JPH1055823A - Battery - Google Patents

Battery

Info

Publication number
JPH1055823A
JPH1055823A JP8211816A JP21181696A JPH1055823A JP H1055823 A JPH1055823 A JP H1055823A JP 8211816 A JP8211816 A JP 8211816A JP 21181696 A JP21181696 A JP 21181696A JP H1055823 A JPH1055823 A JP H1055823A
Authority
JP
Japan
Prior art keywords
battery
pressing member
stacked
pressing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8211816A
Other languages
Japanese (ja)
Inventor
Kotaro Kobayashi
康太郎 小林
Mitsunori Oda
光徳 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8211816A priority Critical patent/JPH1055823A/en
Publication of JPH1055823A publication Critical patent/JPH1055823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a battery capable of applying uniform pressure to the whole of a plate group through a simple structure, even in the case of such a type as having plates of low strength stacked in a multilayer. SOLUTION: This battery has a stacked plate group formed out of plates stacked so as to prevent the plates of different polarity from coming in contact with each other, and a pressing member 1 for pressing the stacked plate group in a stacked direction. In this case, the pressing member 1 is formed to be substantially resistant against an electrolyte. Also, one side of the pressing member 1 has convex lens type surface and the other side has flat surface. Furthermore, the flat surface of the pressing member 1 is kept in contact with the surface of the stacked plate group at least at one side, while the convex lens type surface thereof is kept in contact with the inner wall of a battery vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は極性の異なる極板同
士を直接接触しないように積層して構成した積層極板群
を備えた電池に関わり、その構造の改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery provided with a laminated electrode group formed by laminating electrode plates having different polarities so as not to be in direct contact with each other, and to an improvement in the structure thereof.

【0002】[0002]

【従来の技術】従来、再充電が可能な二次電池の分野で
は、鉛蓄電池、ニッケル−カドミウム電池、ニッケル−
水素電池等の電池が主流であった。しかしながら、近
年、携帯電話やノート型パソコンの急激な普及に伴い、
より小型で高容量な電池が求められるようになってき
た。このような要求に対して、負極に炭素材を用い、リ
チウムイオンを挿入・脱離させることにより充放電を可
能とした、いわゆるリチウムイオン二次電池が開発され
た。リチウムイオン二次電池は、負極材料に金属リチウ
ムを用いた電池に比べエネルギ−密度は低下するが、安
全で且つ従来の電池よりも高エネルギー密度であるとい
う長所を持ち、急激に市場を広めている。一般にリチウ
ムイオン二次電池は、他の再充電が可能な電池と同様に
極板群に一定の加圧力を付与しなければ、高い放電容量
が得にくいという特徴を持っている。これは前記加圧力
が活物質と集電体との密着性、つまり集電性を向上させ
る作用によるものである。従来の自動車用鉛電池は、ス
ペーサ的な平板加圧部材を電池内に設けることにより、
電池の充放電反応に伴う極板の膨張・収縮などの体積変
化にもかかわらず極板を一定に加圧している。また、薄
型の鉛蓄電池でも、特開平4−62762号公報に示さ
れるように、直接極板中に貫通棒を通し、極板に均一な
加圧力を与えるように工夫がされている。
2. Description of the Related Art Conventionally, in the field of rechargeable secondary batteries, lead-acid batteries, nickel-cadmium batteries, nickel-
Batteries such as hydrogen batteries were the mainstream. However, with the rapid spread of mobile phones and notebook computers in recent years,
There has been a demand for smaller and higher capacity batteries. In response to such a demand, a so-called lithium ion secondary battery has been developed which uses a carbon material for the negative electrode and allows charging and discharging by inserting and removing lithium ions. Lithium ion secondary batteries have lower energy density than batteries using metallic lithium as the negative electrode material, but have the advantage of being safer and have higher energy density than conventional batteries, and have rapidly spread the market. I have. In general, a lithium ion secondary battery has a characteristic that it is difficult to obtain a high discharge capacity unless a certain pressing force is applied to the electrode plate group like other rechargeable batteries. This is because the pressing force improves the adhesion between the active material and the current collector, that is, the effect of improving the current collection. Conventional automotive lead-acid batteries are provided with a flat plate-like pressing member in the battery,
The electrode plate is constantly pressed in spite of volume changes such as expansion and contraction of the electrode plate due to the charge / discharge reaction of the battery. Also, as disclosed in Japanese Patent Application Laid-Open No. 4-62762, a thin lead-acid battery is designed so that a penetrating rod is directly passed through the electrode plate to apply a uniform pressing force to the electrode plate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
スペーサ的な平板加圧部材では、積層極板群全体にその
積層方向へ均一な加圧力を与えることは困難である。こ
れは平板加圧部材が積層極板群全体にその積層方向へ均
一な加圧力を与えるには、1枚の平板加圧部材に厚みの
ばらつきがないことが要求されるためである。これは加
圧部材の成形技術に関わる問題である。例えば電池容器
内面と積層極板群加圧面の間に前記それぞれの面に均一
の加圧力で当接できないような平板加圧部材が配置され
た場合、積層極板群を部分的にしか加圧することができ
ない。部分的に加圧された積層極板群は、実質的に加圧
されない部分を有してしまう。特に用いる極板の強度が
低い場合は、加圧される部分と加圧されない部分の加圧
力の差は非常に大きいものとなる。この理由は、強度の
高い極板は、加圧されない部分でも極板自身がその内側
に位置する極板に対して加圧部材の役割をするのに対
し、強度の低い極板は、容易に変形するので加圧されな
い部分に前記加圧部材の役割を期待できないためであ
る。積層極板群への均一な加圧が行われないと、極板の
オーム損が増大し、電池は所定容量が得られないだけで
なく、特に高率での放電容量が大きく低下してしまう。
また特開平4−62762号公報に示される、直接極板
中に貫通棒を通し加圧する方法でも、強度の低い極板を
用いた極板群への適用は困難である。これは強度の低い
極板を用いた極板群へ貫通棒を通す作業自体が、活物質
の脱落等による電池の短絡等のおそれを伴うものである
だけでなく、前述したように貫通棒付近しか極板群に加
圧がかからず、極板群全体での均一な加圧力は期待でき
ないことに起因する。本発明が解決しようとする課題
は、強度の低い極板を多層に積層するような電池に対し
ても、簡単な構造で極板群全体に均一に加圧力を付与す
ることができる電池を得るものである。
However, it is difficult to apply a uniform pressing force to the entire stacked electrode group in the stacking direction with the conventional flat plate pressing member as a spacer. This is because, in order for the flat plate pressing member to apply a uniform pressing force to the entire stacked electrode group in the stacking direction, it is required that one flat plate pressing member has no variation in thickness. This is a problem related to the molding technique of the pressing member. For example, when a flat plate pressing member that cannot contact the respective surfaces with a uniform pressing force is disposed between the inner surface of the battery container and the pressing surface of the stacked electrode group, the stacked electrode group is only partially pressed. Can not do. The partially-pressed laminated electrode group has a portion that is not substantially pressed. In particular, when the strength of the electrode plate used is low, the difference between the pressing force of the pressed portion and the pressing force of the non-pressed portion is very large. The reason for this is that a high-strength electrode plate functions as a pressing member for an electrode plate located inside even a part where pressure is not applied, whereas a low-strength electrode plate is easily used. This is because the role of the pressure member cannot be expected in a portion that is not pressed because it is deformed. If uniform pressure is not applied to the stacked electrode group, ohmic loss of the electrode plate increases, and not only does the battery not have a predetermined capacity but also the discharge capacity particularly at a high rate is greatly reduced. .
In addition, it is difficult to apply the method to an electrode group using a low-strength electrode plate even by a method of directly passing a penetrating rod through an electrode plate and applying pressure as disclosed in JP-A-4-62762. This is because the work of passing the through rod through the electrode group using a low-strength electrode plate involves not only the risk of short-circuiting of the battery due to the falling off of the active material and the like, but also the vicinity of the through rod as described above. However, pressure is applied only to the electrode plate group, and a uniform pressing force cannot be expected over the entire electrode plate group. The problem to be solved by the present invention is to obtain a battery that can apply a pressing force uniformly to the entire electrode plate group with a simple structure, even for a battery in which low-strength electrode plates are laminated in multiple layers. Things.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明の、極性の異なる極板同士が直接接触しない
ように積層して構成した積層極板群と、当該積層極板群
を積層方向に加圧する加圧部材1を有する電池は、加圧
部材1が耐電解液性であり、且つ加圧部材1の一方の面
が凸レンズ形状、他面が平面であり、加圧部材1の平面
側の面を前記積層極板群の少なくとも一方の端面に当接
し、加圧部材1の凸レンズ形状の面を電池容器内壁に当
接したことを特徴とする。このように片側に凸レンズ形
状、もう片側に平面構造を持った加圧部材1を用いるこ
とにより、凸レンズ形状側では電池容器に対して任意の
点で接し、平面側では極板群面に面で接することとな
る。従って加圧部材1が電池内で加圧面に対し傾斜した
状態でずれても、加圧部材1の凸レンズ形状側が電池容
器に対して点で接することには変わりはなく、その点を
起点として放射状に均一に加圧面に対し加圧力を付与で
きる。また、加圧部材1は実質的に耐電解液性であるこ
とから、電解液中に溶け出すことなく、それによる加圧
部材1の変形を起こすことがない。また電解液のイオン
伝導度の低下等電池性能への悪影響もない。さらに、加
圧部材1は電解液を保持しない材質であることが好まし
い。電解液を保持する材質としては吸水性ポリマー等が
あるが、これらは電解液を保持することにより変形しや
すいためである。但し、電解液を保持しても実質的に変
形しない材質、変形の程度が本発明が解決しようとする
課題を解決できる程度の材質であれば問題ない。
Means for Solving the Problems To solve the above-mentioned problems, a laminated electrode group according to the present invention, which is formed by laminating electrode plates having different polarities so as not to directly contact each other, is laminated. In the battery having the pressing member 1 for pressing in the direction, the pressing member 1 is electrolyte-resistant, one surface of the pressing member 1 is a convex lens shape, and the other surface is flat. The flat surface is in contact with at least one end face of the stacked electrode plate group, and the convex lens-shaped surface of the pressing member 1 is in contact with the inner wall of the battery container. By using the pressing member 1 having a convex lens shape on one side and a planar structure on the other side, the convex lens shape side comes in contact with the battery container at an arbitrary point, and the flat side has a surface in contact with the electrode plate group surface. Will be in contact with you. Therefore, even if the pressing member 1 is displaced in a state inclined with respect to the pressing surface in the battery, the convex lens-shaped side of the pressing member 1 is still in contact with the battery container at a point, and the point is used as a starting point. The pressing force can be uniformly applied to the pressing surface. In addition, since the pressing member 1 is substantially resistant to the electrolytic solution, it does not dissolve into the electrolytic solution and does not cause deformation of the pressing member 1. Also, there is no adverse effect on battery performance such as a decrease in ionic conductivity of the electrolyte. Further, the pressing member 1 is preferably made of a material that does not hold the electrolytic solution. As a material for holding the electrolytic solution, there are water-absorbing polymers and the like, which are easily deformed by holding the electrolytic solution. However, there is no problem as long as the material does not substantially deform even when the electrolyte is held, and the degree of deformation is such that the problem to be solved by the present invention can be solved.

【0005】このような作用から、図1に示すように積
層極板群を積層方向に加圧するに際し、加圧部材1を加
圧面の両側に配置する必要は必ずしもなく、どちらか片
方で十分な効果が得られる。その場合加圧部材1を配さ
ない側の電池容器内面が加圧部材と類似した役割をす
る。但し加圧部材1を加圧面の両側に配置しても当然構
わない。
Due to such an effect, when pressing the laminated electrode group in the laminating direction as shown in FIG. 1, it is not always necessary to arrange the pressing members 1 on both sides of the pressing surface, and one of them is sufficient. The effect is obtained. In this case, the inner surface of the battery container on which the pressing member 1 is not disposed plays a role similar to that of the pressing member. However, the pressing member 1 may be arranged on both sides of the pressing surface.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を、リ
チウムイオン二次電池を例に記述する。 (正極の作製)コバルト酸リチウムに結着剤としてのポ
リフッ化ビニリデンを重量比で8%添加し、これに分散
溶媒としてN−メチルピロリドンを添加、混練したスラ
リを厚み20μmのアルミニウム箔の両面に塗布、その
後乾燥、プレス、裁断することにより厚み200μmの
正極を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below by taking a lithium ion secondary battery as an example. (Preparation of positive electrode) 8% by weight of polyvinylidene fluoride as a binder was added to lithium cobaltate, N-methylpyrrolidone was added as a dispersion solvent, and the kneaded slurry was applied to both surfaces of a 20 μm-thick aluminum foil. A positive electrode having a thickness of 200 μm was obtained by coating, followed by drying, pressing and cutting.

【0007】(負極の作製)グラファイトに結着剤とし
てのポリフッ化ビニリデンを重量比で8%添加し、これ
に分散溶媒としN−メチルピロリドンを添加、混練した
スラリを厚み10μmの銅箔の両面に塗布、その後乾
燥、プレス、裁断することにより厚み130μmの負極
を得た。
(Preparation of Negative Electrode) Polyvinylidene fluoride as a binder is added to graphite at a weight ratio of 8%, N-methylpyrrolidone is added as a dispersing solvent, and the kneaded slurry is mixed with a 10 μm thick copper foil on both sides. , And then dried, pressed and cut to obtain a negative electrode having a thickness of 130 μm.

【0008】上記の方法により作製した正極を、ポリエ
チレン製セパレータを介して上記負極と交互に積層し
た。この極板群とともに、図2に示す片側が凸レンズ形
状、もう片側が平面の構造を持つポリエチレン製の加圧
部材1を角形の電池容器に挿入した。このとき、前記凸
レンズ形状の面を電池容器内面に、前記平面を積層極板
群側にそれぞれ当接させる位置関係にする。さらにこの
とき、電池容器内面とそれぞれの加圧部材との接点には
押圧力が生じ、結果的に積層極板群がその積層方向に加
圧されるよう調整する。その後電池容器上蓋を溶接して
封口、注液口より電解液を所定量注入、注入口を封口す
ることによりリチウムイオン電池を得た。本発明による
積層形二次電池の断面図を図1に示す。電解液にはエチ
レンカーボネートとジメチルカーボネートの混合溶液中
へ6フッ化リン酸リチウムを1モル/リットル溶解した
ものを用いた。
The positive electrode produced by the above method was alternately laminated with the negative electrode via a polyethylene separator. Along with this electrode plate group, a polyethylene pressing member 1 shown in FIG. 2 having a convex lens shape on one side and a flat structure on the other side was inserted into a rectangular battery container. At this time, the convex lens-shaped surface is brought into contact with the inner surface of the battery container, and the plane is brought into contact with the laminated electrode plate side. Further, at this time, a pressing force is generated at the contact point between the inner surface of the battery container and each pressing member, and as a result, the stacked electrode group is adjusted so as to be pressed in the stacking direction. Thereafter, the upper lid of the battery container was welded and sealed, and a predetermined amount of electrolyte was injected from the injection port, and the injection port was sealed to obtain a lithium ion battery. FIG. 1 shows a cross-sectional view of a stacked secondary battery according to the present invention. As the electrolytic solution, a solution prepared by dissolving lithium hexafluorophosphate at 1 mol / L in a mixed solution of ethylene carbonate and dimethyl carbonate was used.

【0009】[0009]

【実施例】本発明の有効性を検証するため、発明の実施
の形態で記載したリチウムイオン二次電池(実施例)及
び後述する従来例1〜3の電池を作製し、比較検討し
た。 (従来例1の電池の作製)上記本発明による実施例と同
様の正極と負極及び電解液、セパレータを用い、セパレ
ータを介して正極と負極が交互になるように積層した。
その後、本発明による実施例で用いた加圧部材は挿入せ
ず、その他は実施例と同様の方法により電池を組み立て
た。この電池には加圧部材が挿入されていない。 (従来例2の電池の作製)上記本発明による実施例と同
様の正極と負極及び電解液、セパレータを用い、セパレ
ータを介して正極と負極が交互になるように積層した。
その後、両側が平面構造を持つ加圧部材を用い、その他
は本発明による実施例と同様の方法により電池を組み立
てた。 (従来例3の電池の作製)上記本発明による実施例と同
様の正極と負極及び電解液、セパレータを用い、セパレ
ータを介して正極と負極が交互になるように積層した。
その後、これらの極板群に貫通棒を通す貫通孔を開け、
熱収縮性ポリプロピレンからなる貫通棒の両端で積層極
板群の両端を押さえ込む構成とし、その後貫通棒を加熱
することにより両面から加圧を加えた。その後、本発明
による実施例と同様の方法により電池を組み立てた。こ
の電池には加圧部材は挿入されていないが、貫通棒によ
り極板群を加圧している。
EXAMPLES In order to verify the effectiveness of the present invention, lithium ion secondary batteries (Examples) described in the embodiments of the invention and batteries of Conventional Examples 1 to 3 described below were produced and compared. (Preparation of Battery of Conventional Example 1) The same positive electrode and negative electrode as in the above-described embodiment of the present invention, an electrolytic solution, and a separator were used, and the positive electrode and the negative electrode were stacked alternately with the separator interposed therebetween.
Thereafter, the battery was assembled in the same manner as in the example except that the pressing member used in the example according to the present invention was not inserted. No pressure member is inserted in this battery. (Preparation of Battery of Conventional Example 2) Using the same positive electrode and negative electrode, an electrolytic solution, and a separator as in the above-described embodiment of the present invention, the positive electrode and the negative electrode were alternately stacked with the separator interposed therebetween.
Thereafter, a battery was assembled in the same manner as in the example according to the present invention, except that a pressing member having a planar structure on both sides was used. (Preparation of Battery of Conventional Example 3) Using the same positive electrode and negative electrode, an electrolytic solution, and a separator as in the above-described example according to the present invention, the positive electrode and the negative electrode were alternately laminated via the separator.
After that, a through hole is made to pass through rods through these electrode plates,
Both ends of the laminated electrode plate group were pressed down at both ends of the through-bar made of heat-shrinkable polypropylene, and then the through-bar was heated to apply pressure from both sides. Thereafter, a battery was assembled in the same manner as in the example according to the present invention. Although no pressing member is inserted in this battery, the electrode group is pressed by a penetrating rod.

【0010】(実験)以上の実施例、従来例1〜3の電
池について、初期容量及び高率放電性能についての比較
をした。初期容量試験は、定電流で8時間率で充電した
後、8時間率(1/8C)で終止電圧=2.8Vまで放
電した。高率放電性能は、初期容量試験後充放電効率が
安定した後、定電流で8時間率で充電し、放電を8時間
率(1/8C)及び1時間率(1C)、2時間率(2
C)で終止電圧=2.8Vまで行った。
(Experiment) The initial capacity and the high-rate discharge performance of the batteries of the above embodiment and conventional examples 1 to 3 were compared. In the initial capacity test, after charging at a constant current at an 8-hour rate, the battery was discharged at an 8-hour rate (1 / C) to a final voltage of 2.8 V. The high-rate discharge performance is as follows: after the charge / discharge efficiency is stabilized after the initial capacity test, the battery is charged at a constant current at an 8-hour rate, and the discharge is performed at an 8-hour rate (1 / 8C), a 1-hour rate (1C), and a 2-hour rate ( 2
In C), the operation was performed up to the final voltage = 2.8V.

【0011】表1に初期容量試験及び高率放電試験の結
果を示す。初期容量は本発明の実施例における電池の放
電容量を100%とした時の比率で示した。高率放電
は、それぞれ1/8C放電に対する比率で示した。
Table 1 shows the results of the initial capacity test and the high rate discharge test. The initial capacity is shown as a ratio when the discharge capacity of the battery in the example of the present invention is set to 100%. The high-rate discharges are shown as ratios to 1 / 8C discharges.

【0012】[0012]

【表1】 [Table 1]

【0013】本発明の実施例の電池は、極板群の被加圧
面全面に均一な加圧力が得られているため、初期容量及
び高率放電性能ともに優れている。これに対し、加圧部
材を用いていない従来例1は、初期容量、高率放電性能
ともに非常に低い。また、他の加圧部材等を用いた従来
例2、3は、加圧部材を用いなかった従来例1よりは特
性に優れるが、本発明による実施例には大きく及ばな
い。この結果から、本発明の実施例に用いた加圧部材を
用いることにより、従来の電池よりも初期容量、高率放
電性能に優れた電池が得られることがわかった。これら
の結果は、実施例に用いた加圧部材が積層極板群をより
均一に加圧できる構造であるため得られるものである。
The battery of the embodiment of the present invention is excellent in both initial capacity and high-rate discharge performance because a uniform pressing force is obtained over the entire surface to be pressed of the electrode plate group. On the other hand, Conventional Example 1, which does not use a pressing member, has very low initial capacity and high-rate discharge performance. Further, Conventional Examples 2 and 3 using other pressurizing members and the like have better characteristics than Conventional Example 1 using no pressurizing members, but do not reach much the embodiments according to the present invention. From these results, it was found that by using the pressing member used in the example of the present invention, a battery having better initial capacity and high-rate discharge performance than the conventional battery could be obtained. These results are obtained because the pressing member used in the embodiment has a structure capable of pressing the laminated electrode group more uniformly.

【0014】本実施例では、図1に示しように加圧部材
を積層極板群の両側の端に配置したが、片側のみに配置
しても本実施例と同様の結果が得られた。但し、本実施
例のように被加圧面の両側に配置した方が、積層極板群
を加圧部材と共に電池容器内へ挿入する際、その作業が
容易だった。これは加圧部材と電池容器との摩擦抵抗が
積層極板群面と電池容器との摩擦抵抗よりも小さいため
である。また本実施例では、正極にコバルト酸リチウ
ム、負極にグラファイト、電解液にエチレンカーボネー
トとジメチルカーボネートの混合溶液中へ6フッ化リン
酸リチウムを1モル/リットル溶解したものを用いた
が、本発明は上記の材料構成に限定されるものではな
く、他の材料構成からなる積層形二次電池においても同
様の効果が確認されている。また加圧部材も、耐電解液
性の材料であれば同様の効果が得られる。リチウムイオ
ン二次電池の場合、加圧部材の他の材料としては本実施
例で用いたポリエチレン以外のポリオレフィン系やポリ
テトラフルオロエチレン等がある。
In this embodiment, as shown in FIG. 1, the pressing members are arranged at both ends of the laminated electrode plate group. However, even if they are arranged only on one side, the same results as in this embodiment are obtained. However, when the stacked electrode group was inserted into the battery container together with the pressing member, the work was easier when the electrodes were placed on both sides of the surface to be pressed as in the present embodiment. This is because the frictional resistance between the pressing member and the battery case is smaller than the frictional resistance between the surface of the stacked electrode plate group and the battery case. In this embodiment, lithium cobalt oxide was used as the positive electrode, graphite was used as the negative electrode, and lithium hexafluorophosphate dissolved at 1 mol / l in a mixed solution of ethylene carbonate and dimethyl carbonate was used as the electrolyte. Is not limited to the above-described material configuration, and a similar effect has been confirmed in a stacked secondary battery having another material configuration. The same effect can be obtained if the pressing member is made of a material resistant to an electrolytic solution. In the case of a lithium ion secondary battery, other materials for the pressing member include polyolefins other than polyethylene and polytetrafluoroethylene other than the polyethylene used in this embodiment.

【0015】[0015]

【発明の効果】本発明により、強度の低い極板を多層に
積層するような電池に対しても、簡単な構造で極板群全
体に均一に加圧力を付与することができる電池を得るこ
とができた。
According to the present invention, it is possible to obtain a battery capable of uniformly applying a pressing force to the entire electrode plate group with a simple structure, even for a battery in which low-strength electrode plates are laminated in multiple layers. Was completed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池の一例を示した断面図である。FIG. 1 is a cross-sectional view showing an example of the battery of the present invention.

【図2】本発明に係る加圧部材の一例を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating an example of a pressing member according to the present invention.

【符号の説明】[Explanation of symbols]

1.加圧部材 2.負極 3.正極 4.セパレータ 1. Pressing member 2. Negative electrode 3. Positive electrode 4. Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】極性の異なる極板同士を直接接触しないよ
うに積層して構成した積層極板群と、当該積層極板群を
積層方向に加圧する加圧部材を有する電池において、 前記加圧部材が実質的に耐電解液性であり、且つ前記加
圧部材の一方の面が凸レンズ形状、他面が平面であり、
該加圧部材の平面側の面を前記積層極板群の少なくとも
一方の端面に当接し、該加圧部材の凸レンズ形状の面を
電池容器内壁に当接したことを特徴とする電池。
1. A battery comprising: a stacked electrode group formed by stacking electrode plates having different polarities so as not to directly contact each other; and a pressing member for pressing the stacked electrode group in a stacking direction. The member is substantially electrolyte-resistant, and one surface of the pressing member is a convex lens shape, and the other surface is flat;
A battery wherein a flat surface of the pressing member is in contact with at least one end surface of the laminated electrode plate group, and a convex lens-shaped surface of the pressing member is in contact with an inner wall of a battery container.
【請求項2】加圧部材が電解液を保持しない材質である
ことを特徴とする請求項1記載の電池。
2. The battery according to claim 1, wherein the pressing member is made of a material that does not hold an electrolytic solution.
【請求項3】電池がリチウムイオン二次電池である請求
項1又は2記載の電池。
3. The battery according to claim 1, wherein the battery is a lithium ion secondary battery.
JP8211816A 1996-08-12 1996-08-12 Battery Pending JPH1055823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8211816A JPH1055823A (en) 1996-08-12 1996-08-12 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8211816A JPH1055823A (en) 1996-08-12 1996-08-12 Battery

Publications (1)

Publication Number Publication Date
JPH1055823A true JPH1055823A (en) 1998-02-24

Family

ID=16612078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8211816A Pending JPH1055823A (en) 1996-08-12 1996-08-12 Battery

Country Status (1)

Country Link
JP (1) JPH1055823A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088778A1 (en) * 2006-01-31 2007-08-09 Toyota Jidosha Kabushiki Kaisha Electrode laminate and bipolar secondary battery
JP2011522125A (en) * 2008-06-04 2011-07-28 徐名勇 Anode elastic pressure plate of electrolytic ozone generator for tight fixing
JP2011530784A (en) * 2008-08-05 2011-12-22 シオン・パワー・コーポレーション Force application in electrochemical cells
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
JP2021150259A (en) * 2020-03-23 2021-09-27 トヨタ自動車株式会社 Battery pack production method and battery pack
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
WO2023228475A1 (en) * 2022-05-26 2023-11-30 パナソニックIpマネジメント株式会社 Battery
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007088778A1 (en) * 2006-01-31 2007-08-09 Toyota Jidosha Kabushiki Kaisha Electrode laminate and bipolar secondary battery
JP2007207510A (en) * 2006-01-31 2007-08-16 Toyota Motor Corp Electrode stack and bipolar secondary battery
JP2011522125A (en) * 2008-06-04 2011-07-28 徐名勇 Anode elastic pressure plate of electrolytic ozone generator for tight fixing
JP2011530784A (en) * 2008-08-05 2011-12-22 シオン・パワー・コーポレーション Force application in electrochemical cells
US11735761B2 (en) 2008-08-05 2023-08-22 Sion Power Corporation Application of force in electrochemical cells
US9105938B2 (en) 2008-08-05 2015-08-11 Sion Power Corporation Application of force in electrochemical cells
US11108077B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
US11121397B2 (en) 2008-08-05 2021-09-14 Sion Power Corporation Application of force in electrochemical cells
US9780404B2 (en) 2008-08-05 2017-10-03 Sion Power Corporation Application of force in electrochemical cells
US10312545B2 (en) 2008-08-05 2019-06-04 Sion Power Corporation Application of force in electrochemical cells
US10320027B2 (en) 2008-08-05 2019-06-11 Sion Power Corporation Application of force in electrochemical cells
US11108076B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US11784297B2 (en) 2017-05-19 2023-10-10 Sion Power Corporation Passivating agents for electrochemical cells
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11929523B2 (en) 2019-11-19 2024-03-12 Sion Power Corporation Batteries, and associated systems and methods
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
JP2021150259A (en) * 2020-03-23 2021-09-27 トヨタ自動車株式会社 Battery pack production method and battery pack
WO2023228475A1 (en) * 2022-05-26 2023-11-30 パナソニックIpマネジメント株式会社 Battery

Similar Documents

Publication Publication Date Title
JP3819785B2 (en) Battery
KR100624971B1 (en) Electrode Plate of Secondary Battery and Method of fabricating the same
CN110556611A (en) Pre-lithiation of negative electrodes for high performance capacitor-assisted batteries
JP4352475B2 (en) Solid electrolyte secondary battery
KR102045246B1 (en) Method for Preparing Secondary Battery Having Improved Performance of Degassing Process
JPH1055823A (en) Battery
JP2003059486A (en) Stacked type battery and its manufacturing method
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JP4313992B2 (en) Design method for prismatic secondary battery
JPH11167930A (en) Layered secondary battery using thin electrode
KR20120075953A (en) Electrode assembly and manufacture thereof
US6737196B2 (en) Method of making a lithium polymer battery and battery made by the method
JPH04294071A (en) Li battery
JP4193248B2 (en) Gel electrolyte battery
TW200423449A (en) Secondary cell with polymer coated anode
KR20200127696A (en) Battery including a bonding structure between a lead tab having plurality of holes and electrode tabs and method of joining electrode tabs and a lead tab of a battery
JPH11126600A (en) Lithium ion secondary battery
JPH10302842A (en) Winding type secondary battery
JPH1064515A (en) Lithium ion secondary battery
JP3511709B2 (en) Thin battery
JPH11297299A (en) Thin secondary battery
CN111108636A (en) Current collector and battery using the same
JP4054925B2 (en) Lithium battery
WO2021210284A1 (en) Lithium ion secondary battery
JP2003297429A (en) Nonaqueous electrolyte secondary battery