JPH1054898A - Device for maintaining quality of condensate stored in condensate tank - Google Patents

Device for maintaining quality of condensate stored in condensate tank

Info

Publication number
JPH1054898A
JPH1054898A JP8212258A JP21225896A JPH1054898A JP H1054898 A JPH1054898 A JP H1054898A JP 8212258 A JP8212258 A JP 8212258A JP 21225896 A JP21225896 A JP 21225896A JP H1054898 A JPH1054898 A JP H1054898A
Authority
JP
Japan
Prior art keywords
condensate
toc
pure water
storage tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8212258A
Other languages
Japanese (ja)
Other versions
JP3597644B2 (en
Inventor
Noriyuki Sasaki
規行 佐々木
Yoshihiro Segawa
嘉弘 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP21225896A priority Critical patent/JP3597644B2/en
Publication of JPH1054898A publication Critical patent/JPH1054898A/en
Application granted granted Critical
Publication of JP3597644B2 publication Critical patent/JP3597644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the quality of a condensate stored in a condensate tank at a high level by installing a TOC(total organic carbon) resolving device to a pure water pipeline and resolving the TOC of the pure water supplied to the condensate tank. SOLUTION: Raw water pumped up from a water source 18, such as the sea, river, etc., is purified by means of a water purifying device 19. In order to the reduce the TOC concentration, a TOC resolving device 24 composed of an ozonizer 30 which generates ozone by hydrolysis, a hollow fiber film filter 25, and a demineralizing tower 26 is installed to a pure water supply pipeline 20 on the downstream side of the device 19. The quality of the condensate stored in a condensate tank 17 is maintained at a high level by resolving the TOC of the pure water flowing in the tank 17. In addition, the condensate in the tank 17 is circulated between the tank 17 and the resolving device 24 through a condensate circulating pipeline 34 by means of a condensate circulating pump 33 even when the TOC concentration of the condensate stored in the tank 17 is high. At the same time, the TOC is resolved by injecting the ozone generated from the ozonizer 30 into the condensate stored in the tank 17 through an ozone injecting pipeline 31.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電プラント
に設置されている復水貯蔵タンク内の貯蔵水中のTOC
(全有機炭素,Total Organic Carbon)を分解除去して
貯蔵水の純度を維持する復水貯蔵タンクの水質維持装置
に関する。
The present invention relates to a TOC in storage water in a condensate storage tank installed in a nuclear power plant.
The present invention relates to a water quality maintenance device for a condensate storage tank that decomposes and removes (total organic carbon) to maintain the purity of stored water.

【0002】[0002]

【従来の技術】図2により従来の沸騰水型原子力発電プ
ラントの一次系を説明し、図3により復水貯蔵タンク内
の貯蔵水の純度維持手段を説明し、図4により炉水中の
TOCと導電率との関係を説明する。
2. Description of the Related Art FIG. 2 illustrates a primary system of a conventional boiling water nuclear power plant, FIG. 3 illustrates a means for maintaining purity of stored water in a condensate storage tank, and FIG. The relationship with the conductivity will be described.

【0003】図2において、原子炉1内で発生した蒸気
は主蒸気管2を介してタービン3に送られ、発電機4を
回転させて発電させる。タービン3を駆動した蒸気は復
水器5で凝縮されて復水となる。
In FIG. 2, steam generated in a nuclear reactor 1 is sent to a turbine 3 via a main steam pipe 2, and a generator 4 is rotated to generate power. The steam that has driven the turbine 3 is condensed in the condenser 5 to be condensed.

【0004】この復水は低圧復水ポンプ6によって昇圧
され、空気抽出器7,グランド蒸気凝縮器8を介し、復
水浄化系に設置されている復水ろ過装置9,復水脱塩装
置10により不純物が除去される。復水脱塩装置10で浄化
された復水は高圧復水ポンプ11でさらに昇圧され、低圧
給水加熱器12に送られて加熱される。
The condensate is pressurized by a low-pressure condensate pump 6, passes through an air extractor 7 and a ground steam condenser 8, and has a condensate filtration device 9 and a condensate desalination device 10 installed in a condensate purification system. Removes impurities. The condensate purified by the condensate desalination device 10 is further pressurized by a high-pressure condensate pump 11 and sent to a low-pressure feedwater heater 12 to be heated.

【0005】そして、さらに給水ポンプ13により昇圧さ
れ、高圧給水加熱器14を通過して加熱され、給水管15を
通して原子炉1内に給水される。なお、原子炉1内の構
造機器健全性のために行う水素を注入するが、この水素
の注入は復水脱塩装置10と高圧復水ポンプ11との間の水
素注入点16で行われる。
Then, the pressure is further increased by a water supply pump 13, heated through a high pressure water heater 14, and supplied to the reactor 1 through a water supply pipe 15. Note that hydrogen is injected for structural equipment integrity in the nuclear reactor 1, and the hydrogen is injected at a hydrogen injection point 16 between the condensate desalination device 10 and the high-pressure condensate pump 11.

【0006】ところで、沸騰水型原子力発電プラントに
は、復水脱塩装置10と高圧復水ポンプ11との間に図3に
示す復水貯蔵タンク17が分岐配管を介して接続されてい
る。図3は水源18からの原水を純水製造装置19により浄
化した純水を復水貯蔵タンク17内に貯蔵する基本系統図
を示している。
In the boiling water nuclear power plant, a condensate storage tank 17 shown in FIG. 3 is connected between a condensate desalination unit 10 and a high-pressure condensate pump 11 via a branch pipe. FIG. 3 shows a basic system diagram for storing pure water obtained by purifying raw water from a water source 18 by a pure water producing apparatus 19 in a condensate storage tank 17.

【0007】図3において、通常は海水や河川水等の水
源1から汲み上げた原水を純水製造装置19により浄化
し、そのまま純水供給配管20を通して復水貯蔵タンク17
へ貯蔵した後、復水補給ポンプ21を経由し、原子力発電
プラント内の各装置22へ移送するようになっている。各
装置22からのプラント余剰水はフィードバック配管23に
より復水貯蔵タンク17に戻すようになっている。
[0007] In FIG. 3, usually, raw water pumped from a water source 1 such as seawater or river water is purified by a pure water production apparatus 19, and the condensed water storage tank 17 is directly passed through a pure water supply pipe 20.
After being stored in the nuclear power plant, it is transferred to each device 22 in the nuclear power plant via the condensate supply pump 21. The plant excess water from each device 22 is returned to the condensate storage tank 17 by a feedback pipe 23.

【0008】図2に示した沸騰水型原子力発電プラント
ではプラントの定期検査終了後、図3に示した復水貯蔵
タンク17に貯蔵している復水を復水補給ポンプを経由し
プラント内の水張りを行う。プラントの起動前浄化は復
水浄化系の復水ろ過装置9および復水脱塩装置10により
行う。
In the boiling water nuclear power plant shown in FIG. 2, after the periodic inspection of the plant is completed, the condensate stored in the condensate storage tank 17 shown in FIG. Fill with water. The purification before starting the plant is performed by the condensate filtration device 9 and the condensate desalination device 10 of the condensate purification system.

【0009】この浄化に際して、復水貯蔵タンク17のT
OCが高い場合、復水ろ過装置9および復水脱塩装置10
でも完全にTOC成分を除去することが困難な場合があ
る。このため、プラントの水張り前にTOC濃度を確認
し、高い場合は復水貯蔵タンク17の全水量(約2000〜 3
000m3 )をブローし、純水製造装置19から再び貯蔵して
TOCが低いことを確認した後、プラントの再水張りを
行う。プラント起動前浄化が完了し、プラントが起動後
の水の流れは図2で説明したとおりである。
At the time of this purification, the T
When the OC is high, the condensate filtration unit 9 and the condensate desalination unit 10
However, it may be difficult to completely remove the TOC component. For this reason, the TOC concentration is checked before filling the plant. If the TOC concentration is high, the total amount of water in the condensate storage tank 17 (about 2000 to 3
000m 3 ) is blown and stored again from the pure water production apparatus 19 to confirm that the TOC is low, and then the plant is refilled. The flow of water after the completion of the purification before the start of the plant and the start of the plant is as described in FIG.

【0010】[0010]

【発明が解決しようとする課題】従来の純水製造装置は
ろ過と脱塩作用を組み合わせて構成されている。すなわ
ち、図3に示したように原水を純水製造装置17により純
水を製造し、純水供給配管20を通して復水貯蔵タンク17
に供給し貯蔵することとなる。純水製造装置17にはイオ
ン交換樹脂が充填されており、原水の脱塩処理はイオン
交換樹脂により行う。
A conventional pure water producing apparatus is constructed by combining filtration and desalting. That is, as shown in FIG. 3, pure water is produced from the raw water by the pure water producing device 17 and the condensate storage tank 17 is passed through the pure water supply pipe 20.
To be stored. The pure water production apparatus 17 is filled with an ion exchange resin, and the desalination treatment of the raw water is performed using the ion exchange resin.

【0011】このイオン交換樹脂は経年的な酸化劣化等
により樹脂母体から有機不純物を溶出する。この有機不
純物はTOC(全有機炭素,Total Organic Carbon)と
呼ばれる。イオン交換樹脂が発生するTOCは分解する
と硫酸イオンや硝酸イオンを生じ、これがプラント構成
材料の腐食等の悪影響を与えることになる。
This ion exchange resin elutes organic impurities from the resin matrix due to aging deterioration and the like. This organic impurity is called TOC (Total Organic Carbon). When the TOC generated by the ion exchange resin is decomposed, sulfate and nitrate ions are generated, which has an adverse effect such as corrosion of plant constituent materials.

【0012】図4に復水のTOC濃度および炉水導電率
と時間との関係を示す。図4中たて軸は左側がTOC濃
度、右側は導電率で、よこ軸は日時で、符号aは炉水導
電率(TOC高)、bは炉水導電率(TOC低)、cは
TOC濃度(高)、dはTOC濃度(低)を示してい
る。復水とは復水貯蔵タンク17内の貯蔵水であり、炉水
とは原子炉1内に給水した冷却水である。
FIG. 4 shows the relationship between the TOC concentration of the condensate water and the reactor water conductivity and time. In FIG. 4, the vertical axis is the TOC concentration on the left side, the electrical conductivity is on the right side, the horizontal axis is the date and time, the symbol a is reactor water electrical conductivity (TOC high), b is reactor water electrical conductivity (TOC low), and c is TOC. The concentration (high) and d indicate the TOC concentration (low). The condensed water is the stored water in the condensed water storage tank 17, and the reactor water is the cooling water supplied to the reactor 1.

【0013】図4から明らかなように、復水のTOC濃
度(高)cが 150ppb程度の場合、炉水導電率TOC
(高)aはプラント起動直後高くなる。復水のTOC濃
度(低)dの場合は炉水導電率TOC(低)bのように
低くなる。
As is clear from FIG. 4, when the TOC concentration (high) c of the condensate is about 150 ppb, the reactor water conductivity TOC
(High) a becomes high immediately after the start of the plant. In the case of the TOC concentration (low) d of the condensed water, it becomes low like the reactor water conductivity TOC (low) b.

【0014】一般に、原子力発電プラントではプラント
起動時等の補給水として使用する水を貯蔵する復水貯蔵
タンク17を有している。このため、TOC成分の多い補
給水でプラント起動時の水張りを行った場合、起動時の
水質が悪化する事象が生じ、このTOCを低減すること
が課題となっている。
Generally, a nuclear power plant has a condensate storage tank 17 for storing water used as make-up water at the time of starting the plant. For this reason, when water is filled at the time of starting the plant with make-up water having a large amount of TOC components, an event that the water quality at the time of starting is deteriorated occurs, and reducing the TOC has been a problem.

【0015】また、復水貯蔵タンク17にはプラントの各
装置22からの余剰水が集められる。この余剰水中に定期
検査時に使用した防錆剤、油分等のTOC成分を同伴
し、流入する可能性があり、復水貯蔵タンク水を単独で
TOCを低減する方法の確立が課題となっている。
The condensate storage tank 17 collects surplus water from each device 22 of the plant. There is a possibility that TOC components such as the rust preventive agent and oil used during the periodic inspection may be introduced into the surplus water and may flow into the surplus water. Therefore, it is an issue to establish a method for reducing the TOC by using the condensate storage tank water alone. .

【0016】本発明は上記課題を解決するためになされ
たもので、復水貯蔵タンク内の貯蔵水のTOC成分を分
解除去して復水貯蔵タンク内貯蔵水の水質を高く維持す
ることが可能で、水分解時に発生する水素を有効に利用
することができる復水貯蔵タンク内の水質維持装置を提
供することにある。
The present invention has been made to solve the above-mentioned problems, and it is possible to decompose and remove the TOC component of the storage water in the condensate storage tank to maintain the quality of the water in the condensate storage tank high. Accordingly, an object of the present invention is to provide a water quality maintaining device in a condensate storage tank that can effectively use hydrogen generated during water decomposition.

【0017】[0017]

【課題を解決するための手段】請求項1の発明は、原水
を浄化する純水製造装置と、この純水製造装置に接続し
た純水供給配管と、この純水供給配管の下流側に接続し
た復水貯蔵タンクと、前記純水供給配管に設けたオゾン
発生器を有するTOC(全有機炭素)分解装置とを具備
したことを特徴とする。
According to a first aspect of the present invention, there is provided a pure water producing apparatus for purifying raw water, a pure water supply pipe connected to the pure water producing apparatus, and a pure water supply pipe connected downstream of the pure water supply pipe. And a TOC (total organic carbon) decomposer having an ozone generator provided in the pure water supply pipe.

【0018】本発明によれば、水分解によるオゾン発生
器により復水貯蔵タンクへ供給する純水のTOCをオゾ
ンにより分解し、復水貯蔵タンクの水質を高く維持する
ことができる。
According to the present invention, the TOC of pure water supplied to the condensate storage tank is decomposed with ozone by the ozone generator by water decomposition, and the water quality of the condensate storage tank can be maintained high.

【0019】請求項2の発明は、前記TOC分解装置は
前記純水供給配管に接続した中空糸膜ろ過器と、この中
空糸膜ろ過器に接続したイオン交換樹脂が充填された脱
塩塔と、この脱塩塔の出口側に脱塩水供給配管を介して
接続したオゾン発生器と、このオゾン発生器のオゾン出
口側と前記復水貯蔵タンクの入口側の純水供給配管に接
続したオゾン注入配管とからなることを特徴とする。
According to a second aspect of the present invention, the TOC decomposing apparatus includes a hollow fiber membrane filter connected to the pure water supply pipe, and a desalination tower filled with an ion exchange resin connected to the hollow fiber membrane filter. An ozone generator connected to the outlet side of the desalination tower via a desalinated water supply pipe, and ozone injection connected to the ozone outlet side of the ozone generator and the pure water supply pipe on the inlet side of the condensate storage tank. It is characterized by comprising a pipe.

【0020】本発明によれば、中空糸膜ろ過器および脱
塩塔により純水製造装置で浄化された純水の純度をより
高めることができ、オゾンによるTOCの分解効率を高
め、復水貯蔵タンクの水質を維持できる。
According to the present invention, the purity of pure water purified by the pure water producing apparatus can be further improved by the hollow fiber membrane filter and the desalination tower, the efficiency of TOC decomposition by ozone is increased, and condensate is stored. The water quality of the tank can be maintained.

【0021】請求項3の発明は、前記復水貯蔵タンク
と、前記純水製造装置と前記TOC分解装置との間の純
水供給配管を接続する循環配管を設けてなることを特徴
とする。本発明によれば、オゾンにより分解したTOC
成分を含む貯蔵水を循環配管によりフィードバックして
中空糸膜ろ過器および脱塩塔で除去することができるの
で、復水貯蔵タンクの水質をより一層高く維持すること
ができる。
A third aspect of the present invention is characterized in that a circulation pipe is provided for connecting the condensate storage tank and a pure water supply pipe between the pure water producing apparatus and the TOC decomposing apparatus. According to the present invention, TOC decomposed by ozone
Since the stored water containing the components can be fed back through the circulation pipe and removed by the hollow fiber membrane filter and the desalination tower, the water quality of the condensate storage tank can be further maintained.

【0022】請求項4の発明は、前記TOC分解装置を
原子力発電プラントの復水浄化系に設けてなることを特
徴とする。本発明によれば、オゾン発生器から発生する
オゾンを復水浄化系の復水脱塩装置の下流に供給するこ
とができるため、プラント起動前の浄化運転時にTOC
分解を行うことができる。
The invention of claim 4 is characterized in that the TOC decomposing device is provided in a condensate purification system of a nuclear power plant. According to the present invention, the ozone generated from the ozone generator can be supplied to the downstream of the condensate desalination apparatus of the condensate purification system.
Decomposition can be performed.

【0023】請求項5の発明は、前記TOC分解装置を
原子力発電プラント内の熱源,給水への水素注入時の水
素源に配管接続してなることを特徴とする。本発明によ
れば、オゾン発生器から発生する水素を燃焼させて、そ
の熱エネルギを原子力発電プラントの熱源に利用するこ
とができる。また、原子炉内機器の健全性維持に有効な
水素源とすることができる。
A fifth aspect of the present invention is characterized in that the TOC decomposing apparatus is connected to a heat source in a nuclear power plant and a hydrogen source at the time of injecting hydrogen into feed water by piping. ADVANTAGE OF THE INVENTION According to this invention, the hydrogen generated from an ozone generator can be burned and the thermal energy can be utilized for the heat source of a nuclear power plant. Further, the hydrogen source can be an effective hydrogen source for maintaining the integrity of the equipment in the reactor.

【0024】[0024]

【発明の実施の形態】図1により本発明に係る復水貯蔵
タンクの水質維持装置の実施の形態を説明する。図1
中、図3と同一部分には同一符号を付して重複する部分
の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a water quality maintaining device for a condensate storage tank according to the present invention will be described with reference to FIG. FIG.
3, the same parts as those in FIG. 3 are denoted by the same reference numerals, and the description of the overlapping parts will be omitted.

【0025】本発明の実施の形態が図3に示す従来例と
異なる点は、純水製造装置19と復水貯蔵タンク17とを接
続する純水供給配管20にTOC分解装置24を設けて復水
貯蔵タンク17へ流入する純水中のTOCを分解すること
により、復水貯蔵タンク17内の貯蔵水のTOC濃度を低
減して水質を高純度に維持し、例えば原子炉1へ供給す
る給水の水質を高純度に維持することにある。
The embodiment of the present invention is different from the conventional example shown in FIG. 3 in that a TOC decomposing device 24 is provided in a pure water supply pipe 20 connecting a pure water producing device 19 and a condensate storage tank 17. By decomposing the TOC in the pure water flowing into the water storage tank 17, the TOC concentration of the storage water in the condensate storage tank 17 is reduced to maintain the water quality at high purity. The purpose of the present invention is to maintain the water quality of high purity.

【0026】TOC分解装置20は純水製造装置19の下流
側の純水供給配管20に直列接続した中空糸膜ろ過器25と
脱塩塔26を備えている。中空糸膜ろ過器25の入口側と脱
塩塔26の出口側にはバイパス弁27を有するバイパス配管
28が設けられている。脱塩塔26の出口側には脱塩水供給
配管29が接続し、この脱塩水供給配管29にオゾン発生器
30が接続されている。
The TOC decomposing device 20 includes a hollow fiber membrane filter 25 and a desalting tower 26 connected in series to a pure water supply pipe 20 downstream of the pure water producing device 19. A bypass pipe having a bypass valve 27 on the inlet side of the hollow fiber membrane filter 25 and the outlet side of the desalination tower 26
28 are provided. A desalinated water supply pipe 29 is connected to the outlet side of the desalination tower 26, and an ozone generator is connected to the desalinated water supply pipe 29.
30 is connected.

【0027】このオゾン発生器30のオゾン出口側と脱塩
塔26側のバイパス配管28の下流側はオゾン注入配管31に
より接続されている。オゾン発生器30には水素ガス流出
管32が接続している。復水貯蔵タンク17と純水製造装置
19との間には復水循環ポンプ33を有する循環配管34が設
けられている。
The ozone outlet side of the ozone generator 30 and the downstream side of the bypass pipe 28 on the desalination tower 26 side are connected by an ozone injection pipe 31. A hydrogen gas outlet pipe 32 is connected to the ozone generator 30. Condensate storage tank 17 and pure water production equipment
A circulation pipe 34 having a condensate circulation pump 33 is provided between the circulation pipe 34 and the circulation pipe 19.

【0028】つぎに本実施の形態の作用を説明する。図
1に示すように、海水や河川水等の水源18から汲み上げ
た原水を純水製造装置19により浄化し、そのまま復水貯
蔵タンク17へ貯蔵した後、復水補給ポンプ21を経由し、
プラント内の各装置22へ移送するが、本実施の形態で
は、TOC濃度を低減するために純水製造装置19の下流
側に水分解によるオゾン発生器30と、中空糸膜ろ過器25
と、脱塩塔26からなるTOC分解装置24を設けたもので
ある。
Next, the operation of the present embodiment will be described. As shown in FIG. 1, raw water pumped from a water source 18 such as seawater or river water is purified by a pure water production apparatus 19, stored in a condensate storage tank 17 as it is, and passed through a condensate supply pump 21,
In the present embodiment, in order to reduce the TOC concentration, an ozone generator 30 by water splitting and a hollow fiber membrane filter 25 are provided downstream of the pure water production apparatus 19 in order to reduce the TOC concentration.
And a TOC decomposer 24 comprising a desalination tower 26.

【0029】また、図1はTOC分解装置24を実施した
系統において、復水循環配管34を用いて、復水貯蔵タン
ク17内の水をTOC分解装置24との間で循環させる。こ
れにより既に貯蔵している復水のTOC濃度が高い場合
でも復水循環ポンプ33を経由し循環運転を行う。同時に
オゾン発生器30から発生するオゾンをオゾン注入配管31
から注入し、復水貯蔵タンク17に戻し、オゾンの分解作
用によりTOCを分解させる。
FIG. 1 shows a system in which the TOC decomposer 24 is implemented, in which water in the condensate storage tank 17 is circulated between the TOC decomposer 24 and the condensate storage tank 17 using a condensate circulation pipe 34. Thus, even when the TOC concentration of the condensed water already stored is high, the circulation operation is performed via the condensate circulation pump 33. At the same time, the ozone generated from the ozone generator 30 is supplied to the ozone injection pipe 31.
And returned to the condensate storage tank 17 to decompose the TOC by the decomposing action of ozone.

【0030】循環運転により中空糸膜ろ過器25と脱塩塔
26を通すことによりTOCが分解し、生成する硫酸イオ
ン,硝酸イオン等のイオン不純物を除去する。これによ
り復水貯蔵タンク17の水質を高純度に維持できる。この
循環運転は復水貯蔵タンク17単独で実施することが可能
である。この循環運転は中空糸膜ろ過器25,脱塩塔26を
バイパス配管28によりバイパスすることが可能であり、
オゾン単独の注入も可能である。
By the circulation operation, the hollow fiber membrane filter 25 and the desalination tower
The TOC is decomposed by passing through 26 to remove ionic impurities such as sulfate ions and nitrate ions generated. Thereby, the water quality of the condensate storage tank 17 can be maintained at high purity. This circulation operation can be performed by the condensate storage tank 17 alone. In this circulation operation, the hollow fiber membrane filter 25 and the desalination tower 26 can be bypassed by the bypass pipe 28,
Injection of ozone alone is also possible.

【0031】また、TOC分解装置24を原子力発電プラ
ントの復水浄化系に設けることができる。すなわち、オ
ゾン発生器30から発生するオゾンを直接プラント内の複
数脱塩装置の下流に供給することにより、プラント起動
前の浄化運転時にTOC分解を行うことが可能となる。
Further, the TOC decomposing device 24 can be provided in a condensate purification system of a nuclear power plant. That is, by directly supplying ozone generated from the ozone generator 30 to the downstream of the plurality of desalination devices in the plant, it becomes possible to perform TOC decomposition during the purification operation before starting the plant.

【0032】さらに、TOC分解装置24を原子力発電プ
ラント内の熱源,給水への水素注入時の水素源に配管接
続することができる。すなわち、水分解によるオゾン発
生器30はオゾン生成と同時に水素を発生させる。この水
素を燃焼させた熱エネルギーを利用し所内の熱供給とし
て利用することが可能である。
Further, the TOC decomposer 24 can be connected to a heat source in the nuclear power plant and a hydrogen source at the time of injecting hydrogen into feed water. That is, the ozone generator 30 by water decomposition generates hydrogen simultaneously with the generation of ozone. The thermal energy obtained by burning the hydrogen can be used as heat supply in the place.

【0033】原子力発電所の場合、近年炉内機器の健全
性維持のため水素注入が有効なことが確認され、実機に
適用を開始したプラントがある。この水素源としてオゾ
ン発生器30から発生する水素を利用することが可能であ
る。
In the case of a nuclear power plant, it has been confirmed in recent years that hydrogen injection is effective for maintaining the integrity of in-furnace equipment. Hydrogen generated from the ozone generator 30 can be used as the hydrogen source.

【0034】[0034]

【発明の効果】本発明によれば、水分解によるオゾン発
生部を組み合わせた純水製造可能なTOC分解装置によ
り復水貯蔵タンクへ流入するTOCをオゾンにより分解
し、復水貯蔵タンクの貯蔵水のTOC濃度を低減する。
According to the present invention, the TOC flowing into the condensate storage tank is decomposed with ozone by the TOC decomposer capable of producing pure water by combining the ozone generator by water decomposition, and the stored water in the condensate storage tank is decomposed. To reduce the TOC concentration.

【0035】また、内部に中空糸膜とイオン交換樹脂か
らなる浄化装置と水分解によるオゾン発生装置を組み合
わせたTOC分解装置を純水製造装置の下流側に設置
し、復水貯蔵タンクへ流入するTOCを分解することに
より、復水貯蔵タンクの貯蔵水の水質を高純度に維持
し、炉水水質を高純度に維持することができる。
Further, a TOC decomposing device, which is a combination of a purifying device including a hollow fiber membrane and an ion exchange resin therein and an ozone generating device by water splitting, is installed downstream of the pure water producing device, and flows into a condensate storage tank. By decomposing the TOC, the quality of the stored water in the condensate storage tank can be maintained at high purity, and the water quality of the reactor water can be maintained at high purity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る貯蔵タンクの水質純度維持装置の
実施も形態を示す系統図。
FIG. 1 is a system diagram showing an embodiment of an apparatus for maintaining the purity of water in a storage tank according to the present invention.

【図2】従来の沸騰水型原子力発電プラントの一次系を
示す系統図。
FIG. 2 is a system diagram showing a primary system of a conventional boiling water nuclear power plant.

【図3】図2のプラントの復水脱塩装置の下流側に設け
た復水貯蔵タンク内への純水を貯蔵する基本系統図。
FIG. 3 is a basic system diagram for storing pure water in a condensate storage tank provided on the downstream side of the condensate desalination apparatus of the plant of FIG. 2;

【図4】図3において炉水中のTOCと導電率の関係を
示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between TOC in reactor water and conductivity in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉、2…主蒸気管、3…タービン、4…発電
機、5…主復水機、6…低圧復水ポンプ、7…空気抽出
器、8…グランド蒸気復水器、9…復水ろ過装置、10…
復水脱塩装置、11…高圧復水ポンプ、12…低圧給水加熱
器、13…給水ポンプ、14…高圧給水加熱器、15…給水
管、16…水素注入点、17…復水貯蔵タンク、18…水源、
19…純水製造装置、20…給水供給配管、21…復水補給ポ
ンプ、22…各装置、23…フィードバック配管、24…TO
C分解装置、25…中空糸膜ろ過器、26…脱塩塔、27…バ
イパス弁、28…バイパス配管、29…脱塩塔供給配管、30
…オゾン発生器、31…オゾン注入配管、32…水素ガス流
出管、33…復水循環ポンプ、34…循環配管。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main steam pipe, 3 ... Turbine, 4 ... Generator, 5 ... Main condenser, 6 ... Low pressure condenser pump, 7 ... Air extractor, 8 ... Ground steam condenser, 9 ... Condensate filtration device, 10 ...
Condensate desalination equipment, 11 high-pressure condensate pump, 12 low-pressure feedwater heater, 13 feedwater pump, 14 high-pressure feedwater heater, 15 feedwater pipe, 16 hydrogen supply point, 17 condensate storage tank, 18 ... water source,
19 ... pure water production equipment, 20 ... supply water supply piping, 21 ... condensate supply pump, 22 ... each equipment, 23 ... feedback piping, 24 ... TO
C decomposition device, 25 hollow fiber membrane filter, 26 desalination tower, 27 bypass valve, 28 bypass pipe, 29 desalination tower supply pipe, 30
... ozone generator, 31 ... ozone injection pipe, 32 ... hydrogen gas outlet pipe, 33 ... condensing water circulation pump, 34 ... circulation pipe.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 原水を浄化する純水製造装置と、この純
水製造装置に接続した純水供給配管と、この純水供給配
管の下流側に接続した復水貯蔵タンクと、前記純水供給
配管に設けたオゾン発生器を有するTOC(全有機炭
素)分解装置とを具備したことを特徴とする復水貯蔵タ
ンクの水質維持装置。
1. A pure water producing apparatus for purifying raw water, a pure water supply pipe connected to the pure water producing apparatus, a condensate storage tank connected to a downstream side of the pure water supply pipe, A water quality maintaining device for a condensate storage tank, comprising: a TOC (total organic carbon) decomposing device having an ozone generator provided in a pipe.
【請求項2】 前記TOC分解装置は前記純水供給配管
に接続した中空糸膜ろ過器と、この中空糸膜ろ過器に接
続したイオン交換樹脂が充填された脱塩塔と、この脱塩
塔の出口側に脱塩水供給配管を介して接続したオゾン発
生器と、このオゾン発生器のオゾン出口側と前記復水貯
蔵タンクの入口側の純水供給配管に接続したオゾン注入
配管とからなることを特徴とする請求項1記載の復水貯
蔵タンクの水質維持装置。
2. The TOC decomposition apparatus includes a hollow fiber membrane filter connected to the pure water supply pipe, a desalination tower filled with an ion exchange resin connected to the hollow fiber membrane filter, and a desalination tower. An ozone generator connected to the outlet side of the ozone generator via a desalinated water supply pipe, and an ozone injection pipe connected to the ozone outlet side of the ozone generator and the pure water supply pipe on the inlet side of the condensate storage tank. The water quality maintaining device for a condensate storage tank according to claim 1, wherein:
【請求項3】 前記復水貯蔵タンクと、前記純水製造装
置と前記TOC分解装置との間の純水供給配管に循環ポ
ンプを介して循環配管を設けてなることを特徴とする請
求項1記載の復水貯蔵タンクの水質維持装置。
3. A circulation pipe is provided through a circulation pump in a pure water supply pipe between the condensate storage tank and the pure water production apparatus and the TOC decomposition apparatus. The water quality maintaining device for the condensate storage tank described in the above.
【請求項4】 前記TOC分解装置を原子力発電プラン
トの復水浄化系に設けてなることを特徴とする請求項1
記載の復水貯蔵タンクの水質維持装置。
4. The nuclear reactor according to claim 1, wherein said TOC decomposition apparatus is provided in a condensate purification system of a nuclear power plant.
The water quality maintaining device for the condensate storage tank described in the above.
【請求項5】 前記TOC分解装置を原子力発電プラン
ト内の熱源,給水への水素注入時の水素源に配管接続し
てなることを特徴とする請求項1記載の復水貯蔵タンク
の水質維持装置。
5. The water quality maintaining device for a condensate storage tank according to claim 1, wherein the TOC decomposing device is connected to a heat source in a nuclear power plant and a hydrogen source when hydrogen is injected into feed water. .
JP21225896A 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants Expired - Lifetime JP3597644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21225896A JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21225896A JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Publications (2)

Publication Number Publication Date
JPH1054898A true JPH1054898A (en) 1998-02-24
JP3597644B2 JP3597644B2 (en) 2004-12-08

Family

ID=16619602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21225896A Expired - Lifetime JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Country Status (1)

Country Link
JP (1) JP3597644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169723A (en) * 2010-02-18 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Condensate demineralizer
JP2014089139A (en) * 2012-10-31 2014-05-15 Hitachi-Ge Nuclear Energy Ltd Nuclear fuel cooling method and nuclear fuel cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169723A (en) * 2010-02-18 2011-09-01 Hitachi-Ge Nuclear Energy Ltd Condensate demineralizer
JP2014089139A (en) * 2012-10-31 2014-05-15 Hitachi-Ge Nuclear Energy Ltd Nuclear fuel cooling method and nuclear fuel cooling device

Also Published As

Publication number Publication date
JP3597644B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP6420729B2 (en) Thermal power generation facility for recovering moisture from exhaust gas and method for treating recovered water of the thermal power generation facility
US9962664B2 (en) Method for recovering process wastewater from a steam power plant
JP2004108240A (en) Power generation plant and power generation method
JPH1147560A (en) Secondary system line water treatment plant for pressurized water type atomic power plant
JP3597644B2 (en) Water quality maintenance equipment for nuclear power plants
JP2007147453A (en) Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer
JP2005066544A (en) Method for recovering monoethanolamine
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP2010064074A (en) Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer
JP6578134B2 (en) Water treatment equipment and nuclear equipment
JP6021739B2 (en) Boiler water supply system
JP6575626B1 (en) Pure water production equipment
JP2007224820A (en) Turbine facilities, heat recovery steam generator and water treatment method
JPH0790220B2 (en) Boiler feedwater treatment method and boiler feedwater treatment device
JP4724194B2 (en) Water treatment apparatus and water treatment method
JP6562105B1 (en) Pure water production equipment
JPH11304993A (en) Turbine equipment for power generation
JP3071306B2 (en) Removal system for organic impurities in water
JPH10160893A (en) Reactor power facility
JP2933407B2 (en) Condensate purification device
JP6562107B1 (en) Pure water production equipment
Galt et al. Ethanolamine experience at Koeberg nuclear power station, South Africa
SU1343043A1 (en) Steam-gas power plant
KR20160047548A (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
JPH1020080A (en) Nuclear power plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term