo and N (nitrogen) effective for improving the pitting corrosion resistance of a duplex stainless steel is adjusted, and that W is contained to improve the pitting corrosion resistance. An enhanced, so-called super duplex stainless steel is disclosed. In this document, as an index indicating the pitting corrosion resistance of a duplex stainless steel, the pitting corrosion resistance index PRE (Pitting Resistance Equivalent) of the following generally known formula (A), PREW of equation (B) has been proposed.
[0004] 通常の二相ステンレス鋼では、耐孔食性指数 PREまたは PREWを 35以上となるよう に調整され、更に、スーパー二相ステンレス鋼では 40以上となるように調整される。従 来の耐孔食性の向上技術は、この耐孔食性指数 PREまたは PREWをどれだけ高める 力、に基づレ、て行われてきた。  [0004] In a normal duplex stainless steel, the pitting resistance index PRE or PREW is adjusted to be 35 or more, and further, in a super duplex stainless steel, it is adjusted to be 40 or more. Conventional techniques for improving pitting resistance have been based on the ability to increase the pitting resistance index PRE or PREW.
[0005] PRE = Cr+ 3.3Mo + 16N (窒素) (A) [0005] PRE = Cr + 3.3Mo + 16N (nitrogen) (A)
PREW=Cr + 3.3 (Mo + 0.5W) + 16N (窒素) (B)  PREW = Cr + 3.3 (Mo + 0.5W) + 16N (nitrogen) (B)
なお、上記の (A)式および (B)式中の各元素記号は、それぞれの元素の含有量(質 量%)を示す。 [0006] 二相ステンレス鋼においては、非金属介在物の耐孔食性に及ぼす影響は検討され ていない。しかし、オーステナイト系ステンレス鋼の耐孔食性に関しては、非特許文 献 1に記載されるように、 Mn硫化物が耐孔食性には最も有害であり、酸化物は無害 であることが知られている。 Each element symbol in the above formulas (A) and (B) indicates the content (mass%) of each element. [0006] In duplex stainless steel, the effect of nonmetallic inclusions on pitting corrosion resistance has not been studied. However, regarding the pitting corrosion resistance of austenitic stainless steel, as described in Non-Patent Document 1, it is known that Mn sulfide is the most harmful to pitting corrosion resistance and oxides are harmless. I have.
[0007] ステンレス鋼中に含まれる酸化物系介在物は、一般的には、 A1酸化物 (Al〇)、 Si  [0007] Oxide-based inclusions contained in stainless steel are generally A1 oxide (Al〇), Si
2 3 酸化物(SiO )、 Cr酸化物(Cr O )等の酸化物からなる複合酸化物である。これらは  A composite oxide composed of oxides such as 23 oxide (SiO 2) and Cr oxide (Cr 2 O 3). They are
2 2 3  2 2 3
水溶液中で溶けにくい性質、いわゆる不溶性を有するため、孔食に影響しないと考 えられてきた。一方、鋼材中の不純物元素である Caおよび Mg、更には Sが酸化物中 に含有される可能性があるが、これらの元素が耐孔食性に及ぼす影響にっレ、て調べ た例は今までに無い。  It has been considered that it does not affect pitting corrosion because it has a property of being insoluble in aqueous solution, so-called insolubility. On the other hand, Ca and Mg, and S, which are impurity elements in steel materials, may be contained in oxides.However, the effect of these elements on pitting corrosion resistance was investigated in an example. Not before.
[0008] 特許文献 1 :特開平 5— 132741号公報 Patent Document 1: JP-A-5-132741
[0009] 非特許文献 1 : J.E.Castle、外 1名、 "Studies by Auger Spectroscopy of Pitlnitiation at the site of Inclusions in Stainless Steel,,、 Corrosion Science^ Volume30、 No.4/5、第 409頁  [0009] Non-patent document 1: J.E.Castle, et al., "Studies by Auger Spectroscopy of Pitlnitiation at the site of Inclusions in Stainless Steel ,,, Corrosion Science ^ Volume 30, No. 4/5, p. 409
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 近年では高温の海水環境等の過酷な腐食環境への二相ステンレス鋼の適用が増 している。このような過酷な条件を模擬した腐食試験、例えば 80°Cの塩化第二鉄試 験等では、スーパー二相ステンレス鋼とレ、えども十分な耐孔食性が安定して得られる わけではない。また、 Cr、 Moおよび N (窒素)、更には W等の含有量の調整だけでは 耐孔食性の改善が不十分な場合がある。更に、二相ステンレス鋼でも、オーステナイ ト系ステンレス鋼と同様に、鋼中の Mn硫化物を低減することにより耐孔食性をある程 度改善できるが、完全に孔食を防止することができるわけではない。  [0010] In recent years, the application of duplex stainless steel to severe corrosive environments such as high-temperature seawater environments has been increasing. Corrosion tests that simulate such harsh conditions, such as the ferric chloride test at 80 ° C, do not always provide sufficient pitting resistance, even with super duplex stainless steel. . Further, the pitting corrosion resistance may not be sufficiently improved only by adjusting the contents of Cr, Mo, N (nitrogen), and W. In addition, similar to the austenitic stainless steel, the pitting corrosion resistance can be improved to some extent by reducing the Mn sulfide in the steel, but the pitting corrosion can be completely prevented. is not.
[0011] 本発明は、これらの問題を解決するためになされたものであり、良好な耐孔食性が 安定して得られる二相ステンレス鋼およびその製造方法を提供することを目的とする 課題を解決するための手段  [0011] The present invention has been made to solve these problems, and an object of the present invention is to provide a duplex stainless steel capable of stably obtaining good pitting corrosion resistance and a method for producing the same. Means to solve
[0012] 本発明者らは、二相ステンレス鋼の耐孔食性に影響する冶金因子を詳細に調査し た結果、前述した従来の孔食発生の要因だけでなぐ溶製過程で生成する酸化物系 介在物であっても、 Caおよび Mgを含有するもの、ならびに Sを含有するものは、耐孔 食性に大きな影響を及ぼしうることを見出した。本発明者らの研究のよって得られた 知見は、下記のとおりである。 The present inventors have investigated metallurgical factors affecting pitting resistance of a duplex stainless steel in detail. As a result, even if the oxide inclusions formed during the melting process only by the conventional causes of pitting corrosion described above, those containing Ca and Mg and those containing S, Has a significant effect on The findings obtained by the study of the present inventors are as follows.
[0013] Caの含有量が 0.0005質量%未満の場合、または Mgの含有量が 0.0001質量%未満 の場合に鋼中に形成される酸化物系介在物は、不溶性の Al Oを主体とするもので [0013] When the Ca content is less than 0.0005% by mass or when the Mg content is less than 0.0001% by mass, oxide-based inclusions formed in the steel mainly contain insoluble Al 2 O 3. so
2 3  twenty three
あり、孔食が発生することはなレ、。また、 Caまたは Mgの含有量が 0.005質量%を超え る場合に鋼中に形成される酸化物系介在物は、(Ca、 Mg) 0を主体とするものであり、 このような酸化物は、孔食の起点となりにくい。  Yes, pitting does not occur. When the content of Ca or Mg exceeds 0.005% by mass, oxide-based inclusions formed in steel are mainly composed of (Ca, Mg) 0, and such oxides are , It is hard to be the starting point of pitting.
[0014] し力、し、 Caを 0.0005— 0.005質量%含み、且つ Mgを 0.0001 0.005質量%含む場合 には、鋼中の形成される酸化物系介在物は、 Al Oと(Ca、 Mg) 0とが共存する状態と [0014] When the steel contains 0.0005-0.005% by mass of Ca and 0.0001 0.005% by mass of Mg, the oxide-based inclusions formed in the steel include Al O and (Ca, Mg) 0 and coexistence
2 3  twenty three
なり、これらの酸化物系介在物が隣接して形成された場合には、孔食の起点となりや すくなる。  When these oxide-based inclusions are formed adjacent to each other, they easily become pitting corrosion starting points.
[0015] このため、本発明者らは、 Caを 0.0005— 0.005質量%含み、且つ Mgを 0.0001— [0015] Therefore, the present inventors have found that 0.0005-0.005% by mass of Ca and 0.0001-
0.005質量%含む二相ステンレス鋼の孔食発生原因について研究を重ねた結果、鋼 中に形成された酸化物系介在物の大きさおよび個数によって、孔食が発生する場合 と発生しない場合があることを見出した。 As a result of repeated studies on the causes of pitting corrosion in duplex stainless steel containing 0.005 mass%, pitting corrosion may or may not occur depending on the size and number of oxide-based inclusions formed in the steel I found that.
[0016] Sは、鋼中に不可避的に存在する元素であり、現在の製鋼技術ではその含有量を 完全にゼロとすることはできない。 Sは、鋼中に形成される酸化物系介在物中に多量 に含まれると耐孔食性を劣化させるが、本発明者らの研究により、このような酸化物 系介在物であっても、その大きさおよび個数を調整することによって孔食の発生を抑 制することができることが判明した。  [0016] S is an element inevitably present in steel, and its content cannot be made completely zero by current steelmaking technology. When S is contained in a large amount in oxide-based inclusions formed in steel, S deteriorates pitting corrosion resistance. It has been found that the occurrence of pitting can be suppressed by adjusting the size and the number.
[0017] 従来の方法による溶製や加工熱処理では、所望の酸化物系介在物状態の二相ス テンレス鋼を製造することはできない。本発明者らは、種々の検討の結果、(ひ)還元 処理時のスラグ塩基度、(/3 )取鍋でのキリング温度と時間、(γ )錡造後の総加工比を 最適の組合せに制御することにより、所望の酸化物系介在物状態が得られ、今まで に無い高清浄鋼が製造できることを見出した。  [0017] It is not possible to produce a desired two-phase stainless steel in the state of oxide-based inclusions by smelting or thermomechanical treatment by a conventional method. As a result of various studies, the present inventors have found that the optimal combination of (h) slag basicity during reduction treatment, (/ 3) killing temperature and time in a ladle, and (γ) 錡 total working ratio after fabrication It has been found that the desired oxide-based inclusion state can be obtained by controlling the amount of oxides, and that an unprecedented high-purity steel can be manufactured.
[0018] このように本発明は、二相ステンレス鋼としての性能を確保できる鋼材の化学組成、 耐孔食性を大きく向上させる酸化物系介在物状態、および高清浄化を達成するため の製造条件に基づき完成させた。 As described above, the present invention provides a chemical composition of a steel material capable of securing performance as a duplex stainless steel, It was completed based on the state of oxide inclusions that greatly improve pitting corrosion resistance and the manufacturing conditions for achieving high cleanliness.
[0019] 本発明は、下記の (a)ならびに (b)に示す二相ステンレス鋼および下記の (c)に示す 二相ステンレス鋼の製造方法を要旨とする。  The gist of the present invention is a method for producing a duplex stainless steel shown in the following (a) and (b) and a duplex stainless steel shown in the following (c).
[0020] (a)質量%で、 C:0.03%以下、 Si:0.01— 2%、 Mn:0.1 2%、 P:0.05%以下、 S:  [0020] (a) In mass%, C: 0.03% or less, Si: 0.01-2%, Mn: 0.1 2%, P: 0.05% or less, S:
0.001%以下、 A1: 0.003—0.05%, Ni:4 12%、 Cr:18— 32%、 Mo :0.2— 5%, N (窒 素):0.05— 0.4%、〇(酸素) :0.01%以下、 Ca: 0.0005— 0.005%、 Mg: 0.0001 0.005 %、 Cu:0— 2%, B:0— 0.01%および W:0 4%を含有し、残部が Feおよび不純物 力 なる二相ステンレス鋼であって、その中に含まれる介在物のうち、 Caおよび Mgの 合計含有量が 20 40質量%であり、且つ長径が 7 μ m以上である酸化物系介在物 が加工方向に垂直な断面 lmm2あたり 10個以下であることを特徴とする二相ステンレ ス鋼。 0.001% or less, A1: 0.003 to 0.05%, Ni: 4 12%, Cr: 18 to 32%, Mo: 0.2 to 5%, N (nitrogen): 0.05 to 0.4%, 〇 (oxygen): 0.01% or less , Ca: 0.0005-0.005%, Mg: 0.0001 0.005%, Cu: 0-2%, B: 0-0.01% and W: 4%, with the balance being Fe and impurities. Among the inclusions contained therein, oxide inclusions having a total content of Ca and Mg of 2040% by mass and a major axis of not less than 7 μm have a cross section lmm 2 perpendicular to the processing direction. A duplex stainless steel characterized in that there are no more than 10 per steel.
[0021] (b)質量%で、 C: 0.03%以下、 Si :0.01— 2%、 Mn:0.1— 2%、 P: 0.05%以下、 S:  [0021] (b) In mass%, C: 0.03% or less, Si: 0.01-2%, Mn: 0.1-2%, P: 0.05% or less, S:
0.001%以下、 A1: 0.003—0.05%, Ni:4— 12%、 Cr:18— 32%、 Mo:0.2— 5%、 N (窒 素) :0.05— 0.4%、〇(酸素) :0.01%以下、 Ca: 0.0005— 0.005%、 Mg: 0.0001— 0.005 %、 Cu:0— 2%、 B:0— 0.01%および W:0— 4%を含有し、残部が Feおよび不純物 力らなる二相ステンレス鋼であって、その中に含まれる介在物のうち、 Caおよび Mgの 合計含有量が 20— 40質量%であり、且つ長径が 7 μ m以上である酸化物系介在物 が加工方向に垂直な断面 lmm2あたり 10個以下であるとともに、 Sの含有量が 15質量 %以上であり、且つ長径が 1 μ m以上である酸化物系介在物が加工方向に垂直な断 面 0. lmm2あたり 10個以下であることを特徴とする二相ステンレス鋼。 0.001% or less, A1: 0.003 to 0.05%, Ni: 4 to 12%, Cr: 18 to 32%, Mo: 0.2 to 5%, N (nitrogen): 0.05 to 0.4%, 〇 (oxygen): 0.01% The following two phases contain Ca: 0.0005—0.005%, Mg: 0.0001—0.005%, Cu: 0—2%, B: 0—0.01%, and W: 0—4%, with the balance being Fe and impurities. Oxide inclusions that are stainless steel and have a total content of Ca and Mg of 20-40% by mass and a major axis of 7 μm or more in the inclusions contained therein Vertical cross section Not more than 10 pieces per lmm 2 , and oxide inclusions with an S content of 15% by mass or more and a major axis of 1 μm or more are perpendicular to the processing direction. Duplex stainless steel characterized in that there are no more than 10 per 2 .
[0022] なお、上記 (a)または (b)に記載の鋼は、その Cu、 Bおよび Wの含有量がそれぞれ質 量%で 0.2— 2%、 0.001 0.01%および 0.1— 4%であるのが望ましレ、。また、下記の (1)式で表される耐孔食性指数 PREWが 40以上であるのが望ましい。但し、(1)式中の 各元素記号は、それぞれの元素の含有量 (質量%)を意味する。  [0022] The steel described in (a) or (b) above has a Cu, B and W content of 0.2-2%, 0.001 0.01% and 0.1-4% in mass%, respectively. Desired Les ,. Further, it is desirable that the pitting resistance index PREW represented by the following formula (1) is 40 or more. However, each element symbol in the formula (1) means the content (% by mass) of each element.
PREW = Cr + 3.3(Mo + 0.5W) +16N (1)  PREW = Cr + 3.3 (Mo + 0.5W) + 16N (1)
[0023] (c)下記の (2)式で表されるスラグ塩基度が 0.5— 3.0となる条件で還元し、出鋼した溶 鋼に、 1500°C以上の温度で 5分以上のキリングを実施した後に铸造し、得られた錡片 を下記の (3)式で表される総加工比 Rが 10以上となる条件で加工することを特徴とする 上記 (a)または (b)に記載の二相ステンレス鋼の製造方法。但し、(2)式中の各化合物 は、それぞれの化合物のスラグ中濃度 (質量0 /0)を意味する。また、(3)式中の AOは 塑性変形工程での変形前の断面稹、 Aは塑性変形工程での変形後の断面積を意 味し、それぞれの添字 n (l、 2、 · '·ί)は、塑性変形工程の各スタンド順を意味する。 [0023] (c) The slag basicity represented by the following equation (2) is reduced under the condition of 0.5-3.0, and the molten steel that has been tapped is subjected to killing for 5 minutes or more at a temperature of 1500 ° C or more. After implementation, it was manufactured and the obtained piece Characterized in that a total working ratio R represented by the following formula (3) is 10 or more: The method for producing a duplex stainless steel according to the above (a) or (b). However, (2) the compound of formula means a slag concentration of each compound (by mass 0/0). In Equation (3), AO denotes the cross-section 変 形 before deformation in the plastic deformation process, and A denotes the cross-sectional area after deformation in the plastic deformation process, and each subscript n (l, 2, ί) means the order of each stand in the plastic deformation process.
[スラグ塩基度:! = (CaO+lVlgO)/(Al 0 +SiO ) (2) (3) [Slag basicity :! = (CaO + lVlgO) / (Al 0 + SiO) (2) (3)
Figure imgf000007_0001
発明の効果
Figure imgf000007_0001
The invention's effect
[0024] 本発明によれば、良好な耐孔贪性を有する二相ステンレス鋼が安定して得られる。  According to the present invention, a duplex stainless steel having good porosity resistance can be stably obtained.
このため、例えば、熱交換用配管、化学プラント用の配管もしくは構造物、ラインパイ プ、油井用もしくはガス井用のケーシングもしくはチュービング、または、アンビリカル チューブ (海底油井の制御用配管)等の鋼管もしくは鋼板等に最適な二相ステンレス 鋼を提供することができる。  For this purpose, for example, pipes or structures for heat exchange, pipes or structures for chemical plants, line pipes, casings or tubing for oil wells or gas wells, or steel pipes or steel plates such as umbilical tubes (pipes for controlling submarine oil wells) Thus, it is possible to provide a duplex stainless steel that is optimal for such purposes.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 1.化学組成 [0025] 1. Chemical composition
鋼材の化学組成は、二相ステンレス鋼としての十分な耐孔食性を確保するために は、下記の範囲とする必要がある。以下の説明において、含有量についての Γ%」は I "質量0 /ojを意味する。 The chemical composition of the steel material must be in the following range to ensure sufficient pitting resistance as duplex stainless steel. In the following description, “% of the content” means I ”mass 0 / oj.
[0026] C: 0.03%以下 [0026] C: 0.03% or less
Cは、鋼中に不可避的に存在する。その含有量が 0.03%を超えると炭化物が析出 し易くなり耐孔食性が低下する。従って、 Cの含有量を 0.03%以下とした。  C is inevitably present in steel. If the content exceeds 0.03%, carbides are liable to precipitate and pitting corrosion resistance is reduced. Therefore, the content of C is set to 0.03% or less.
[0027] Si:0.01〜2o/o [0027] Si: 0.01 to 2 o / o
Siは、鋼の脱酸に有効な元素であり、 0.01%以上含有させる必要がある。しかし、そ の含有量が 2%を超えると、金属間化合物の生成を促進し、耐孔食性を低下させる。 従って、 Siの含有量を 0.01〜2ο/οとした。 Si is an element effective for deoxidizing steel and must be contained at 0.01% or more. However, if its content exceeds 2%, it promotes the formation of intermetallic compounds and lowers pitting resistance. Therefore, the content of Si 0.01~2 ο / ο.
[0028] Μη:0.1〜2% [0028] Μη: 0.1 to 2%
Μηは、 Niと同様にオーステナイト相を安定ィ匕させるのに有効であり、 0,1%以上含有 訂正された用 (規則 91〉 させる必要がある。一方、 2%を超える Mnを含有させると耐孔食性を低下させる。従 つて、 Mnの含有量を 0.1— 2%とした。 Μη is effective in stabilizing the austenite phase like Ni, and contains 0.1% or more. Need to be done. On the other hand, if Mn exceeds 2%, pitting corrosion resistance is reduced. Therefore, the content of Mn was set to 0.1-2%.
[0029] P : 0.05%以下 [0029] P: 0.05% or less
Pは、不純物として鋼中に不可避的に存在し、活性溶解して耐孔食性を低下させる 。含有量が 0.05%を超えるとこの影響が顕著となるため、その含有量は 0.05%以下に する必要がある。 Pの含有量は、できるだけ低くすることが望ましい。  P is inevitably present in steel as an impurity, and dissolves actively to lower pitting corrosion resistance. If the content exceeds 0.05%, this effect becomes remarkable, so it is necessary to reduce the content to 0.05% or less. It is desirable that the content of P be as low as possible.
[0030] S : 0.001%以下 [0030] S: 0.001% or less
Sも Pと同様に鋼中に不可避的に存在し、溶解し易い硫化物を生成することで耐孔 食性を低下させる。含有量力 .001%を超えるとこの影響が顕著となる。また後述のよ うに、 0.001%以下の含有量でも、酸化物系介在物中に含有された場合に孔食発生 を助長するため、 sの含有量は、この範囲でできるだけ低くすることが望ましい。  S, like P, is inevitably present in steel and forms sulfides that are easily dissolved, thereby reducing pitting corrosion resistance. When the content power exceeds .001%, this effect becomes remarkable. Further, as described later, even if the content is 0.001% or less, the content of s is desirably as low as possible in this range in order to promote the occurrence of pitting corrosion when contained in the oxide-based inclusions.
[0031] A1 : 0.003 0.05% [0031] A1: 0.003 0.05%
A1は、鋼の脱酸に必要な元素であり、 0.003%以上含有させる必要がある。一方、過 剰に含有させると A1窒化物が析出し耐孔食性向上に有効な元素である N (窒素)を 吸収し、耐孔食性を低下させる。従って、 A1の含有量を 0.003— 0.05%とした。なお、 A1は「sol.Al (酸可溶 A1)」を意味する。  A1 is an element necessary for deoxidation of steel and must be contained at 0.003% or more. On the other hand, when contained excessively, A1 nitride precipitates and absorbs N (nitrogen), which is an element effective in improving pitting corrosion resistance, and lowers pitting corrosion resistance. Therefore, the content of A1 was set to 0.003-0.05%. A1 means "sol.Al (acid soluble A1)".
[0032] Ni : 4— 12% [0032] Ni: 4-12%
Mは、オーステナイト相を安定化する元素であり、 4%未満ではその効果が不十分 である。一方、 12%を超えるとオーステナイト相が過多となり二相ステンレス鋼としての 機械的性質が損なわれる。従って、 Mの含有量を 4一 12%とした。  M is an element that stabilizes the austenitic phase, and its effect is insufficient if less than 4%. On the other hand, if it exceeds 12%, the austenite phase becomes excessive and the mechanical properties of the duplex stainless steel deteriorate. Therefore, the content of M was set to 412%.
[0033] Cr : 18一 32% [0033] Cr: 18-32%
Crは、耐孔食性の向上に有効であり、その含有量が 18%未満では耐孔食性が不 十分となる。一方、その含有量が 32%を超えるとフェライト相が過多となり二相ステン レス鋼としての機械的性質が損なわれる。従って、 Crの含有量を 18 32%とした。  Cr is effective in improving pitting corrosion resistance, and if its content is less than 18%, pitting corrosion resistance becomes insufficient. On the other hand, if the content exceeds 32%, the ferrite phase becomes excessive and the mechanical properties of the duplex stainless steel are impaired. Therefore, the content of Cr was set to 1832%.
[0034] Mo : 0.2— 5% [0034] Mo: 0.2-5%
Moも Crと同様に耐孔食性を高める元素であり、 0.2%未満ではその効果が十分で ない。一方、 5%を超えると金属間化合物が析出して、逆に耐孔食性を低下させる。 従って、 Moの含有量を 0.2 5%とした。 [0035] N (窒素): 0.05— 0.4% Mo is also an element that enhances pitting corrosion resistance like Cr, and its effect is not sufficient if it is less than 0.2%. On the other hand, if it exceeds 5%, an intermetallic compound is precipitated, and on the contrary, pitting corrosion resistance is reduced. Therefore, the content of Mo is set to 0.25%. [0035] N (nitrogen): 0.05—0.4%
N (窒素)は、 Niと同様に、オーステナイト相を安定化させる作用を持つ元素である。 N (窒素)は、 Crや Moと同様に耐孔食性を高める効果を有する元素でもある。しかし、 その含有量が 0.05%未満ではこれらの効果が不十分である。一方、 0.4%を越えて含 有させると熱間加工性が低下する。従って、 N (窒素)の含有量を 0.05 0.4%とした。  N (nitrogen), like Ni, is an element that has the effect of stabilizing the austenite phase. N (nitrogen) is also an element having an effect of improving pitting corrosion resistance, like Cr and Mo. However, if the content is less than 0.05%, these effects are insufficient. On the other hand, if the content exceeds 0.4%, the hot workability decreases. Therefore, the content of N (nitrogen) was set to 0.05 0.4%.
[0036] 0 (酸素): 0.01 %以下 [0036] 0 (oxygen): 0.01% or less
o (酸素)も Sと同様に鋼中に不可避的に存在し、酸化物系介在物の状態で存在す る。酸化物は、後述のように組成によっては孔食起点となり耐孔食性を低下させ、特 に、その含有量が 0.01%を超えると粗大な酸化物が増し、この傾向が顕著となる。従 つて、 o (酸素)は 0.01 %以下に制限する必要がある。〇(酸素)の含有量はできるだ け低くすることが望ましい。  o (Oxygen) is inevitably present in steel, as in S, and exists as oxide inclusions. As described later, depending on the composition, the oxide becomes a starting point of pitting corrosion and lowers pitting resistance. In particular, when the content exceeds 0.01%, coarse oxides increase and this tendency becomes remarkable. Therefore, o (oxygen) must be limited to 0.01% or less. It is desirable that the content of 〇 (oxygen) be as low as possible.
[0037] Ca : 0.0005— 0.005%、 Mg : 0.0001— 0.005%  [0037] Ca: 0.0005—0.005%, Mg: 0.0001—0.005%
Caおよび Mgは、いずれも Sを硫化物として固定することにより、鋼の熱間加工性を 改善する効果を有する元素である。し力し、前述のように、 Ca : 0.0005— 0.005%およ び Mg : 0.0001— 0.005%を含む二相ステンレス鋼においては、 A1〇と(Ca、 Mg) 0と  Ca and Mg are elements that have the effect of improving the hot workability of steel by fixing S as sulfide. As described above, in a duplex stainless steel containing Ca: 0.0005-0.005% and Mg: 0.0001-0.005%, A1〇 and (Ca, Mg) 0
2 3  twenty three
が共存し、これらが隣接して形成された場合、耐孔食性に悪影響を及ぼす。従って、 Coexist, and when they are formed adjacently, adversely affects pitting corrosion resistance. Therefore,
Caおよび Mgの含有量は、それぞれ耐孔食性が劣化しやすレ、範囲である 0.0005— 0.005%および 0.0001— 0.005%と規定した。本発明の二相ステンレス鋼の耐孔食性 は、後段で説明するように、酸化物系介在物状態を規制することにより改善される。 The contents of Ca and Mg are specified as 0.0005-0.005% and 0.0001-0.005%, respectively, in which the pitting corrosion resistance tends to deteriorate. The pitting corrosion resistance of the duplex stainless steel of the present invention is improved by regulating the state of the oxide inclusions, as described later.
[0038] 本発明の二相ステンレス鋼は、上記の化学組成を有し、残部が Feおよび不純物か らなる鋼である。また、本発明の二相ステンレス鋼は、任意の添加元素として、 Cu、 B および Wの一種以上を含有するものであってもよい。  [0038] The duplex stainless steel of the present invention is a steel having the above chemical composition, with the balance being Fe and impurities. Further, the duplex stainless steel of the present invention may contain one or more of Cu, B and W as optional additional elements.
[0039] Cu : 0— 2%  [0039] Cu: 0— 2%
Cuは、 Niと同様にオーステナイト相を安定化させる。また、硫化水素環境で硫化物 皮膜を安定化して耐孔食性を向上させる。従って、必要に応じて Cuを含有させてもよ レ、。上記の効果を得るためには 0.2%以上含有させるのが望ましいが、 2%を越えて 含有させると熱間加工性が低下する。従って、 Cuを含有させる場合には、その含有 量を 0.2— 2%とするのが望ましい。 [0040] B : 0—0.01 % Cu, like Ni, stabilizes the austenitic phase. It also stabilizes the sulfide film in a hydrogen sulfide environment and improves pitting resistance. Therefore, Cu may be included if necessary. To obtain the above effects, it is desirable to contain 0.2% or more, but if it exceeds 2%, the hot workability decreases. Therefore, when Cu is contained, the content is desirably 0.2 to 2%. [0040] B: 0-0.01%
Bは、熱間加工性の改善に有効な元素であるため、必要に応じて含有させてもよい 。この効果を得るためにはその含有量を 0.001%以上とするのが望ましいが、 0.01 % を越えて含有させてもその効果は飽和する。従って、 Bを含有させる場合には、その 含有量を 0.001— 0.01 %とするのが望ましい。  Since B is an element effective for improving hot workability, it may be contained as necessary. In order to obtain this effect, it is desirable that the content is 0.001% or more, but if the content exceeds 0.01%, the effect is saturated. Therefore, when B is contained, its content is preferably set to 0.001 to 0.01%.
[0041] W : 0— 4% [0041] W: 0— 4%
Wは、 Crや Moと同様に耐孔食性の向上に有効な元素であるため、必要に応じて含 有させてもよい。これらの効果は、その含有量が 0.1 %以上の場合に顕著となる。しか し、 4%を越えて含有させると金属間化合物が析出し耐孔食性がかえって低下する。 従って、 Wを含有させる場合には、その含有量を 0.1— 4%とするのが望ましい。  W is an element that is effective in improving pitting corrosion resistance, like Cr and Mo, and therefore may be included as necessary. These effects become remarkable when the content is 0.1% or more. However, if the content exceeds 4%, an intermetallic compound is precipitated and the pitting corrosion resistance is rather lowered. Therefore, when W is contained, its content is desirably 0.1-4%.
[0042] 2.耐孔食性指数 [0042] 2. Pitting resistance index
本発明の二相ステンレス鋼は、上記の化学組成を有し、且つ、下記に定義される耐 孔食性指数が 40以上のスーパー二相ステンレス鋼であるのが望ましい。但し、(1)式 中の各元素記号は、それぞれの元素の含有量 (質量%)を意味する。  The duplex stainless steel of the present invention is desirably a super duplex stainless steel having the above chemical composition and having a pitting resistance index of 40 or more as defined below. However, each element symbol in the formula (1) means the content (% by mass) of each element.
PREW = Cr+ 3.3 (Mo + 0.5W) + 16N (1)  PREW = Cr + 3.3 (Mo + 0.5W) + 16N (1)
[0043] 3.酸化物系介在物の条件 [0043] 3. Conditions for oxide-based inclusions
本発明者らは、酸化物系介在物が耐孔食性に及ぼす影響を以下の手法で調査し た。  The present inventors investigated the effect of oxide-based inclusions on pitting corrosion resistance by the following method.
[0044] 後述の表 3および 4に示す化学組成を有する溶鋼を種々の条件で加工し、肉厚 1.4 一 16 (mm)の二相ステンレス鋼管を作製した。これらの鋼管を扁平した後、管肉厚 X 10mm X 10mmの試験片を切り出した。この試験片の加工方向と垂直な断面(図 1に示 す「観察面」)方向に樹脂を坦込んだ後、この断面を鏡面研磨した。研磨表面を走査 電子顕微鏡 (SEM)を用いて観察し、酸化物系介在物の長径および化学組成を測量 した。  [0044] Molten steel having the chemical composition shown in Tables 3 and 4 described below was processed under various conditions to produce a duplex stainless steel pipe having a wall thickness of 1.4 to 16 (mm). After flattening these steel pipes, test pieces having a pipe wall thickness of X10 mm X 10 mm were cut out. After the resin was loaded in a cross section perpendicular to the processing direction of the test piece (the “observation surface” shown in FIG. 1), the cross section was mirror-polished. The polished surface was observed using a scanning electron microscope (SEM), and the major diameter and chemical composition of the oxide-based inclusions were measured.
[0045] 酸化物系介在物の長径とは、図 2に示すように、母材と介在物との界面上の異なる 二点を結んだ直線のうち、最も長くなる直線の長さ(alまたは a2)を意味する。また、 酸化物系介在物の組成は、介在物の中心部近傍(図 2に示す例では blまたは b2)、 即ち、介在物の断面形状の重心部近傍を EDX (エネルギー分散型 X線分析)を用い て、 o (酸素)以外の合金元素の含有量を求めた。 [0045] The major axis of the oxide-based inclusion is, as shown in Fig. 2, the length of the longest straight line (al or al) among two straight lines connecting two different points on the interface between the base material and the inclusion. means a2). The composition of the oxide-based inclusions is EDX (energy dispersive X-ray analysis) near the center of the inclusion (bl or b2 in the example shown in Fig. 2), ie, near the center of gravity of the cross-sectional shape of the inclusion. Using The content of alloying elements other than o (oxygen) was determined.
[0046] 酸化物系介在物を観察した後、 80°Cの 6%塩化第二鉄水溶液中に 6時間浸漬し、 酸化物系介在物周辺の腐食状況を観察した結果、一部の試験片に酸化物系介在 物を起点とした孔食が観察された。孔食を起こした酸化物系介在物は、 Al Oと(Ca、 After observing the oxide-based inclusions, they were immersed in a 6% ferric chloride aqueous solution at 80 ° C. for 6 hours, and the corrosion state around the oxide-based inclusions was observed. Pitting corrosion originating from oxide inclusions was observed. The oxide inclusions that have caused pitting are Al O and (Ca,
2 3 twenty three
Mg)〇からなる複合酸化物であり、(Ca、 Mg) 0の部分が優先的に溶出し、母材との 間に隙間を形成し、そこから孔食に進展していた。 (Ca, Mg) 0 was eluted preferentially, forming a gap with the base material, from which pitting progressed.
[0047] そこで、生成した酸化物系介在物のそれぞれを SEMで観察し、酸化物介在物と孔 食の有無との関係について調査した。  [0047] Therefore, each of the generated oxide-based inclusions was observed by SEM, and the relationship between the oxide inclusions and the presence or absence of pitting corrosion was investigated.
[0048] 図 3は、酸化物系介在物の長径と Caおよび Mgの合計含有量との関係を示す図で ある。なお、図 3中の「X」は孔食の起点となった酸化物系介在物、「〇」は孔食の起 点とならなかった酸化物系介在物を意味する。  FIG. 3 is a diagram showing the relationship between the major axis of the oxide-based inclusions and the total content of Ca and Mg. Note that “X” in FIG. 3 indicates an oxide-based inclusion that started pitting, and “〇” indicates an oxide-based inclusion that did not start pitting.
[0049] 図 3に示すように、 Caおよび Mgの含有量が合計で 20 40%であり、且つ長径が 7  [0049] As shown in Fig. 3, the total content of Ca and Mg was 20 40%, and the major axis was 7%.
/i m以上である酸化物が孔食の起点となった。しかし、 Caおよび Mgの含有量が合計 で 20%未満の酸化物は A1酸化物主体であり、溶出しに《孔食の起点とならな力 た 。また、 Caおよび Mgの含有量が合計で 40%を越えた酸化物は完全に溶出するが母 材との間の隙間の形成効果が小さぐ孔食へは進展しな力 た。更に、 Caおよび Mg の含有量が合計で 20— 40%である酸化物系介在物であっても、長径が 7 μ m未満の ものは、隙間が十分な大きさとならず、酸化物が溶出しても孔食へは進展しなかった  Oxides of not less than / im were the starting point of pitting corrosion. However, oxides having a total content of Ca and Mg of less than 20% were mainly composed of A1 oxides, and eluted as a starting point of pitting corrosion. Oxides with a total content of Ca and Mg exceeding 40% were completely eluted, but did not progress to pitting, where the effect of forming gaps with the base material was small. Furthermore, even for oxide-based inclusions with a total Ca and Mg content of 20-40%, if the major axis is less than 7 μm, the gaps will not be sufficiently large and oxide will elute. Did not progress to pitting
[0050] このため、 Caおよび Mgの含有量が合計で 20— 40%であり、且つ長径が 7 μ m以上 である酸化物系介在物に着目し、耐孔食温度を調査した。なお、臨界孔食温度は、 5°C毎に温度を変化させた 35°C— 80°Cの 6%塩ィヒ第二鉄水溶液に 24時間浸漬し、 孔食の発生しなかった最高温度を意味する。その結果、 Caおよび Mgの含有量が合 計で 20— 40%であり、且つ長径が 7 μ m以上である酸化物系介在物の個数が加工 方向に垂直な断面 lmm2あたりに 10個を超えると臨界孔食温度が著しく低下し、上記 の過酷な腐食環境での耐食性が不十分となることが判明した。 [0050] For this reason, the pitting corrosion temperature was investigated by focusing on oxide-based inclusions having a total content of Ca and Mg of 20 to 40% and a major axis of 7 µm or more. The critical pitting temperature is the maximum temperature at which pitting did not occur, after immersing for 24 hours in a 6% ferric salt aqueous solution of 35 ° C-80 ° C with the temperature changed every 5 ° C for 24 hours. Means As a result, the number of oxide-based inclusions with a total Ca and Mg content of 20-40% and a major axis of 7 μm or more was reduced to 10 per lmm 2 in a cross section perpendicular to the processing direction. If it exceeds, the critical pitting temperature is remarkably lowered, and it has been found that the corrosion resistance in the above severe corrosive environment becomes insufficient.
[0051] 従って、 Caおよび Mgの含有量が合計で 20 40%であり、且つ長径が 7 μ m以上で ある酸化物系介在物が加工方向に垂直な断面 lmm2あたり 10個以下であることを条 件とした。また、種々の酸化物系介在物について、 Caおよび Mgの場合と同様に、孔 食の発生傾向を整理した。 [0051] Therefore, the content of Ca and Mg is 2040% in total, and the number of oxide-based inclusions having a major axis of 7 µm or more is 10 or less per lmm 2 in a cross section perpendicular to the processing direction. The Cases. In addition, the tendency of pitting to occur for various oxide-based inclusions was arranged in the same way as for Ca and Mg.
[0052] 図 4は、酸化物系介在物の長径と Sの含有量との関係を示す図である。なお、図 4 FIG. 4 is a diagram showing the relationship between the major axis of the oxide-based inclusions and the S content. Figure 4
中の「X」および「〇」の意味は図 3と同様である。  The meanings of “X” and “〇” in FIG.
[0053] 図 4に示すように、 S含有量が 15%以上であり、且つ長径が 1 μ m以上である酸化物 系介在物は孔食起点となった。 Sを含有する酸化物系介在物は、微小で孔食試験後 に完全に溶出しているが、溶出後に発生する硫化水素が腐食を促進し、孔食に進展 した。一方、長径が 1 z m未満の酸化物系介在物、および S含有量が 15%未満の酸 化物系介在物は、孔食の起点とならなかった。 As shown in FIG. 4, oxide inclusions having an S content of 15% or more and a major axis of 1 μm or more became pitting initiation points. The oxide-based inclusions containing S are minute and completely eluted after the pitting test, but the hydrogen sulfide generated after the elution accelerated the corrosion and progressed to pitting. On the other hand, oxide inclusions having a major axis of less than 1 zm and oxide inclusions having an S content of less than 15% did not become pitting corrosion starting points.
[0054] このため、 Sの含有量が 15%以上であり、且つ長径が 1 μ m以上である酸化物系介 在物に着目して、上記と同様の臨界孔食温度を調査したところ、この介在物が加工 方向に垂直な断面 0.1mm2あたり 10個以下の場合に、耐孔食性が向上することが分 かった。 [0054] For this reason, the same critical pitting temperature was investigated by focusing on oxide-based inclusions having an S content of 15% or more and a major axis of 1 µm or more. It was found that the pitting corrosion resistance was improved when the number of the inclusions was 10 or less per 0.1 mm 2 in a cross section perpendicular to the processing direction.
[0055] 従って、 Sの含有量が 15%以上であり、且つ長径が 1 μ m以上である酸化物系介在 物が加工方向に垂直な断面 0.1mm2あたり 10個以下とするのが望ましい。 [0055] Therefore, is not less than 15% content of S, and major axis that 1 mu oxide inclusions is greater than or equal to m is more than 10 pieces per square cross section perpendicular 0.1mm in processing direction desired.
[0056] 4.本発明の二相ステンレス鋼の製造方法 4. Method for Producing Duplex Stainless Steel of the Present Invention
二相ステンレス鋼中の酸化物系介在物の組成を制御する製造方法を詳細に検討 した。その結果、特に、( c 還元処理、( )キリングおよび ( γ )铸造後の加工のそれぞ れの製造工程を最適化することで、今までに無レ、高清浄度二相ステンレス鋼が得ら れることは分かった。以下、それぞれの製造工程について説明する。  The production method for controlling the composition of oxide-based inclusions in duplex stainless steel was studied in detail. As a result, in particular, by optimizing the respective manufacturing processes of (c reduction treatment, () killing, and (γ) 铸 post-fabrication processing), it has been possible to obtain a zero-clean, high-cleanliness duplex stainless steel. The respective manufacturing steps will be described below.
[0057] ( a )還元処理 [0057] (a) Reduction treatment
還元処理は、下記の (2)式で表されるスラグ塩基度が 0.5— 3.0となる条件で行う。但 し、(2)式中の各化合物は、それぞれの化合物のスラグ中濃度(質量%)を意味する。  The reduction treatment is performed under the condition that the slag basicity represented by the following equation (2) is 0.5-3.0. However, each compound in the formula (2) means the concentration of each compound in slag (% by mass).
[スラグ塩基度] = (CaO + MgO)/(Al O + SiO ) (2)  [Slag basicity] = (CaO + MgO) / (Al O + SiO) (2)
2 3 2  2 3 2
[0058] 電気炉等で原料を溶解して得られるステンレス粗溶鋼には、 AODや VOD等の二次 精鍊炉で、酸素を溶鋼に吹き込んで脱炭した後、脱炭時に酸化されたクロムを回収 するため金属アルミ等の脱酸材と石灰石等の脱硫材を投入し、還元と称される処理 が行われる。この還元期において、これらと結合した酸素および硫黄は、 Al O 、 CaS 等としてスラグ中へと移行することで溶鋼から除去される。 [0058] In a crude stainless steel obtained by melting a raw material in an electric furnace or the like, oxygen is blown into the molten steel in a secondary refining furnace such as AOD or VOD to decarbonize the steel, and then chromium oxidized during the decarburization is removed. For recovery, a deoxidizing material such as metallic aluminum and a desulfurizing material such as limestone are charged, and a process called reduction is performed. During this reduction phase, the oxygen and sulfur associated with them are converted to Al 2 O 3, CaS It is removed from the molten steel by moving into the slag as such.
[0059] 本発明の特徴である低酸素および低硫黄を達成するためには、上記の (2)式で表さ れるスラグ塩基度を 0.5以上とする必要がある。特に、酸化物系介在物中の S含有量 を極力低減するには、スラグ塩基度を 1.0以上とするのが望ましい。一方、スラグ塩基 度が高すぎると、融点の上昇に伴い流動性が乏しくなることに加え、 Caおよび Mgの 合計含有量が 20 40%である酸化物系介在物が鋼中に残留し易くなり、鋼材の耐 孔食性が低下する。この観点からその上限値を 3.0とする必要がある。酸化物系介在 物中の Ca含有量および Mg含有量を十分に低減するには、スラグ塩基度は 2.5以下と するのが望ましい。  [0059] In order to achieve low oxygen and low sulfur which are features of the present invention, the slag basicity represented by the above formula (2) needs to be 0.5 or more. In particular, in order to minimize the S content in the oxide-based inclusions, it is desirable that the slag basicity be 1.0 or more. On the other hand, if the slag basicity is too high, the fluidity becomes poor as the melting point rises, and oxide inclusions with a total content of Ca and Mg of 2040% tend to remain in the steel. As a result, the pitting corrosion resistance of the steel decreases. From this viewpoint, the upper limit must be 3.0. In order to sufficiently reduce the Ca content and the Mg content in the oxide-based inclusions, the slag basicity is desirably 2.5 or less.
[0060] また、上記スラグ塩基度での還元処理は通常は 1回のみ行うが、酸素および硫黄を さらに低減するためには、この還元期を 2回以上繰り返すほうが望ましい。この時、 1 回目の還元処理で生じたスラグは、二次精鍊炉体を傾け、適当な治具で搔き出すこ とで、 2回目の還元を実施する前に炉外へ排出される。これは 1回目の還元期で生じ た硫黄を多量に含んだスラグを除去することで、 2回目の還元期での脱硫能を高める ために重要である。  [0060] Further, the above-mentioned reduction treatment with slag basicity is usually performed only once, but in order to further reduce oxygen and sulfur, it is desirable to repeat this reduction period two or more times. At this time, the slag generated in the first reduction treatment is discharged out of the furnace before performing the second reduction by tilting the secondary refining furnace body and extracting it with an appropriate jig. This is important for removing desulfurized slag generated in the first reduction phase, thereby increasing the desulfurization capacity in the second reduction phase.
[0061] ( )キリング  [0061] () Killing
還元処理後のキリングは、 1500°C以上の温度で 5分以上行う。  Killing after the reduction treatment is performed at a temperature of 1500 ° C or more for 5 minutes or more.
[0062] 上記の(α )に示す還元処理の後、所定の成分への微調整により二次精鍊を終了し た溶鋼は、取鍋に出鋼され铸造される。出鋼された溶鋼は铸込みまでの間、溶鋼上 に浮レ、てレ、るスラグと再度混ざり合わなレ、ように静置あるいは铸込み場所へ移動され る。この処理をキリングと称するが、キリングの間、溶鋼中に懸濁した酸化物の一部は 、その比重差により浮上し、スラグ中に吸収分離される。二相ステンレス鋼に所望の 酸化物系介在物の状態を与えるためには、粗大な酸化物を浮上分離させる必要が あり、このためには、キリング温度を 1500°C以上とし、かつキリング時間を 5分以上確 保する必要がある。また、これら酸化物の浮上除去をさらに促進するには、キリング温 度を 1550°C以上、キリング時間を 10分以上とするのが望ましい。  [0062] After the reduction treatment shown in the above (α), the molten steel that has been subjected to secondary refining by fine adjustment to a predetermined component is tapped into a ladle and manufactured. Until the molten steel is tapped, the molten steel is floated on the molten steel, moved to a place where it is mixed with the slag again, or moved to a place where it is filled. This treatment is called killing, and during the killing, a part of the oxide suspended in the molten steel floats due to the difference in specific gravity and is absorbed and separated in the slag. In order to give the desired state of oxide-based inclusions to the duplex stainless steel, it is necessary to separate large oxides by flotation. To this end, the killing temperature is set to 1500 ° C or higher, and the killing time is reduced. You need to wait at least 5 minutes. To further promote the floating removal of these oxides, it is desirable to set the killing temperature to 1550 ° C or more and the killing time to 10 minutes or more.
[0063] ( γ )錡造後の加工  [0063] (γ) Processing after fabrication
铸造後の加工は、下記の (3)式で表される総加工比 Rが 10以上となる条件で行う。但 し、(3)式中の AOは塑性変形工程での変形前の断面積、 Aは塑性変形工程での変 n 加工 Processing after fabrication is performed under the condition that the total working ratio R expressed by the following equation (3) is 10 or more. However AO in equation (3) is the cross-sectional area before deformation in the plastic deformation process, and A is the change in the plastic deformation process.
形後の断面積を意味し、それぞれの添字 ii(l、 2、 -ί)は、塑性変形工程の各スタン ド順を意味する。
Figure imgf000014_0001
(3)
The subscript ii (l, 2, -ί) means the order of each stand in the plastic deformation process.
Figure imgf000014_0001
(3)
[0064〕 鏺造された鑤片は、緞造ゃ熱間圧延と 1/ヽった熱間加工や、冷間圧延と!/ヽつた冷聞 加工を施された後、所定の製品寸法に成形される。この際、加工による材料の加工 方向への変形に伴い、酸化物系介 物は破砕され微細化する。二相ステンレス鋼に 所望の酸化物系介在物の状態を与えるため〖こは、鑤片力ら最終製品までの総加工 比 Rを 10以上とする必要がある。 [0064] The produced piece is made by hot rolling and 1 / 緞 hot rolling or cold rolling! After being processed, it is molded to the specified product dimensions. At this time, as the material is deformed in the processing direction by the processing, the oxide-based inclusion is crushed and miniaturized. In order to give the desired state of oxide inclusions to the duplex stainless steel, it is necessary to make the total processing ratio R from the single strength to the final product 10 or more.
[0065] なお、塑性変形工程には、切削工程その他の延伸を伴わな 、加工工程を含まな ヽ 。従って、塑性変形工程の間に、切削工程が含まれている場合でも、上記の (3)式の 計算は、この切削工程による断面獱の変化は考慮せずに行う。  [0065] Note that the plastic deformation step does not include a cutting step or any other processing step that does not involve elongation. Therefore, even when a cutting step is included between the plastic deformation steps, the calculation of the above equation (3) is performed without considering the change in the cross section に よ る due to the cutting step.
実施例 1  Example 1
[0066] 表 1に示す組成の二相ステンレス鋼 (耐孔食指数 PREWが 40以上のスーパー二相 ステンレス鋼)を 500kgの誘導溶解炉で溶解した後、 AOD炉に移し、二次 »を行つ た。この際、還元期のスラグ塩基度を 2.0とした。スラグおよび溶鋼は、それぞれ還元 期終了後にサンプリングした。また、取鍋に出鋼され 溶鋼を直ちにサ一モカップル で測温した後、鏺込み開始までの時間を測定した D [0066] Duplex stainless steel having the composition shown in Table 1 (super duplex stainless steel with a pitting resistance index PREW of 40 or more) was melted in a 500 kg induction melting furnace, then transferred to an AOD furnace, and subjected to secondary » I got it. At this time, the slag basicity in the reduction phase was set to 2.0. Slag and molten steel were sampled after the end of the reduction period, respectively. Further, after was allowed measured immediately mono- Mokappuru molten steel is tapped into a ladle, to measure the time until鏺inclusive initiation D
[0067〗 この時、錶込み開始のためにレードルクレーンで吊り上げるまでの間、取鍋は一定 位置で静置して振動を与えな Vヽようにしてキリングを実施した。この際のキリング条件 は表 2に示すとおりである。  [0067] At this time, the ladle was allowed to stand still at a certain position and the vibration was not applied to perform the killing until the ladle was lifted with a ladle crane to start the loading. The killing conditions at this time are as shown in Table 2.
[0068] [表 1]  [0068] [Table 1]
¾ΊΕされた用鉞. (規則 91) K 用 用 鉞 鉞. (Rule 91) K
表 1
Figure imgf000015_0001
table 1
Figure imgf000015_0001
*: PREW=Cr+3.3(Mo+0.5W)+16N *: PREW = Cr + 3.3 (Mo + 0.5W) + 16N
2] 2]
CMcm
"籙¾ © ί¾¾糊^i¾i5κκS一 Hι0n:ί.εεり. 。.  "籙 ¾ © ί¾¾Glue ^ i¾i5κκS-Hι0n : ί.εεε ...
Figure imgf000016_0001
Figure imgf000016_0001
[0070] 溶鋼は、下注法により平均寸法で一辺 160mmの鋼塊に、あるいは連続錡造法によ り外径 180mmの丸鎵片に铸造した。錡造した鋼片を、鍛造、熱間押出、冷間圧延に より、種々の加工度を加え、外径 16— 280mm、肉厚 1.4一 16mmの寸法の継目無鋼管 に形成した後、 1100°Cで 3分保持後水冷の固溶化熱処理を行った。 [0070] The molten steel was formed into a steel ingot having an average size of 160 mm on one side by a lower casting method or into a round piece having an outer diameter of 180 mm by a continuous forming method.鋼 The forged steel slab is subjected to forging, hot extrusion, and cold rolling to various degrees of processing to form a seamless steel pipe with an outer diameter of 16-280 mm and a wall thickness of 1.4--16 mm. After holding at C for 3 minutes, a water-cooled solution heat treatment was performed.
[0071] 上記の管材を切断扁平後、管肉厚 X 10mm X 10mmの寸法の試験片を各 2個切り出 した後、管断面方向に樹脂を埋込んだ後、この断面を鏡面研磨した。その後、長径 7 μ m以上の酸化物系介在物については 50倍の倍率で各 5視野、長径 1 μ m以上の 酸化物系介在物については 200倍の倍率で各 5視野、 SEM観察を行った。 After cutting and flattening the above-mentioned tube material, two test pieces each having dimensions of a tube thickness X 10 mm X 10 mm were cut out. After that, the resin was embedded in the tube cross-sectional direction, and the cross-section was mirror-polished. After that, SEM observation was performed on the oxide-based inclusions with a major axis of 7 μm or more at 5 times each with a magnification of 50 times, and on the oxide-based inclusions with a major diameter of 1 μm or more at 5 times each with 200 times magnification. Was.
[0072] 酸化物系介在物の長径は、図 2の定義に従って測定し、酸化物系介在物の中心部 近傍(図 2の blまたは b2)を EDX (エネルギー分散型 X線分析)により組成分析した。 分析時には〇(酸素)の測定値は精度上の信頼性が低レ、ことから、 O (酸素)を除いた Al、 Ca、 Mg、 S、 Mnの質量比を測定した。  [0072] The major axis of the oxide-based inclusion was measured according to the definition in Fig. 2, and the composition analysis of the vicinity of the center of the oxide-based inclusion (bl or b2 in Fig. 2) by EDX (energy dispersive X-ray analysis) was performed. did. At the time of analysis, the measured value of 〇 (oxygen) had low reliability in accuracy, so the mass ratio of Al, Ca, Mg, S, and Mn excluding O (oxygen) was measured.
[0073] また、管材を 10mm長さに輪切り切断後、切断端面を 600番エメリー紙で研磨し、孔 食試験に供した。 5°C毎に温度を変化させた 35°C— 80°Cの 6%塩ィ匕第二鉄水溶液に 24時間浸漬し、孔食の発生しなかった最高温度を測定した。 1つの試験管につき 5個 の試験片を用いて測定し、そのうち最も低い値を臨界孔食温度とし、耐孔食性の目 安とした。  [0073] Further, the tube was cut into 10 mm lengths, and the cut end face was polished with No. 600 emery paper and subjected to a pitting corrosion test. It was immersed for 24 hours in a 6% ferric chloride aqueous solution of 35 ° C. to 80 ° C., the temperature of which was changed every 5 ° C., and the maximum temperature at which no pitting occurred was measured. The measurement was performed using five test pieces per test tube, and the lowest value was defined as the critical pitting temperature, which was used as a measure of pitting resistance.
[0074] 表 2に示すように、同じ組成を有する鋼でもキリング条件により耐孔食性が異なる。  As shown in Table 2, even steel having the same composition has different pitting corrosion resistance depending on the killing conditions.
即ち、本発明例 1一 3では、キリングの開始温度が 1500°C以上で、 5分以上保持した ため、介在物のうち、 Caおよび Mgの合計含有量が 20— 40%であり、且つ長径が 7 μ m以上である酸化物系介在物が加工方向に垂直な断面 lmm2あたり 10個以下となつ て良好な耐孔食性が得られた。特に、本発明例 1および 2では、 Sの含有量が 15%以 上であり、且つ長径が 1 μ m以上である酸化物系介在物が加工方向に垂直な断面 0.1mm2あたり 10個以下の条件をも満たすので、臨界孔食温度 80°Cと、極めて良好な 耐孔食性を示した。 That is, in Example 13 of the present invention, since the starting temperature of the killing was 1500 ° C. or more and the temperature was maintained for 5 minutes or more, the total content of Ca and Mg among the inclusions was 20 to 40% and the major axis was long. Good pitting corrosion resistance was obtained when the number of oxide-based inclusions having a diameter of 7 μm or more was 10 or less per lmm 2 of the cross section perpendicular to the processing direction. In particular, in Examples 1 and 2 of the present invention, the content of S was 15% or more, and the oxide-based inclusions having a long diameter of 1 μm or more were 10 pieces or less per 0.1 mm 2 in a cross section perpendicular to the processing direction. As a result, the critical pitting temperature was 80 ° C, showing extremely good pitting resistance.
[0075] 一方、キリング温度および保持時間の一方又は双方が本発明で規定される範囲を 外れる比較例 1一 3では、粗大な酸化物系介在物の個数が増大して、耐孔食性が劣 化した。  On the other hand, in Comparative Examples 13 and 13 in which one or both of the killing temperature and the holding time were out of the ranges specified in the present invention, the number of coarse oxide-based inclusions was increased and the pitting corrosion resistance was poor. It has become.
実施例 2  Example 2
[0076] 表 3および 4に示す組成の二相ステンレス鋼を 500kgの誘導溶解炉で溶解した後、 AOD炉に移し、二次精鍊を行った。この際、還元期のスラグ塩基度を種々変化させ た。スラグおよび溶鋼は、それぞれ還元期終了後および還元後の成分微調整直後 にサンプリングし、それぞれ化学分析によりその組成分析を行った。また、取鍋に出 鋼された溶鋼を直ちにサーモカップノレで測温した後、铸込み開始までの時間を測定 した。 [0076] Duplex stainless steels having the compositions shown in Tables 3 and 4 were melted in a 500 kg induction melting furnace, transferred to an AOD furnace, and subjected to secondary refining. At this time, the slag basicity in the reduction phase was varied. Slag and molten steel were sampled after the completion of the reduction phase and immediately after the fine adjustment of the components, respectively, and their composition was analyzed by chemical analysis. Also, go out to the ladle Immediately after the temperature of the steel melted was measured with a thermo cup, the time until the start of filling was measured.
[表 3] [Table 3]
表 3 Table 3
鋼 化学湖成 (質量ニ%、残部: Feおよび不純物) Steel Chemical lake formation (% by mass, balance: Fe and impurities)
No. C Si Mn P S Ni Cr Mo Al N 0 Ca MQ Cu B W ③ No. C Si Mn P S Ni Cr Mo Al N 0 Ca MQ Cu B W ③
1 0.020 0.35 0.72 0.021 0.0004 4.54 22.50 3.18 0.007 0.145 0.0031 0.0022 0.0011 - - - 35.311 0.020 0.35 0.72 0.021 0.0004 4.54 22.50 3.18 0.007 0.145 0.0031 0.0022 0.0011---35.31
2 0.022 0.33 1.41 0.028 0.0002 4.89 23.12 3.22 0.012 0.158 0.0029 0.0005 0.0021 0.21 - - 36.272 0.022 0.33 1.41 0.028 0.0002 4.89 23.12 3.22 0.012 0.158 0.0029 0.0005 0.0021 0.21--36.27
3 0.017 0.19 0.51 0.024 0.0004 4.58 22.89 3.17 0.009 0.175 0.0030 0.0011 0.0018 一 0.0027 - 36.153 0.017 0.19 0.51 0.024 0.0004 4.58 22.89 3.17 0.009 0.175 0.0030 0.0011 0.0018 one 0.0027-36.15
4 0.018 0.39 0.56 0.005 0.0003 4.73 22.94 3.10 0.016 0.182 0.0028 0.0020 0.0004 0.52 0.0020 - 36.084 0.018 0.39 0.56 0.005 0.0003 4.73 22.94 3.10 0.016 0.182 0.0028 0.0020 0.0004 0.52 0.0020-36.08
5 0.021 0.09 0.22 0.033 0.0006 4.31 22.85 2.86 0.023 0.151 0.0036 0.0019 0.0009 - - ― 34.705 0.021 0.09 0.22 0.033 0.0006 4.31 22.85 2.86 0.023 0.151 0.0036 0.0019 0.0009---34.70
6 0.019 0.33 0.43 0.018 0.0006 4.61 22.64 3.08 0.026 0.120 0.0042 0.0018 0.0002 0.48 - - 34.726 0.019 0.33 0.43 0.018 0.0006 4.61 22.64 3.08 0.026 0.120 0.0042 0.0018 0.0002 0.48--34.72
7 0.020 0.34 0.51 0.021 0.0007 4.69 22.81 3.12 0.039 0.138 0.0032 0.0005 0.0008 - 0.0019 - 35.317 0.020 0.34 0.51 0.021 0.0007 4.69 22.81 3.12 0.039 0.138 0.0032 0.0005 0.0008-0.0019-35.31
8 0.018 0.41 0.55 0.039 0.0009 4.52 23.01 3.11 0.046 0.164 0.0031 0.0048 0.0004 0.51 0.0025 - 35.908 0.018 0.41 0.55 0.039 0.0009 4.52 23.01 3.11 0.046 0.164 0.0031 0.0048 0.0004 0.51 0.0025-35.90
9 0.019 0.03 0.51 0.019 0.0003 6.66 27.11 3.14 0.022 0.381 0.0030 0.0019 0.0019 0.24 0.0019 - 43.579 0.019 0.03 0.51 0.019 0.0003 6.66 27.11 3.14 0.022 0.381 0.0030 0.0019 0.0019 0.24 0.0019-43.57
10 0.022 0.31 0.53 0.021 0.0003 4.56 22.71 3.11 0.015 0.165 0.0031 0.0021 0.0017 0.20 0,0021 0.40 36.2710 0.022 0.31 0.53 0.021 0.0003 4.56 22.71 3.11 0.015 0.165 0.0031 0.0021 0.0017 0.20 0,0021 0.40 36.27
11 0.008 0.31 0.21 0.023 0.0002 6.71 25.31 3.08 0.018 0.311 0.0051 0.0022 0.0001 - - 2.00 43.7511 0.008 0.31 0.21 0.023 0.0002 6.71 25.31 3.08 0.018 0.311 0.0051 0.0022 0.0001--2.00 43.75
12 0.025 0.27 0.53 0.021 0.0003 6.60 25.50 3.18 0.007 0.291 0.0049 0.0021 0.0013 0.49 - 2.02 43.9812 0.025 0.27 0.53 0.021 0.0003 6.60 25.50 3.18 0.007 0.291 0.0049 0.0021 0.0013 0.49-2.02 43.98
13 0.022 0.31 0.44 0.018 0.0003 6.67 25.81 2.86 0.014 0.281 0.0029 0.0019 0.0018 - 0.0018 2.23 43.4213 0.022 0.31 0.44 0.018 0.0003 6.67 25.81 2.86 0.014 0.281 0.0029 0.0019 0.0018-0.0018 2.23 43.42
14 0.018 0.43 0.21 0.014 0.0004 6.51 26.10 3.12 0.034 0.301 0.0028 0.0005 0.0011 0.82 0.0022 2.18 44.8114 0.018 0.43 0.21 0.014 0.0004 6.51 26.10 3.12 0.034 0.301 0.0028 0.0005 0.0011 0.82 0.0022 2.18 44.81
15 0.017 0.49 0.64 0.047 0.0009 6.97 25.51 3.12 0.038 0.321 0.0036 0.0022 0.0022 - 一 2.51 45.0815 0.017 0.49 0.64 0.047 0.0009 6.97 25.51 3.12 0.038 0.321 0.0036 0.0022 0.0022-1 2.51 45.08
16 0.022 0.44 0.23 0.022 0.0008 6.78 25.11 3.09 0.022 0.313 0.0041 0.0023 0.0026 0.22 - 2.5316 0.022 0.44 0.23 0.022 0.0008 6.78 25.11 3.09 0.022 0.313 0.0041 0.0023 0.0026 0.22-2.53
17 0.020 0.23 0.31 0.019 0.0007 6.85 25.36 3.46 0.009 0.324 0.0029 0.0019 0.0021 - 0.0017 2.31 45.7717 0.020 0.23 0.31 0.019 0.0007 6.85 25.36 3.46 0.009 0.324 0.0029 0.0019 0.0021-0.0017 2.31 45.77
18 0.009 0.29 0.34 0,009 0.0008 6.69 25.12 3.07 0.022 0.298 0.0030 0.0031 0.0023 0.51 0.0015 2.18 43.6218 0.009 0.29 0.34 0,009 0.0008 6.69 25.12 3.07 0.022 0.298 0.0030 0.0031 0.0023 0.51 0.0015 2.18 43.62
19 0.017 0.45 1.01 0.017 0.0003 10.71 30.51 3.01 0.017 0.321 0.0030 0.0022 0.0004 - - 2.21 49.2319 0.017 0.45 1.01 0.017 0.0003 10.71 30.51 3.01 0.017 0.321 0.0030 0.0022 0.0004--2.21 49.23
20 0.021 0.31 0.99 0.021 0.0004 11.98 31.94 3.13 0.022 0.318 0.0045 0.0021 0.0005 一 - 2.31 51.1720 0.021 0.31 0.99 0.021 0.0004 11.98 31.94 3.13 0.022 0.318 0.0045 0.0021 0.0005 One-2.31 51.17
21 0.011 0.28 0.41 0.022 0.0003 4.61 22.81 3.06 0.019 0.151 0.0045 0.0043 0.0019 一 ― - 35.3221 0.011 0.28 0.41 0.022 0.0003 4.61 22.81 3.06 0.019 0.151 0.0045 0.0043 0.0019 One--35.32
22 0.008 0.37 0.75 0.012 0.0004 4.63 23.01 2.51 0.018 0.132 0.0039 0.0045 0.0017 0.53 - 33.4122 0.008 0.37 0.75 0.012 0.0004 4.63 23.01 2.51 0.018 0.132 0.0039 0.0045 0.0017 0.53-33.41
23 0.022 0.43 1.09 0.011 0.0003 4.45 23.11 3.21 0.023 0.148 0.0032 0.0027 0.0045 一 0.0020 一 36.0723 0.022 0.43 1.09 0.011 0.0003 4.45 23.11 3.21 0.023 0.148 0.0032 0.0027 0.0045 one 0.0020 one 36.07
24 0.013 0.91 0.29 0.022 0.0004 4.84 22.51 3.09 0.031 0.144 0.0041 0.0031 0.0048 0,51 0.0021 ― 35.0124 0.013 0.91 0.29 0.022 0.0004 4.84 22.51 3.09 0.031 0.144 0.0041 0.0031 0.0048 0,51 0.0021 ― 35.01
25 0.023 0.37 0.44 0.002 0.0002 6.69 23.50 2.96 0.019 0.344 0.0088 0.0022 0.0013 - 一 一 387725 0.023 0.37 0.44 0.002 0.0002 6.69 23.50 2.96 0.019 0.344 0.0088 0.0022 0.0013-11 3877
③: PREW(=Gr+3.3 (Mo+0.5W) +16N)の計算値を意味する, ③: PREW (= Gr + 3.3 (Mo + 0.5W) + 16N)
[0078] [表 4] [0078] [Table 4]
©i¾awl )¾ (l 2十+ώ ζαίs9 +MS0,=.... © i¾awl) ¾ (l 20 + ώ ζαίs9 + MS0, = ....
Figure imgf000020_0001
Figure imgf000020_0001
[0079] この時、铸込み開始のためにレードルクレーンで吊り上げるまでの間、取鍋は一定 位置で青き置して振動を与えないようにした。溶鋼は下注法により平均寸法で一辺 160mmの '鋼塊に、あるいは連続铸造法により外径 180mmの丸鎵片に铸造した。铸造 した鋼片を、鍛造、熱間押出、冷間圧延により、種々の加工度を加え、外径 16 280mm,肉厚 1.4一 16mmの寸法の継目無鋼管に形成した後、 1100°Cで 3分保持後 水冷の固溶化熱処理を行った。還元期のスラグ塩基度、キリング条件および総加工 比を表 5および 6に示す。 [0079] At this time, the ladle was placed blue at a fixed position so as not to vibrate until the ladle was lifted by a ladle crane to start loading. The molten steel was formed into a steel ingot with an average size of 160 mm on one side by the sub-casting method or a round piece with an outer diameter of 180 mm by the continuous manufacturing method. The forged, hot extruded, and cold-rolled steel slabs are added to various degrees of work to obtain an outer diameter of 16 After being formed into a seamless steel pipe having a size of 280 mm and a wall thickness of 1.4 to 16 mm, the solution was kept at 1100 ° C. for 3 minutes, and then subjected to a water-cooled solution heat treatment. Tables 5 and 6 show the slag basicity during the reduction phase, the killing conditions and the total processing ratio.
[0080] 上記の管材を切断扁平後、管肉厚 X 10mm X 10mmの寸法の試験片を各 2個切り出 した後、管断面方向に樹脂を埋込んだ後、この断面を鏡面研磨した。その後、長径 7 μ m以上の酸化物系介在物については 50倍の倍率で各 5視野、長径 1 μ m以上の 酸化物系介在物については 200倍の倍率で各 5視野、 SEM観察を行った。酸化物 系介在物の長径は、図 2の定義に従って測定し、酸化物系介在物の中心部近傍(図 2の blまたは b2)を EDX (エネルギー分散型 X線分析)により組成分析した。分析時 には〇(酸素)の測定値は精度上の信頼性が低いことから、 0 (酸素)を除いた Al、 Ca 、 Mg S、 Mnの質量比を測定した。その結果を表 5および 6に併記する。  [0080] After cutting and flattening the above-mentioned tube material, two test pieces each having a tube thickness of X10mm X 10mm were cut out, resin was embedded in the tube cross-sectional direction, and the cross-section was mirror-polished. After that, SEM observation was performed on the oxide inclusions with a major axis of 7 μm or more at 5 times each with a magnification of 50 times, and on the oxide inclusions with a major diameter of 1 μm or more at 5 times each with a magnification of 200 times. Was. The major axis of the oxide-based inclusion was measured according to the definition in Fig. 2, and the vicinity of the center of the oxide-based inclusion (bl or b2 in Fig. 2) was analyzed by EDX (energy dispersive X-ray analysis). At the time of analysis, the measured value of 〇 (oxygen) was unreliable in accuracy, so the mass ratio of Al, Ca, MgS, and Mn excluding 0 (oxygen) was measured. The results are shown in Tables 5 and 6.
[0081] また、管材を 10mm長さに輪切り切断後、切断端面を 600番エメリー紙で研磨し、孔 食試験に供した。 5°C毎に温度を変化させた 35°C— 80°Cの 6%塩ィヒ第二鉄水溶液に 24時間浸漬し、孔食の発生しなかった最高温度を測定した。 1つの試験管につき 5個 の試験片を用いて測定し、そのうち最も低い値を臨界孔食温度とし、耐孔食性の目 安とした。  Further, the tube was cut into 10 mm lengths, and the cut end faces were polished with No. 600 emery paper and subjected to a pitting corrosion test. The specimens were immersed in a 6% ferric salt aqueous solution of 35 ° C-80 ° C for 24 hours with the temperature changed every 5 ° C for 24 hours, and the maximum temperature at which no pitting occurred was measured. The measurement was performed using five test pieces per test tube, and the lowest value was defined as the critical pitting temperature, which was used as a measure of pitting resistance.
[0082] なお、耐孔食性の目標値は、耐孔食指数 PRE (または PREW)が 40未満の通常の二 相ステンレス鋼(表 3および 4に記載の鋼 No.1— 8、 10、 21— 27、 42、 43および 46)で は臨界孔食温度 35°C、耐孔食指数 PRE (または PREW)が 40以上のスーパー二相ス テンレス鋼(表 3および 4に記載の鋼 No.9、 11一 20、 28— 41、 44、 45、 47および 48)で は臨界孔食温度 70°Cとした。その結果を表 5および 6に併記する。  [0082] The target value of pitting corrosion resistance is a normal duplex stainless steel having a pitting resistance index PRE (or PREW) of less than 40 (steel Nos. 1-8, 10, and 21 shown in Tables 3 and 4). — For 27, 42, 43 and 46), a super duplex stainless steel with a critical pitting temperature of 35 ° C and a pitting resistance index PRE (or PREW) of 40 or more (Steel No. 9 in Tables 3 and 4) , 11-12, 28-41, 44, 45, 47 and 48), the critical pitting temperature was 70 ° C. The results are shown in Tables 5 and 6.
[0083] [表 5] 表 5 [Table 5] Table 5
S0084 S0084
Figure imgf000022_0001
Figure imgf000022_0001
① : Gaおよび Mgの合計含有量が 20~40%であリ、且つ長径が 7 U m以上である酸化物系介在物の 加工方向に垂直な断面 1 mm2あたリの個数を意味する。 ①: the total content of Ga and Mg is meant a 20-40% der Li, and the cross section perpendicular 1 mm 2 number per the working direction of the oxide inclusions is major axis 7 U m or more .
②: Sの含有曼が 15%以上であり、且つ長径が 1 m以上である酸化物系介在物の  ②: Oxide-based inclusions whose S content is 15% or more and whose major axis is 1 m or more
加工方向に垂直な断面 0.1 mm2あたりの 数を意味する。 Means the number per 0.1 mm 2 of the cross section perpendicular to the processing direction.
*:①の個数が本発明で規定される範囲を外れることを s味する。  *: It means that the number of ① is out of the range specified in the present invention.
**:②の但数が本発明で規定される範囲を外れることを意味する„ **: Meaning that the number of ② is out of the range defined in the present invention.
Figure imgf000023_0001
Figure imgf000023_0001
[0085] 本発明例 4 23は、化学組成、および、 Caならびに Mgの合計含有量が 20— 40%で あり、且つ長径が 7 μ m以上である酸化物系介在物の個数が本発明で規定される範 囲にあった。このため、通常のステンレス鋼でもスーパーステンレス鋼でも上記の目 標値以上の優れた耐孔食性が得られた。特に、 Sの含有量が 15%以上であり、且つ 長径が 1 m以上である酸化物系介在物が加工方向に垂直な断面 0.1mm2あたり 10 個以下であった本発明例 4 7 12 13 15 18 22および 23では、通常のステンレス 鋼でもスーパーステンレス鋼でも更に優れた耐孔食性が得られた。 [0085] In the present invention example 423, the chemical composition and the total number of oxide-based inclusions having a total content of Ca and Mg of 20 to 40% and a major axis of 7 µm or more are defined by the present invention. It was within the specified range. For this reason, excellent pitting corrosion resistance exceeding the above-mentioned target values was obtained for both ordinary stainless steel and super stainless steel. In particular, the present invention example 4 7 12 13 in which the content of S was 15% or more and the number of oxide-based inclusions having a major axis of 1 m or more per 10 mm 2 in a cross section perpendicular to the processing direction was 10 or less. In 15 18 22 and 23, even better pitting corrosion resistance was obtained with ordinary stainless steel and super stainless steel.
[0086] 一方、化学組成が本発明で規定される範囲を外れる比較例 20 31は、二相ステン レス鋼として十分な耐食性能を確保できなかった。また、本発明で規定される化学組 成の範囲内の鋼である力 製造条件が適当でない比較例 4一 19は、孔食に有害な酸 化物系介在物が多く残留したため、耐孔食性が良くなかった。 [0086] On the other hand, Comparative Example 2031 in which the chemical composition was out of the range specified in the present invention could not secure sufficient corrosion resistance as a two-phase stainless steel. Further, the chemical group defined in the present invention In Comparative Example 419, in which the production conditions are not suitable, the pitting corrosion resistance was poor because a large amount of oxide inclusions harmful to pitting remained.
産業上の利用可能性  Industrial applicability
[0087] 本発明によれば、良好な耐孔食性を有する二相ステンレス鋼が安定して得られる。 [0087] According to the present invention, a duplex stainless steel having good pitting corrosion resistance can be stably obtained.
このため、例えば、熱交換用配管、化学プラント用の配管もしくは構造物、ラインパイ プ、油井用もしくはガス井用のケーシングもしくはチュービング、または、アンビリカル チューブ (海底油井の制御用配管)等の鋼管もしくは鋼板等に最適な二相ステンレス 鋼を提供することができる。  For this purpose, for example, pipes or structures for heat exchange, pipes or structures for chemical plants, line pipes, casings or tubing for oil wells or gas wells, or steel pipes or steel plates such as umbilical tubes (pipes for controlling submarine oil wells) Thus, it is possible to provide the most suitable duplex stainless steel.
図面の簡単な説明  Brief Description of Drawings
[0088] [図 1]酸化物系介在物の観察面を示す図である。  FIG. 1 is a view showing an observation surface of an oxide-based inclusion.
[図 2]酸化物系介在物の長径および組成の測定箇所を定義する図である。  FIG. 2 is a diagram that defines the measurement points of the major axis and the composition of oxide-based inclusions.
[図 3]酸化物系介在物の長径と Caおよび Mgの合計含有量との関係を示す図である。  FIG. 3 is a graph showing the relationship between the major axis of oxide-based inclusions and the total content of Ca and Mg.
[図 4]酸化物系介在物の長径と Sの含有量との関係を示す図である。  FIG. 4 is a graph showing the relationship between the major axis of oxide-based inclusions and the S content.
符号の説明  Explanation of symbols
[0089] 1 ·鋼板 (または鋼管) [0089] 1 · Steel plate (or steel pipe)

Claims

請求の範囲 The scope of the claims
質量%で、 C:0.03%以下、 Si:0.01— 2%、 Mn:0.1 2%、 P:0.05%以下、 S:0.001 %以下、 Al:0.003 0.05%、 Ni:4 12%、 Cr:18— 32%、 Mo :0.2— 5%, N (窒素): 0.05— 0.4%、〇(酸素) :0.01%以下、 Ca: 0.0005— 0.005%、 Mg: 0.0001 0.005%、 Cu:0—2%、 B:0— 0.01%および W:0— 4%を含有し、残部が Feおよび不純物から なる二相ステンレス鋼であって、その中に含まれる介在物のうち、 Caおよび Mgの合計 含有量が 20— 40質量%であり、且つ長径が 7 μ m以上である酸化物系介在物が加 ェ方向に垂直な断面 lmm2あたり 10個以下であることを特徴とする二相ステンレス鋼。 質量%で、 C:0.03%以下、 Si:0.01— 2%、 Μη:0·1— 2%、 Ρ:0.05%以下、 S:0.001 %以下、 Α1:0·003— 0·05%、 Ni:4— 12%、 Cr:18— 32%、 Mo :0.2— 5%, N (窒素): 0.05— 0.4%、〇(酸素) :0.01%以下、 Ca: 0.0005— 0.005%、 Mg: 0.0001— 0.005%、 Cu:0—2%、 B:0— 0.01%および W:0— 4%を含有し、残部が Feおよび不純物から なる二相ステンレス鋼であって、その中に含まれる介在物のうち、 Caおよび Mgの合計 含有量が 20— 40質量%であり、且つ長径が 7 μ m以上である酸化物系介在物が加 ェ方向に垂直な断面 lmm2あたり 10個以下であるとともに、 Sの含有量が 15質量%以 上であり、且つ長径が l xm以上である酸化物系介在物が加工方向に垂直な断面 0. lmm2あたり 10個以下であることを特徴とする二相ステンレス鋼。 By mass%, C: 0.03% or less, Si: 0.01-2%, Mn: 0.1 2%, P: 0.05% or less, S: 0.001% or less, Al: 0.003 0.05%, Ni: 4 12%, Cr: 18 — 32%, Mo: 0.2—5%, N (nitrogen): 0.05—0.4%, 〇 (oxygen): 0.01% or less, Ca: 0.0005—0.005%, Mg: 0.0001 0.005%, Cu: 0—2%, This is a duplex stainless steel containing B: 0-0.01% and W: 0-4%, with the balance being Fe and impurities, and the total content of Ca and Mg in the inclusions contained therein A duplex stainless steel comprising 20 to 40% by mass and having 10 or less oxide-based inclusions having a major axis of 7 µm or more per lmm 2 in a cross section perpendicular to the application direction. In mass%, C: 0.03% or less, Si: 0.01-2%, Μη: 0.1-2%, Ρ: 0.05% or less, S: 0.001% or less, Α1: 0-003—0.05%, Ni : 4—12%, Cr: 18—32%, Mo: 0.2—5%, N (nitrogen): 0.05—0.4%, 〇 (oxygen): 0.01% or less, Ca: 0.0005—0.005%, Mg: 0.0001— Duplex stainless steel containing 0.005%, Cu: 0-2%, B: 0-0.01%, and W: 0-4%, with the balance being Fe and impurities. Of which, the total content of Ca and Mg is 20-40% by mass, and the number of oxide-based inclusions having a major axis of 7 μm or more is 10 or less per lmm 2 in a section perpendicular to the application direction. S is a content of 15 mass% or more of, and biphasic major axis and wherein the oxide inclusions is l xm above is 10 or less the cross section perpendicular 0. lmm 2 per the working direction Stainless steel.
質量%で 0. 0.1% by mass
2 2%の Cuを含むことを特徴とする請求項 1または 2に記載の二相ステ ンレス岡。 3. The two-phase stainless steel oka according to claim 1, comprising 22% Cu.
質量%で 0.001 0.01%の Bを含むことを特徴とする請求項 1から 3までのいずれか に記載の二相ステンレス鋼。  The duplex stainless steel according to any one of claims 1 to 3, comprising 0.001 0.01% B by mass%.
質量%で 0.1 4%の Wを含むことを特徴とする請求項 1から 4までのいずれかに記 載の二相ステンレス鋼。  The duplex stainless steel according to any one of claims 1 to 4, comprising 0.14% W in mass%.
下記の (1)式で表される耐孔食性指数 PREWが 40以上であることを特徴とする請求 項 1から 5までのいずれかに記載の二相ステンレス鋼。  The duplex stainless steel according to any one of claims 1 to 5, wherein the pitting resistance index PREW represented by the following formula (1) is 40 or more.
PREW = Cr+3.3(Mo + 0.5W) +16N (1)  PREW = Cr + 3.3 (Mo + 0.5W) + 16N (1)
但し、(1)式中の各元素記号は、それぞれの元素の含有量 (質量%)を意味する。 下記の (2)式で表されるスラグ塩基度が 0.5— 3.0となる条件で還元し、出鋼した溶鋼 に、 1500。C以上の温度で 5分以上のキリングを実施した後に錶造し、得られた鑰片を 下記の (3)式で表される総加工比 Rが 10以上となる条件で加工することを特徴とする 請求項 1から 6までのいずれかに記載の二相ステンレス鋼の製造方法。 However, each element symbol in the formula (1) means the content (% by mass) of each element. The molten steel that has been reduced under the condition that the slag basicity expressed by the following formula (2) is 0.5-3.0 To 1500. It is manufactured after performing the killing for 5 minutes or more at the temperature of C or more, and processing the obtained stalk under the condition that the total processing ratio R expressed by the following formula (3) is 10 or more. The method for producing a duplex stainless steel according to any one of claims 1 to 6.
[スラグ塩基度] = (CaO+ gO)/(Al 0 +SiO ) (2)  [Slag basicity] = (CaO + gO) / (Al 0 + SiO) (2)
° 3 2  ° 3 2
(3) (3)
Figure imgf000026_0001
Figure imgf000026_0001
但し、(2)式中の各化合物は、そ れの化合物のスラグ中濃度 (質量%)を意味す る。また、(3)式中の AOは塑性変形工程での変形前の断面積、 Aは塑性変形工程で  However, each compound in the formula (2) means the concentration of the compound in slag (% by mass). In equation (3), AO is the cross-sectional area before deformation in the plastic deformation process, and A is
n n  n n
の変形後の断面積を意味し、それぞれの添字 n(l、 2、 '··ί)は、塑性変形工程の各ス タンド順を意味する 0 The subscript n (l, 2, '') means the order of each stand in the plastic deformation process.
訂 JEされた用紙 (規則 91》  Revised JE Form (Rule 91)
PCT/JP2004/011070 2003-08-07 2004-08-03 Duplex stainless steel and method for production thereof WO2005014872A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CNB2004800009689A CN100427627C (en) 2003-08-07 2004-08-03 Duplex stainless steel and manufacturing method thereof
AU2004262702A AU2004262702B2 (en) 2003-08-07 2004-08-03 Duplex stainless steel and method for production thereof
BRPI0406423-2A BRPI0406423B1 (en) 2003-08-07 2004-08-03 duplex stainless steel and its production method.
JP2005512929A JP4155300B2 (en) 2003-08-07 2004-08-03 Duplex stainless steel and manufacturing method thereof
KR1020057004913A KR100661328B1 (en) 2003-08-07 2004-08-03 Two phase stainless steel and method of producing the same
EP04748203A EP1561834B1 (en) 2003-08-07 2004-08-03 Duplex stainless steel and method for production thereof
NO20052266A NO336117B1 (en) 2003-08-07 2005-05-10 Duplex stainless steel and its manufacturing method
US11/135,448 US7396421B2 (en) 2003-08-07 2005-05-24 Duplex stainless steel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-289418 2003-08-07
JP2003289418 2003-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/135,448 Continuation US7396421B2 (en) 2003-08-07 2005-05-24 Duplex stainless steel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2005014872A1 true WO2005014872A1 (en) 2005-02-17

Family

ID=34131558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011070 WO2005014872A1 (en) 2003-08-07 2004-08-03 Duplex stainless steel and method for production thereof

Country Status (8)

Country Link
EP (1) EP1561834B1 (en)
JP (1) JP4155300B2 (en)
KR (1) KR100661328B1 (en)
CN (1) CN100427627C (en)
AU (1) AU2004262702B2 (en)
BR (1) BRPI0406423B1 (en)
NO (1) NO336117B1 (en)
WO (1) WO2005014872A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662885B2 (en) 2002-08-12 2010-02-16 Exxonmobil Chemical Patents Inc. Method to make an article comprising polymer concentrate
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
WO2012121232A1 (en) * 2011-03-10 2012-09-13 住友金属工業株式会社 Duplex stainless steel sheet
WO2014112445A1 (en) 2013-01-15 2014-07-24 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel pipe
JP2015078429A (en) * 2013-09-11 2015-04-23 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2015110828A (en) * 2013-11-05 2015-06-18 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2016003377A (en) * 2014-06-18 2016-01-12 新日鐵住金株式会社 Two-phase stainless steel tube
JP2017509790A (en) * 2014-02-03 2017-04-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Duplex stainless steel
KR20190092493A (en) * 2016-12-07 2019-08-07 회가내스 아베 (피유비엘) Stainless Steel Powder for Manufacturing Duplex Sintered Stainless Steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031461A (en) * 2010-10-22 2011-04-27 重庆仪表材料研究所 Heat-resisting alloy with high yield ratio, high toughness and long-run elasticity stability
EP3835447B1 (en) * 2011-01-27 2023-05-03 NIPPON STEEL Stainless Steel Corporation Clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
FI126574B (en) 2011-09-07 2017-02-28 Outokumpu Oy Duplex stainless steel
FI126577B (en) 2014-06-17 2017-02-28 Outokumpu Oy DOUBLE STAINLESS STEEL
KR101668534B1 (en) * 2014-12-26 2016-10-24 주식회사 포스코 Super duplex stainless steel and manufacturing method thereof
CN111349847B (en) * 2018-12-24 2022-03-18 宝山钢铁股份有限公司 Seawater corrosion resistant steel and manufacturing method thereof
EP4112753A1 (en) * 2020-02-27 2023-01-04 Nippon Steel Stainless Steel Corporation Stainless steel, stainless steel material, and stainless steel production method
KR20220126754A (en) * 2020-02-27 2022-09-16 닛테츠 스테인레스 가부시키가이샤 Stainless steel with excellent mirror polishing properties and manufacturing method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132741A (en) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd High strength duplex stainless steel excellent in corrosion resistance
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
JPH08170153A (en) * 1994-12-19 1996-07-02 Sumitomo Metal Ind Ltd Highly corrosion resistant two phase stainless steel
JPH1060526A (en) * 1996-08-19 1998-03-03 Nkk Corp Production of seawater resistant precipitation strengthening type duplex stainless steel
JPH1060598A (en) * 1996-08-19 1998-03-03 Nkk Corp Seawater resistant precipitation strengthening type duplex stainless steel
JP3127822B2 (en) * 1996-04-10 2001-01-29 住友金属工業株式会社 Manufacturing method of seamless stainless steel pipe made of duplex stainless steel
JP2001220652A (en) * 2000-02-03 2001-08-14 Sumitomo Metal Ind Ltd Duplex stainless steel and method of manufacturing tube of the steel
JP2002241838A (en) * 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd Method for producing duplex stainless steel pipe
JP2003147489A (en) * 2001-11-08 2003-05-21 Nippon Steel Corp Duplex stainless steel sheet and manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197205A (en) * 1993-12-29 1995-08-01 Nkk Corp Austenitic stainless steel sheet and its production
EP0683241B1 (en) * 1994-05-21 2000-08-16 Yong Soo Park Duplex stainless steel with high corrosion resistance
JP3624732B2 (en) * 1998-01-30 2005-03-02 住友金属工業株式会社 Ferritic stainless steel and ferritic stainless steel casts with excellent formability
JP3964537B2 (en) * 1998-04-08 2007-08-22 大平洋金属株式会社 Austenitic stainless steel with excellent hot workability
JP3446667B2 (en) * 1999-07-07 2003-09-16 住友金属工業株式会社 Ferritic stainless steel, ferritic stainless steel ingot excellent in workability and toughness, and method for producing the same
JP2002194505A (en) * 2000-12-22 2002-07-10 Sumitomo Metal Ind Ltd Ferrite stainless steel and its production method of the same
JP4080729B2 (en) * 2001-11-22 2008-04-23 日本冶金工業株式会社 Stainless steel for food plant
WO2003044237A1 (en) * 2001-11-22 2003-05-30 Nippon Yakin Kogyo Co., Ltd. Stainless steel for use under circumstance where organic acid and saline are present

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132741A (en) 1991-11-11 1993-05-28 Sumitomo Metal Ind Ltd High strength duplex stainless steel excellent in corrosion resistance
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
EP0757112A1 (en) 1994-04-05 1997-02-05 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
JPH08170153A (en) * 1994-12-19 1996-07-02 Sumitomo Metal Ind Ltd Highly corrosion resistant two phase stainless steel
JP3127822B2 (en) * 1996-04-10 2001-01-29 住友金属工業株式会社 Manufacturing method of seamless stainless steel pipe made of duplex stainless steel
JPH1060526A (en) * 1996-08-19 1998-03-03 Nkk Corp Production of seawater resistant precipitation strengthening type duplex stainless steel
JPH1060598A (en) * 1996-08-19 1998-03-03 Nkk Corp Seawater resistant precipitation strengthening type duplex stainless steel
JP2001220652A (en) * 2000-02-03 2001-08-14 Sumitomo Metal Ind Ltd Duplex stainless steel and method of manufacturing tube of the steel
JP2002241838A (en) * 2001-02-13 2002-08-28 Sumitomo Metal Ind Ltd Method for producing duplex stainless steel pipe
JP2003147489A (en) * 2001-11-08 2003-05-21 Nippon Steel Corp Duplex stainless steel sheet and manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. E. CASTLE ET AL., STUDIES BY AUGER SPECTROSCOPY OF PIT INITIATION AT THE SITE OF INCLUSIONS IN STAINLESS STEEL
See also references of EP1561834A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759415B2 (en) 2002-08-12 2010-07-20 Exxonmobil Chemical Patents Inc. Method to make an article comprising polymer concentrate
US7662885B2 (en) 2002-08-12 2010-02-16 Exxonmobil Chemical Patents Inc. Method to make an article comprising polymer concentrate
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8703030B2 (en) 2003-08-12 2014-04-22 Exxonmobil Chemical Patents Inc. Crosslinked polyethylene process
US9512509B2 (en) 2011-03-10 2016-12-06 Nippon Steel & Sumitomo Metal Corportion Duplex stainless steel
WO2012121232A1 (en) * 2011-03-10 2012-09-13 住友金属工業株式会社 Duplex stainless steel sheet
JP5088455B2 (en) * 2011-03-10 2012-12-05 住友金属工業株式会社 Duplex stainless steel
WO2014112445A1 (en) 2013-01-15 2014-07-24 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel pipe
KR20150087430A (en) 2013-01-15 2015-07-29 가부시키가이샤 고베 세이코쇼 Duplex stainless steel material and duplex stainless steel pipe
JP2015078429A (en) * 2013-09-11 2015-04-23 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2015110828A (en) * 2013-11-05 2015-06-18 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube
JP2017509790A (en) * 2014-02-03 2017-04-06 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Duplex stainless steel
JP2016003377A (en) * 2014-06-18 2016-01-12 新日鐵住金株式会社 Two-phase stainless steel tube
KR20190092493A (en) * 2016-12-07 2019-08-07 회가내스 아베 (피유비엘) Stainless Steel Powder for Manufacturing Duplex Sintered Stainless Steel
KR102408835B1 (en) 2016-12-07 2022-06-13 회가내스 아베 (피유비엘) Stainless Steel Powder for Manufacturing Duplex Sintered Stainless Steel

Also Published As

Publication number Publication date
NO336117B1 (en) 2015-05-18
EP1561834B1 (en) 2011-04-20
EP1561834A1 (en) 2005-08-10
BRPI0406423A (en) 2005-10-04
AU2004262702B2 (en) 2007-05-03
CN100427627C (en) 2008-10-22
JPWO2005014872A1 (en) 2006-10-05
EP1561834A4 (en) 2007-07-11
JP4155300B2 (en) 2008-09-24
NO20052266L (en) 2005-07-06
BRPI0406423B1 (en) 2012-12-11
KR20060024316A (en) 2006-03-16
KR100661328B1 (en) 2006-12-27
NO20052266D0 (en) 2005-05-10
AU2004262702A1 (en) 2005-02-17
CN1701126A (en) 2005-11-23

Similar Documents

Publication Publication Date Title
US7396421B2 (en) Duplex stainless steel and manufacturing method thereof
CA2574025C (en) Steel for steel pipe
WO2005014872A1 (en) Duplex stainless steel and method for production thereof
JP7024063B2 (en) Steel for low temperature pressure vessels and its manufacturing method
EP2163655B1 (en) Process for production of high alloy steel pipe
CA2929734C (en) Ni-cr alloy material and seamless oil country tubular goods using the same
WO2008018242A1 (en) Two-phase stainless steel
AU2004315176B2 (en) Steel product for line pipe excellent in resistance to HIC and line pipe produced by using the steel product
JP4265605B2 (en) Duplex stainless steel
CA3016288A1 (en) Steel material and oil-well steel pipe
JP2023139306A (en) Martensitic stainless seamless steel pipe
JP2018168425A (en) Seamless steel pipe for low alloy oil well
JP6733808B2 (en) Wire rod and flat steel wire
JPWO2019182056A1 (en) High-cleanliness steel manufacturing method
JP7230454B2 (en) Steel materials for seamless steel pipes
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
RU2221875C2 (en) Method of production of seamless tubes from carbon steel or low-alloy steel of high corrosion resistance
WO2023162817A1 (en) Duplex stainless steel material
WO2023157897A1 (en) Steel material suitable for use in sour environments
JP2001011528A (en) Method for melting steel excellent in hydrogen induced cracking resistance
JP2017020086A (en) Martensitic steel material
JP2005036313A (en) Duplex stainless steel
JP6086036B2 (en) Steel plate with excellent weld heat-affected zone toughness and its melting method
JP2015010248A (en) Two-phase stainless steel for urea plant
WO2017195372A1 (en) Austenitic stainless steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057004913

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005512929

Country of ref document: JP

Ref document number: 20048009689

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004748203

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11135448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004262702

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004262702

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004748203

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0406423

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 1020057004913

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020057004913

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004262702

Country of ref document: AU