JPH1057947A - Separating and recovering method of ammonia of the like from liquid containing ammonia or the like - Google Patents
Separating and recovering method of ammonia of the like from liquid containing ammonia or the likeInfo
- Publication number
- JPH1057947A JPH1057947A JP8260100A JP26010096A JPH1057947A JP H1057947 A JPH1057947 A JP H1057947A JP 8260100 A JP8260100 A JP 8260100A JP 26010096 A JP26010096 A JP 26010096A JP H1057947 A JPH1057947 A JP H1057947A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- gas
- chamber
- liquid
- gas phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0021—Degasification of liquids by bringing the liquid in a thin layer
- B01D19/0026—Degasification of liquids by bringing the liquid in a thin layer in rotating vessels or in vessels containing movable parts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C1/00—Ammonia; Compounds thereof
- C01C1/02—Preparation, purification or separation of ammonia
- C01C1/10—Separation of ammonia from ammonia liquors, e.g. gas liquors
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Physical Water Treatments (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、アンモニア等の
含有液からアンモニア等を分離する方法と回収方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating ammonia and the like from a liquid containing the same and a method for recovering the same.
【0002】[0002]
【従来の技術】河川、湖沼、海域への窒素・りんの栄養
塩類の排出は、富栄養化による植物プランクトン、藻類
の異常な繁殖を引き起し、近年赤潮などの原因となって
いる。平成5年10月1日水質汚濁防止法の改正で窒素
・りんの排出規制が決まり、55業種に関しては5年間
の暫定猶予期間が設けられた。産業界では「どのような
技術がベストか?」と必死に検討されている。窒素の存
在形態としては、有機態窒素・アンモニヤ態窒素、硝酸
態窒素、亜硝酸窒素の4つある。この発明はアンモニア
態に窒素の分離及び回収方法に関するものである。アン
モニア態窒素の主な処理方法は微生物による方法であ
る。好気条件下(ばっ気槽)で NH4 +1.5O2→2H++H2O+NO2 − (1) NO2+1/2O2→NO3 − (2) 微生物の働きでアンモニアを酸化し、亜硝酸化し、さら
に硝酸化される。その後、嫌気条件下で NO3 −+0.33CH3OH=NO2 −+0.67H2O (3) NO2 −+0.5CH3OH=0.5N2+0.5CO2+ 0.5H2O+OH− (4) 微生物の働きでNO3 −、NO2 −はN2ガスになり系
外に出ていく。CH3OH(メタノール)は、N
O3 −、NO2の還元のための水素供与体として、添加
されるのが一般的である。一般的にアンモニアの硝化
(硝酸化)速度は、脱窒速度に比べて遅く、ばっ気槽1
m3当り一日のNH4−Nの負荷は0.2Kg以下であ
る。脱窒速度も1Kg程度である。それ故微生物による
アンモニア処理は大きな槽が必要であり、またその槽を
ばっ気又は攪拌するための動力が必要である。その上、
式(3)、(4)でもわかるように、メタノールなどの
水素供与体が必要となる。1モルのアンモニアに必要な
メタノールは0.83モルいる。そのため、高濃度のア
ンモニア排水の場合、広いスペースとメタノールなど多
量にいることになり、総合コストが高くなる。アンモニ
ア濃度が高い場合、排水のpHを上げ、ばっ気又は充填
塔での気液接触で液相中のアンモニアをガス化して気相
に排出し、それをクラスバー等に吸収、アンモニアを回
収、又は燃焼設備に導入して燃焼処理する方法が行なわ
れている。図10は、従来のアンモニア分離方法とし
て、ばっ気槽による分離方法を示し、図11は同じく気
液接触塔による分離方法を示している。2. Description of the Related Art The discharge of nutrients of nitrogen and phosphorus into rivers, lakes and marshes, and sea areas causes abnormal reproduction of phytoplankton and algae due to eutrophication, and has recently caused red tide and the like. The revision of the Water Pollution Control Law on October 1, 1993 determined the regulation of nitrogen and phosphorus emissions, and a provisional grace period of five years was set for 55 industries. The industry is desperately thinking, "What is the best technology?" There are four types of nitrogen, namely, organic nitrogen / ammonia nitrogen, nitrate nitrogen, and nitrite. The present invention relates to a method for separating and recovering nitrogen from ammonia. The main method of treating ammonia nitrogen is by a microorganism. NH under aerobic conditions (aeration tank) 4 + 1.5O 2 → 2H + + H 2 O + NO 2 - (1) NO 2 + 1 / 2O 2 → NO 3 - (2) oxidizing the ammonia by the action of microorganisms, It is nitritized and further nitrated. Thereafter, under anaerobic conditions, NO 3 − +0.33 CH 3 OH = NO 2 − +0.67 H 2 O (3) NO 2 − +0.5 CH 3 OH = 0.5 N 2 +0.5 CO 2 + 0.5H 2 O + OH − (4) Due to the action of microorganisms, NO 3 − and NO 2 − become N 2 gas and go out of the system. CH 3 OH (methanol) is N
It is generally added as a hydrogen donor for the reduction of O 3 − and NO 2 . Generally, the nitrification (nitrification) rate of ammonia is lower than the denitrification rate, and the aeration tank 1
load NH 4 -N in m 3 per day or less 0.2 Kg. The denitrification rate is also about 1 kg. Therefore, ammonia treatment by microorganisms requires a large tank and power for aerating or stirring the tank. Moreover,
As can be seen from equations (3) and (4), a hydrogen donor such as methanol is required. One mole of ammonia requires 0.83 moles of methanol. Therefore, in the case of high-concentration ammonia drainage, there is a large space and a large amount of methanol and the like, and the total cost increases. If the ammonia concentration is high, raise the pH of the wastewater, gasify the ammonia in the liquid phase by aeration or gas-liquid contact in a packed tower, discharge it to the gas phase, absorb it into a class bar, etc., recover the ammonia, Alternatively, a method of performing combustion treatment by introducing into a combustion facility has been performed. FIG. 10 shows a separation method using an aeration tank as a conventional ammonia separation method, and FIG. 11 similarly shows a separation method using a gas-liquid contact tower.
【0003】[0003]
【発明が解決しようとする課題】ところで、図10のよ
うなばっ気法は、多量の空気を吹き込む場合、水深より
圧力損失に抗して空気を吹き込まなければならず、動力
が大きくなる。気泡の接触時間も大きくとりにくい。
又、気液の接触面積は気泡の数と寸法により、気泡を細
かくすると気液接触に有利であるが、圧力損失が増大す
る。又、アルカリ剤に消石灰(Ca(OH)2)を使用
すると空気中の炭酸ガスと反応し(5)式のように Ca(OH)2+CO2→CaCO3+H2O (5) 炭酸カルシュウムの沈澱物ができ、噴務ノズルをつまら
せることがある。図11のような方法であると、気液接
触時間をばっ気法より大きくとれる。又、ブロワーの静
圧も低くできる。しかしながら、高い塔が必要で装置が
大型になることと、排水を塔頂まで持ち上げるポンプの
動力が大きくなる。又ばっ気法と同様、消石灰をアルカ
リ剤に使用した場合、充填材内で炭酸カルシュウムが析
出して、閉そくしたり、スケールの発生でストリピング
効率の低下が起る事がよくあり、一般的にはアルカリ剤
として消石灰、カーバイト滓の使用は困難である。力性
ソーダの使用すれば(5)式の反応は起らないが、コス
ト高である。そこで、この発明の課題は、省スペースで
アンモニアを効率よく確実に分離及び回収することがで
きるアンモニア含有液からのアンモニア分離方法と回収
方法を提供することにある。By the way, in the aeration method shown in FIG. 10, when a large amount of air is blown, the air must be blown against the pressure loss from the water depth, and the power becomes large. The contact time of bubbles is large and difficult to take.
Further, the gas-liquid contact area depends on the number and size of the bubbles. Making the bubbles finer is advantageous for gas-liquid contact, but increases the pressure loss. When slaked lime (Ca (OH) 2 ) is used as an alkaline agent, it reacts with carbon dioxide in the air, and as shown in equation (5), Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (5) calcium carbonate A sediment may form, which may clog the injection nozzle. With the method as shown in FIG. 11, the gas-liquid contact time can be made longer than in the aeration method. Also, the static pressure of the blower can be reduced. However, a large tower is required due to the necessity of a high tower, and the power of a pump for lifting drainage to the top of the tower increases. Also, as with the aeration method, when slaked lime is used as an alkaline agent, calcium carbonate precipitates in the filler, which often blocks and reduces the stripping efficiency due to scale generation. It is difficult to use slaked lime or carbide slag as an alkaline agent. The reaction of the formula (5) does not occur if a force soda is used, but the cost is high. Therefore, an object of the present invention is to provide a method for separating and recovering ammonia from an ammonia-containing liquid, which can efficiently and reliably separate and recover ammonia in a space-saving manner.
【0004】[0004]
【課題を解決するための手段】上記のような課題を解決
するため、請求項1の発明は、アンモニア等の含有液を
気相で微細化させることにより、アンモニア等を気相に
放散させる構成を採用したものである。請求項2の発明
は、複数の分離槽を多段に設け、多段分離槽に対するア
ンモニア等の含有液と気体の流れを対向させ、各分離槽
内でアンモニア等の含有液を高速回転する掻上げ部材で
気相に掻上げて微細化し、気相に放散させる構成を採用
したものである。請求項3の発明は、請求項1又は2記
載の分離方法で気相に放散させたアンモニア等をデミス
ターとスクラバーで処理する構成を採用したものであ
る。Means for Solving the Problems In order to solve the above-mentioned problems, a first aspect of the present invention is to disperse ammonia and the like into the gas phase by atomizing a liquid containing ammonia and the like in the gas phase. Is adopted. The invention according to claim 2 is a scooping member in which a plurality of separation tanks are provided in multiple stages, the liquid containing ammonia or the like and the gas flow are opposed to the multi-stage separation tank, and the liquid containing ammonia or the like is rotated at high speed in each separation tank. In this case, a structure is adopted in which the fine particles are lifted into a gas phase to be miniaturized and diffused into the gas phase. According to a third aspect of the present invention, there is provided a configuration in which ammonia or the like released into the gas phase by the separation method according to the first or second aspect is treated by a demister and a scrubber.
【0005】[0005]
【発明の実施の形態】以下、この発明の実施の状態を図
示例と共に説明する。図1は、この発明の回収方法の実
施に用いる回収装置を示し、ストリッピング装置11
と、デミスター装置12と、第1のスクラバー13及び
第2のスクラバー14によって構成され、ストッピング
装置11は、第1室15と第2室16及び第3室17か
らなり、第1室15内に供給したアンモニア含有排水
は、第2室16、第3室17へとオーバーフローしなが
ら流動すると共に、各室には、モータ18で高速回転す
る円板19がアンモニア含有排水に下部が浸漬するよう
設けられ、この円板19が掻上げ部材となり、アンモニ
ア含有排水を掻き上げて気相中に微細化し、気液接触さ
せることによりアンモニアを気相に放散させるようにな
っている。また、各室15、16、17には、第3室1
7から気相申に供給した空気が、第2室16及び第1室
15へと、アンモニア含有排水の流れと対向するように
流れるようになっており、第1室15から空気流と共に
アンモニアが取り出されるようになっており、取り出さ
れたアンモニアはデミスター装置12に供給され、デミ
スター装置12内でミストが除去され、水滴はドレンで
第1室15に戻すか別のドレン受槽に送られる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a recovery apparatus used for carrying out the recovery method of the present invention.
, A demister device 12, a first scrubber 13 and a second scrubber 14, and the stopping device 11 includes a first chamber 15, a second chamber 16, and a third chamber 17. The ammonia-containing wastewater supplied to the chamber flows while overflowing to the second chamber 16 and the third chamber 17, and a disk 19 rotated at a high speed by a motor 18 is immersed in each chamber in the lower part of the ammonia-containing wastewater. The disk 19 is provided as a scraping member, and scrapes ammonia-containing waste water into fine particles in a gas phase, and makes gas-liquid contact to diffuse ammonia into the gas phase. Each of the rooms 15, 16, and 17 has a third room 1
7 is supplied to the second chamber 16 and the first chamber 15 so as to be opposed to the flow of the ammonia-containing wastewater. The removed ammonia is supplied to the demister device 12, the mist is removed in the demister device 12, and water droplets are returned to the first chamber 15 by drain or sent to another drain tank.
【0006】ミストが取り除かれたアンモニアは、第1
のスクラバー13へ入れられ、硫酸、塩酸等が入ってい
る循環液に吸収される。除去されなかったアンモニアは
第2のスクラバー14で同様に吸収され、処理後の排ガ
スは外部に放出するか、または問題がなければストリッ
ピング装置に戻し、ガスの循環系を形成する。第1のス
クラバー13の液管理はpH計の指示でポンプを動かし
酸を投入する。なお、ごく少量の酸をポンプを用いて第
2のスクラバー14にも定量的に入れる。第1のスクラ
バー13の循環液がアンモニア塩で飽和しない程度にポ
ンプで水を第2のスクラバー14へ定量的に送り、そこ
がら第1のスクラバー13の方にオーバーフローしてい
く。このような方法で比較的簡単にスクラバーのアンモ
ニア除去効率を下げずにアンモニア塩濃度を濃くするこ
とができる。The ammonia from which the mist has been removed is
And is absorbed by a circulating fluid containing sulfuric acid, hydrochloric acid, or the like. The unremoved ammonia is likewise absorbed in the second scrubber 14, and the treated exhaust gas is discharged to the outside or, if there is no problem, returned to the stripping device to form a gas circulation system. In the liquid management of the first scrubber 13, the acid is supplied by operating the pump according to the instruction of the pH meter. It should be noted that a very small amount of acid is quantitatively put into the second scrubber 14 using a pump. Water is quantitatively pumped to the second scrubber 14 by a pump so that the circulating liquid of the first scrubber 13 is not saturated with ammonium salt, and overflows toward the first scrubber 13 therefrom. With such a method, the concentration of ammonia salt can be relatively easily increased without lowering the ammonia removal efficiency of the scrubber.
【0007】次に、図2乃至図5は、ストリッピング装
置11に使用する円板19の異なった例を示している。
図2に示す例の円板19は、円形板を放射状の波形に形
成し、中央部に回転軸へ取付けるためのボス21を設け
た構造を有し、高速回転することにより、アンモニア含
有排水を波形部分で掻上げて飛散させるようになってい
る。図3(A)、(B)に示す例の円板19は、円板体
22り外周に帯板をリング状にした環状板23を固定
し、この環状板23に多数の透孔24を周方向に一定の
間隔で並べて設け、円板体22の中央部に回転軸への取
付用ボス25を設けた構造になっている。図4(A)、
(B)に示す例の円板19は、ボス26の外周に固定し
た円板体27の外周に多数の掻上板28を放射状の配置
で固定したものである。図5(A)、(B)に示す例の
円板19は、ボス29の外周に固定した円板体30を一
定の間隔で固定し、掻上板31群の両側端部をリング板
32で結合したものである。これらの円板19は下部を
アンモニア含有排水に浸漬させた状態で高速回転させる
と、該排水を気相に掻上げて微細化させることができ
る。Next, FIGS. 2 to 5 show different examples of the disc 19 used in the stripping device 11. FIG.
The disk 19 in the example shown in FIG. 2 has a structure in which a circular plate is formed in a radial waveform, and a boss 21 for attaching to a rotating shaft is provided at a central portion. Raised and scattered at the wavy part. 3 (A) and 3 (B), an annular plate 23 having a ring-shaped band is fixed to the outer periphery of the disk body 22. A large number of through holes 24 are formed in the annular plate 23. They are provided at regular intervals in the circumferential direction, and have a structure in which a boss 25 for attachment to a rotating shaft is provided at the center of the disc body 22. FIG. 4 (A),
The disk 19 in the example shown in (B) has a large number of scraping plates 28 fixed in a radial arrangement on the outer periphery of a disk 27 fixed on the outer periphery of a boss 26. 5 (A) and 5 (B), the disk 19 is fixed to the outer periphery of the boss 29 at fixed intervals, and the both ends of the scraping plate 31 group are fixed to the ring plate 32. Are combined. When these discs 19 are rotated at a high speed in a state where the lower part is immersed in the ammonia-containing wastewater, the wastewater can be scraped up to a gas phase to be finely divided.
【0008】次に、アンモニア含有排水からのアンモニ
アの分離回収を具体的に説明する。図1に示すように、
アンモニア含有排水は第1室15に入口より入れられて
第1室15で高速回転する円板19(100〜3000
RPM)で掻上げられて微細化し空気中に滞留し、第2
室16から来る空気と接触する。このとき、回転数を増
やすと排水の微細化がより効果的に行なえ、気液接触面
積が増大し、液中のアンモニアがガス化しやすくなる。
第1室15に一定時間排水が滞留する間に第2室16か
ら来た空気にアンモニアがガス化し、一定のアンモニア
分圧を示しながらデミスター装置11に排出され、スク
ラバーへ送られる。排水が一定時間第1室15に滞留し
た後、連続的に第2室16へオーバーフローしていく。
水位の高さが第2室16の方が少し低いため逆方向の水
の流れはない。第2室16に入った排水はアンモニアが
かなり第1室15でストリッピングされているので、ア
ンモニア濃度は低下している。第1室15と同様一定時
間滞留している間に第3室17から来た空気と接触し
て、アンモニアがガス化して第1室15に送られる。一
方排水は一定時間滞留後第3室17へオーバーフローし
て行く。第3室17ではかなり排水中のアンモニア濃度
は低下しているが、一定期間滞留している間に回転円板
19で微細化し、外部から入ってきた新鮮な空気と接触
しストリッピングされる。オーバーフロー口より装置外
部に処理水として排出される。一般的にガスの溶解度は
ヘンリーの法則に従う。図1のように第1室15のアン
モニア分圧P1、液中のアンモニア濃度をC1、Hはヘ
ンリー常数とすると P1=HC1 同様に P2=HC2 P3=HC3 となる。仮に一室の滞留時間を20分間とし、かつ、ア
ンモニアの除去率を90%とし、ヘンリー常数及びアン
モニアの除去率の濃度依存性がないとする。 C2=0.1C1 C3=0.1C2=0.01C1 となり P2=HC2=0.1HC1=0.1P1 P3=HC3=0.01HC1=0.01P1 となる。一方、第1室15より排出されるミストを伴っ
たアンモニアガス含有空気は途中に設置されているデミ
スター装置12のミストキャッチーにてミストが除去さ
れ、その後、スクラバーに導入され、スクラバーの捕集
液(水又は酸)に吸収され、アンモニアを取り除かれた
空気は外部放出される。アンモニアスクラバーは一段で
も処理可能であるが多段にすると少量り捕集液でガス処
理できる。Next, the separation and recovery of ammonia from the ammonia-containing wastewater will be specifically described. As shown in FIG.
Ammonia-containing wastewater is introduced into the first chamber 15 from the inlet, and rotates at a high speed in the first chamber 15 by a disk 19 (100 to 3000).
(RPM) and is finely divided and stays in the air.
Contact with air coming from chamber 16. At this time, if the number of rotations is increased, the size of the wastewater can be more effectively reduced, the gas-liquid contact area increases, and ammonia in the liquid is easily gasified.
Ammonia gasifies into the air coming from the second chamber 16 while the wastewater stays in the first chamber 15 for a certain period of time, is discharged to the demister device 11 while exhibiting a certain ammonia partial pressure, and is sent to a scrubber. After the drainage stays in the first chamber 15 for a certain period of time, it continuously overflows into the second chamber 16.
Since the water level is slightly lower in the second chamber 16, there is no water flow in the opposite direction. Since the wastewater that has entered the second chamber 16 is considerably stripped of ammonia in the first chamber 15, the ammonia concentration has decreased. Similarly to the first chamber 15, the ammonia comes into contact with the air coming from the third chamber 17 while staying for a certain period of time, and ammonia is gasified and sent to the first chamber 15. On the other hand, the wastewater flows into the third chamber 17 after staying for a certain time. In the third chamber 17, although the ammonia concentration in the wastewater is considerably reduced, the ammonia is miniaturized by the rotating disk 19 while staying for a certain period of time, and comes into contact with fresh air entering from outside to be stripped. It is discharged from the overflow port to the outside of the device as treated water. In general, gas solubility follows Henry's law. As shown in FIG. 1, when the ammonia partial pressure P 1 in the first chamber 15, the ammonia concentration in the liquid is C 1 , and H is Henry's constant, P 2 = HC 2 P 3 = HC 3 as in P 1 = HC 1. . Suppose that the residence time in one chamber is 20 minutes, the removal rate of ammonia is 90%, and there is no concentration dependency of the Henry constant and the removal rate of ammonia. C 2 = 0.1C 1 C 3 = 0.1C 2 = 0.01C 1 becomes P 2 = HC 2 = 0.1HC 1 = 0.1P 1 P 3 = HC 3 = 0.01HC 1 = 0.01P 1 Becomes On the other hand, the ammonia gas-containing air accompanied by the mist discharged from the first chamber 15 is removed by the mist catcher of the demister device 12 installed on the way, and then introduced into the scrubber, and the collected liquid of the scrubber is collected. The air absorbed by (water or acid) and from which ammonia has been removed is discharged outside. The ammonia scrubber can be treated in one stage, but when it is made in multiple stages, a small amount of gas can be treated with the collected liquid.
【0009】ここでヘンリーの法則について説明する。 ヘンリーの法則 放散・吸収操作は液相中の溶質物質が液相から気液界面
に移動し、気相に放散、次いで気相本体中に拡散する逐
次プロセスである。この際問題となるのは気液界面にお
ける溶質ガスの分配関係、つまりガスの溶解度(放散度
の逆)については、よく知られたヘンリーの法則(「一
定温度において一定量の液に溶解するガス質量はガスの
分圧に比例する。」)が成立する。 P=HC (6) ここに、P:溶解ガスの分狂(atm) H:ヘンリー定数(atm・m3/kg−mol) C:溶解ガスの液中濃度(kg−mol/m3) 比較的水に溶けやすいガスアンモニア、塩化水素等では
ヘンリーの法則は成立しない。しかし、これらのガスで
も分圧が低い場合には近似的にヘンリーの法則に従うも
のとみてよい。ヘンリー定数は一般的には温度が高いと
大きくなる、すなわち(6)式から温度が高いとガスの
溶解度が小さくなり、放散し易くなる。表1にNH3−
H2O系のヘンリー定数、表2にアンモニア−水系の気
液平衡データーを示す。また、図6に各気体の水に対す
る溶解度を示す。Here, Henry's law will be described. Henry's Law The diffusion / absorption operation is a sequential process in which solutes in the liquid phase move from the liquid phase to the gas-liquid interface, evaporate into the gas phase, and then diffuse into the gas phase body. In this case, the problem is the distribution relationship of solute gas at the gas-liquid interface, that is, the solubility of gas (the opposite of the degree of emission) is well known by Henry's law (“Gas that dissolves in a certain amount of liquid at a certain temperature. The mass is proportional to the partial pressure of the gas. "). P = HC (6) where, P: madness of dissolved gas (atm) H: Henry's constant (atm · m 3 / kg-mol) C: concentration of dissolved gas in liquid (kg-mol / m 3 ) Comparison Henry's law does not hold for gaseous ammonia, hydrogen chloride, etc., which are easily soluble in water. However, even when these gases have a low partial pressure, they can be considered to approximately follow Henry's law. In general, the Henry's law constant increases as the temperature increases, that is, the higher the temperature, the lower the solubility of the gas becomes and the easier it is to dissipate. Table 1 shows NH 3 −
Henry's law constant of H 2 O system, and Table 2 shows vapor-liquid equilibrium data of ammonia-water system. FIG. 6 shows the solubility of each gas in water.
【表1】 ガスの吸収・放散の速度を考える場合には、二重境膜説
は有用な学説である。この説によると図7に示すよう
に、気相と液相の接する界面に沿ってガス側にも液側に
も乱れのない薄い境膜が形成され、この境膜内での被放
散物質の拡散が遅いので物質移動の抵抗になる。この境
膜内の拡散の推進力は境界と液本体の溶質濃度の差とガ
ス本体と境界の被放散物質の分圧差である。液側、ガス
側における単位時間、単位面積当りの移動量NA(kg
−mol/m2Hr)は等しいので、次式が成立する。 NA=kG(p−pi)=kL(Ci−C) (7) ここに、kL:液相物質移動係数(m/Hr) Ci:界面における溶質の濃度(kg−mol/m3) pi:界面における溶質の分圧(atm,Pa) kG:気相物質移動係数(kg−mol/m2・atm
・Hr) C :本体中の溶質濃度(kg−mol/m3) p :ガス本体の溶質の分圧(atm,Pa) kG及びkLの値には、ガス側及び液相における溶質の
拡散係数と境膜の有効厚さが関係してくる。ガス吸収実
験からkG及びkLを直接求めようとpi及びCiを測
定しなければならないが、これは不可能に近いので、次
式で示す総括係数が用いられる。 NA=KG(p−pe)=KL(Ce−C) (8) ここに、KL:液相総括物質移動係数(m/Hr)、 Ce:ガス本体に対する平衡濃度(kg−mol/
m3) pe:液本体に対する平衡分圧(atm,Pa) KG:気相総括物質移動係数(kg−mol/m2・a
tm・Hr) KG、KLとkG、kLの関係は次のようになる。 1/KG=1/kG+H/kL (9) 1/KL=1/kL+1/HkG (10) ここでHはヘンリー定数pi/Ci、ヘンリーの法則が
適用されない時は(pi−pe)/(Ci−Ce)とな
る。溶解度が大きい時はHが小さいのでH/kLを無視
することができてKG=kGとなりガス側の抵抗が支配
的となる。[Table 1] The double membrane theory is a useful theory when considering the rate of gas absorption and emission. According to this theory, as shown in FIG. 7, a thin boundary film without disturbance is formed on the gas side and the liquid side along the interface where the gas phase and the liquid phase are in contact with each other. The slow diffusion leads to mass transfer resistance. The driving force for the diffusion in the film is the difference between the solute concentration in the boundary and the liquid body and the difference in partial pressure between the gas body and the diffused substance in the boundary. Movement amount N A (kg) per unit time and unit area on liquid side and gas side
−mol / m 2 Hr) are equal, so the following equation holds. N A = k G (p-pi) = k L (Ci-C) (7) where k L : liquid phase mass transfer coefficient (m / Hr) Ci: concentration of solute at interface (kg-mol / m) 3 ) pi: partial pressure of the solute at the interface (atm, Pa) k G : gas phase mass transfer coefficient (kg-mol / m 2 · atm)
· Hr) C: solute concentration in the body (kg-mol / m 3) p: partial pressure of the solute gas body (atm, Pa) The value of k G and k L, of the solute in the gas-side and a liquid phase The diffusion coefficient is related to the effective thickness of the film. Pi and Ci must be measured in order to directly determine k G and k L from gas absorption experiments. However, since this is almost impossible, a generalization coefficient represented by the following equation is used. To N A = K G (p- pe) = K L (Ce-C) (8) where, K L: liquidus overall mass transfer coefficient (m / Hr), Ce: equilibrium to gas body concentration (kg-mol /
m 3) pe: equilibrium partial pressure for the liquid body (atm, Pa) K G: vapor phase overall mass transfer coefficient (kg-mol / m 2 · a
tm · Hr) K G, K L and k G, the relationship of k L is as follows. 1 / K G = 1 / k G + H / k L (9) 1 / K L = 1 / k L + 1 / Hk G (10) where H is Henry's constant p i / C i , and Henry's law is not applied when is the (p i -pe) / (C i -C e). When the solubility is large, H is small, so that H / k L can be neglected, and K G = k G , and the resistance on the gas side becomes dominant.
【0010】アンモニアストリッピングと被処理液のp
H 水中のアンモニア性窒素はアンモニアイオン(N
H4 +)と遊離アンモニア(NH3)が平衡を保って存
在しているが、pHが高くなるにしたがって遊離アンモ
ニアの比率が高くなる。 この式においてpHが高くなると平衡は右に傾きpH1
0以上ではほとんどが遊離アンモニアの形となる。水中
におけるアンモニアイオンと遊離アンモニアの比率はp
H、水温の影響を受けるが、この比率は次式によって求
めることができる。 ここで、Kbはアンモニアイオンの解離定数で25℃で
は1.8×10−5mol、(H+)は水素イオン濃
度、KWは水の解離定数で(OH−)(H+)=10
−14(mol)2 これより25℃、pH10.0におけるNH3の比率を
求めると となる。図8に各pHにおけるNH3とNH4 +の関係
を示す。水のpHを上げることによって遊離の状態とな
ったアンモニアは外部に飛び出しやすい状態にあり、攪
拌、ばっ気等の物理的刺激を与えると水中より大気に出
てくる。これを容易にするためアンモニアストリッピン
グ法が用いられる。アンモニアストリッピング法は一般
的には高い塔の上部より被処理水を噴霧し、気液接触面
積を大きくするため、プラスチック性の充填材を入れ
る。式(8)よりNa単位接触面積当たりの物質移動量
であるので物質移動量は気液接触面積に比例する。言い
換えると、アンモニアストリッピングの効率を上げるに
は気液界面を大きくすればよい、今回、この点に注目し
て従来の高い塔の方式やばっ気方式を止め、回転円板で
被処理水を微細化し、気液接触面積を極端に大きくする
方法を考えた。同時に従来法の欠点であったアルカリ剤
に消石灰を使用した場合に起こりやすい炭酸カルシュム
の固着は防げる結果となった。なお、分離及び回収方法
は、塩素含有液の遊離塩素をガス化して取り出す方法に
も使用できる。[0010] Ammonia stripping and p
H The ammoniacal nitrogen in the water is composed of ammonia ions (N
H 4 + ) and free ammonia (NH 3 ) are present in equilibrium, but as the pH increases, the proportion of free ammonia increases. In this equation, as the pH increases, the equilibrium tilts to the right and pH 1
Above zero, most are in the form of free ammonia. The ratio of ammonia ions to free ammonia in water is p
H, which is affected by the water temperature, can be determined by the following equation. Here, Kb is the dissociation constant of ammonia ion, 1.8 × 10 −5 mol at 25 ° C., (H + ) is the hydrogen ion concentration, and KW is the dissociation constant of water, (OH − ) (H + ) = 10
−14 (mol) 2 From this, the NH 3 ratio at 25 ° C. and pH 10.0 is calculated. Becomes FIG. 8 shows the relationship between NH 3 and NH 4 + at each pH. Ammonia that has been released by raising the pH of water is in a state where it can easily escape to the outside, and comes out of the water into the atmosphere when a physical stimulus such as stirring or aeration is given. To facilitate this, an ammonia stripping method is used. In the ammonia stripping method, generally, water to be treated is sprayed from the top of a high tower, and a plastic filler is added to increase the gas-liquid contact area. From equation (8), since the mass transfer amount is per unit Na contact area, the mass transfer amount is proportional to the gas-liquid contact area. In other words, the efficiency of ammonia stripping can be increased by increasing the gas-liquid interface.This time, focusing on this point, the conventional high tower method and aeration method were stopped, and the water to be treated was A method of miniaturizing and extremely increasing the gas-liquid contact area was considered. At the same time, it was possible to prevent calcium carbonate from sticking, which tends to occur when slaked lime is used as an alkaline agent, which was a disadvantage of the conventional method. Note that the separation and recovery method can also be used for a method in which free chlorine in a chlorine-containing liquid is gasified and taken out.
【0011】[0011]
【実施例】図9のようなストリッピング装置にアンモニ
ア含有排水を入れ(15L)、入口、出口のバルブを止
めて、一定の空気を送り、一定時間間隔で下のドレイン
より被処理液をサンプリングしてアンモニアを測定し
た。又同時に吹き込み空気ダクトの測定口より、熱線風
速計にて風量を測定し、空気の供給量を測定した。液温
は装置内に設置されているヒーターで上げ、温度センサ
ーにより測定した。又、pH計の指示でアルカリ剤を添
加、pHを11以上とした。その結果を表2と表3に示
し、これと対比するため、図11で示した気液接触塔に
よる従来の除去率を図12に示す。アンモニア水として
は硫酸アンモンを水に溶解させ実験排水とした。EXAMPLE A wastewater containing ammonia was put into a stripping device as shown in FIG. 9 (15 L), valves at the inlet and outlet were stopped, constant air was sent, and a liquid to be treated was sampled from a lower drain at regular time intervals. And ammonia was measured. At the same time, the air flow was measured from the measurement port of the blown air duct with a hot wire anemometer to measure the air supply. The liquid temperature was raised by a heater installed in the apparatus, and measured by a temperature sensor. Further, an alkaline agent was added according to the instruction of the pH meter, and the pH was adjusted to 11 or more. The results are shown in Tables 2 and 3. For comparison, FIG. 12 shows the conventional removal rate by the gas-liquid contact tower shown in FIG. As ammonia water, ammonium sulfate was dissolved in water to make experimental wastewater.
【表2】 [Table 2]
【表3】 [Table 3]
【0012】[0012]
【発明の効果】以上のように、この発明によると、アン
モニア等の含有液を気相で微細化させることにより気相
に放散させるようにしたので、気液接触面積を極端に大
きくしてアンモニア等の含有液からのアンモニア等の分
離が効率よく行なえ、低いpHと温度及び少ない空気量
でアンモニア等の分離が可能になり、処理コスト及び設
備コストの低減が可能になる。また、アンモニア等の分
離のための設備の小型化及び省スペース化が可能にな
り、アンモニア等の捕集率を高めることができると共
に、炭酸カルシュムの付着防止も可能になる。As described above, according to the present invention, the liquid containing ammonia or the like is dispersed in the gas phase by making it finer in the gas phase. Separation of ammonia and the like from a liquid containing such as can be performed efficiently, ammonia and the like can be separated at a low pH, a low temperature, and a small amount of air, thereby reducing the processing cost and equipment cost. In addition, it is possible to reduce the size and space of equipment for separating ammonia and the like, to increase the collection rate of ammonia and the like, and to prevent the adhesion of calcium carbonate.
【図1】この発明の回収方法を実施する回収装置の説明
図FIG. 1 is an explanatory view of a recovery apparatus for implementing a recovery method of the present invention.
【図2】円板の例を示す斜視図FIG. 2 is a perspective view showing an example of a disk.
【図3】(A)は円板の例を示す正面図、(B)は同側
面図3A is a front view showing an example of a disk, and FIG. 3B is a side view thereof.
【図4】(A)は円板の例を示す縦断正面図、(B)は
同側面図FIG. 4A is a longitudinal sectional front view showing an example of a disk, and FIG.
【図5】(A)は円板の例を示す縦断正面図、(B)は
同側面図5A is a longitudinal sectional front view showing an example of a disk, and FIG. 5B is a side view of the same.
【図6】気体の水に対する溶解度を示すグラフ図FIG. 6 is a graph showing the solubility of gas in water.
【図7】(A)と(B)は気液界面での物質の移動を示
す説明図FIGS. 7A and 7B are explanatory diagrams showing movement of a substance at a gas-liquid interface.
【図8】各pHにおける遊離アンモニアとアンモニウム
イオンの関係を示す説明図FIG. 8 is an explanatory diagram showing the relationship between free ammonia and ammonium ions at each pH.
【図9】実施例に用いた装置の説明図FIG. 9 is an explanatory view of an apparatus used in an example.
【図10】従来の分離方法を示す説明図FIG. 10 is an explanatory view showing a conventional separation method.
【図11】従来の他の分離方法を示す説明図FIG. 11 is an explanatory view showing another conventional separation method.
【図12】従来の気液比と除去率の関係を示すグラフ図FIG. 12 is a graph showing a relationship between a conventional gas-liquid ratio and a removal rate.
11 ストリッピング装置 12 デミスター装置 13 第1のスクラバー 14 第2のスクラバー 15 第1室 16 第2室 17 第3室 18 モータ 19 円板 DESCRIPTION OF SYMBOLS 11 Stripping apparatus 12 Demister apparatus 13 1st scrubber 14 2nd scrubber 15 1st chamber 16 2nd chamber 17 3rd chamber 18 Motor 19 Disk
Claims (3)
せることにより、アンモニア等を気相に放散させること
を特徴とするアンモニア含有液からのアンモニア分離方
法。1. A method for separating ammonia from an ammonia-containing liquid, wherein the ammonia or the like is diffused into the gas phase by atomizing the liquid such as ammonia in the gas phase.
に対するアンモニア等の含有液と気体の流れを対向さ
せ、各分離槽内でアンモニア等の含有液を高速回転する
掻上げ部材で気相に掻上げて微細化し、気相に放散させ
ることを特徴とするアンモニア等の含有液からのアンモ
ニア等の分離方法。2. A plurality of separation tanks are provided in multiple stages, a flow of a liquid containing ammonia and the like flowing in the multi-stage separation tank is opposed to each other, and a gas-raising member which rotates the liquid containing ammonia and the like in each separation tank at a high speed is used for gas separation. A method for separating ammonia or the like from a liquid containing ammonia or the like, characterized in that the solution is scraped into a phase, finely divided and diffused into a gas phase.
放散させたアンモニア等をデミスターとスクラバーで処
理することを特徴とするアンモニア等の含有液からのア
ンモニア等の回収方法。3. A method for recovering ammonia or the like from a liquid containing ammonia or the like, wherein the ammonia or the like released into the gas phase by the separation method according to claim 1 or 2 is treated with a demister and a scrubber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8260100A JPH1057947A (en) | 1996-08-24 | 1996-08-24 | Separating and recovering method of ammonia of the like from liquid containing ammonia or the like |
KR1019970040109A KR100229176B1 (en) | 1996-08-24 | 1997-08-22 | Separation and recovery method of ammonia in ammonia containing solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8260100A JPH1057947A (en) | 1996-08-24 | 1996-08-24 | Separating and recovering method of ammonia of the like from liquid containing ammonia or the like |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1057947A true JPH1057947A (en) | 1998-03-03 |
Family
ID=17343300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8260100A Pending JPH1057947A (en) | 1996-08-24 | 1996-08-24 | Separating and recovering method of ammonia of the like from liquid containing ammonia or the like |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH1057947A (en) |
KR (1) | KR100229176B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077027A1 (en) * | 2000-04-05 | 2001-10-18 | Waste Recycling And Processing Services Nsw. | Leachate treatment and disposal process and apparatus |
EP4197974A1 (en) * | 2021-12-16 | 2023-06-21 | Idro Group S.r.l. | Process for the extraction and recovery of nitrogen contained in zootechnical wastewater by a skimming plant |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100794744B1 (en) * | 2001-07-11 | 2008-01-21 | 주식회사 포스코 | Degasing method of ammonia gas in ammonia-removed water |
KR101305056B1 (en) * | 2012-10-26 | 2013-09-11 | (주)이엠티 | Ammonia collecting apparatus using wastewater and method therefor |
KR102064063B1 (en) | 2018-04-06 | 2020-01-09 | (주)이엠티 | Material collecting apparatus using wastewater and method therefor |
-
1996
- 1996-08-24 JP JP8260100A patent/JPH1057947A/en active Pending
-
1997
- 1997-08-22 KR KR1019970040109A patent/KR100229176B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001077027A1 (en) * | 2000-04-05 | 2001-10-18 | Waste Recycling And Processing Services Nsw. | Leachate treatment and disposal process and apparatus |
EP4197974A1 (en) * | 2021-12-16 | 2023-06-21 | Idro Group S.r.l. | Process for the extraction and recovery of nitrogen contained in zootechnical wastewater by a skimming plant |
Also Published As
Publication number | Publication date |
---|---|
KR100229176B1 (en) | 1999-11-01 |
KR19980018894A (en) | 1998-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4689156A (en) | Removal of ammonia from wastewater | |
JP5025096B2 (en) | Ammonia-containing wastewater treatment method | |
JP2008207149A (en) | Flue gas desulfurization system employing seawater | |
WO1993022032A1 (en) | Method to treat geothermal fluid streams | |
AU2006291984B2 (en) | Transfer apparatus and system, and uses thereof | |
CN1045173C (en) | Aeration sea water type technology for removing sulphur from smoke and aeration device | |
JP4862314B2 (en) | Method and apparatus for desulfurization of gas containing hydrogen sulfide | |
JPH1057947A (en) | Separating and recovering method of ammonia of the like from liquid containing ammonia or the like | |
Livingston et al. | Detoxification of industrial wastewaters in an extractive membrane bioreactor | |
JP4082859B2 (en) | Neutralizer | |
JPH0788325A (en) | Treatment of waste gas and device therefor | |
Idelovitch et al. | Nitrogen removal by free ammonia stripping from high pH ponds | |
JPH09248420A (en) | Wet type flue gas desulfurization apparatus | |
CN205367869U (en) | A waste water denitration treatment system for oxidizing process denitration | |
JPH10128053A (en) | Stack gas treating device and treatment of stack gas | |
CN207755960U (en) | Improved system for flue gas desulfurization by double-alkali method | |
JP3193273B2 (en) | How to use anaerobic digestion gas | |
KR102642532B1 (en) | Ammonia removal and recovery system using liquid and air spray apparatus and water treatmemt method using the same | |
JPS6048196A (en) | Method for removing phosphorus from organic waste liquid | |
JPH05177196A (en) | Active carbon feeding device in high grade water purification system | |
TWI723389B (en) | Water purification device and water purification equipment | |
JP2559685B2 (en) | Geothermal power plant exhaust gas treatment and silica scale generation prevention device | |
JP2948330B2 (en) | Tank oxidation wet desulfurization method | |
JP2008036497A (en) | Wastewater treatment method | |
JPH1080682A (en) | Nitrate nitrogen removing device and water purifier using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051101 |