JP2014089139A - Nuclear fuel cooling method and nuclear fuel cooling device - Google Patents

Nuclear fuel cooling method and nuclear fuel cooling device Download PDF

Info

Publication number
JP2014089139A
JP2014089139A JP2012240024A JP2012240024A JP2014089139A JP 2014089139 A JP2014089139 A JP 2014089139A JP 2012240024 A JP2012240024 A JP 2012240024A JP 2012240024 A JP2012240024 A JP 2012240024A JP 2014089139 A JP2014089139 A JP 2014089139A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
water
nuclear fuel
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012240024A
Other languages
Japanese (ja)
Other versions
JP5969355B2 (en
Inventor
Kentaro Hirabayashi
健太郎 平林
Masao Kataoka
雅男 片岡
Kyoichi Okubo
享一 大久保
Yoichi Tsunoda
洋一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2012240024A priority Critical patent/JP5969355B2/en
Publication of JP2014089139A publication Critical patent/JP2014089139A/en
Application granted granted Critical
Publication of JP5969355B2 publication Critical patent/JP5969355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear fuel cooling method that can cool a nuclear fuel even when cooling of the nuclear fuel by cooling water held in a plant is disabled.SOLUTION: When a cooling material loss accident takes place, a high pressure core flooder device 8 pours cooling water 36 in a condensate storage tank 15 into a reactor pressure vessel 2 provided with a reactor core having a fuel assembly loaded through cooling water supply pipes 14 and 10. When a water level in the condensate storage tank 15 is lowered to a set water level, an on-off valve 44 is not opened and cooling water 37 of a pressure suppression pool 6 cannot be poured into the reactor pressure vessel 2, sea water to be supplied by a sea water supply pipe 24 is supplied to a reverse osmosis membrane device 46 to generate plain water, and the generated plain water is supplied to the condensate storage tank 15 by a piping 26. The plain water is poured into the reactor pressure vessel 2 through the cooling water supply pipes 14 and 10 as the cooling water 36.

Description

本発明は、核燃料冷却方法及び核燃料冷却装置に係り、特に、沸騰水型原子力プラントに適用するのに好適な核燃料冷却方法及び核燃料冷却装置に関する。   The present invention relates to a nuclear fuel cooling method and a nuclear fuel cooling device, and more particularly to a nuclear fuel cooling method and a nuclear fuel cooling device suitable for application to a boiling water nuclear power plant.

沸騰水型原子力プラントでは、例えば、冷却水喪失事故が発生した場合に原子炉圧力容器内の炉心、すなわち、炉心に装荷されている、核燃料を含む燃料集合体を冷却するために、非常炉心冷却装置を備えている。この非常用炉心冷却装置の一例が特開昭62−217193号公報に記載されています。非常用炉心冷却装置は、原子炉格納容器内の圧力抑制プールの冷却水を、原子炉圧力容器内の炉心に供給する高圧炉心冷却装置及び低圧炉心冷却装置を備えている。高圧炉心冷却装置及び低圧炉心冷却装置は、圧力抑制プール内の冷却水の替りに、復水貯蔵タンク内の冷却水を炉心に供給できる構成を有する。   In a boiling water nuclear power plant, for example, when a loss of cooling water occurs, an emergency core cooling is performed to cool the core in the reactor pressure vessel, that is, the fuel assembly including the nuclear fuel loaded in the core. Equipment. An example of this emergency core cooling device is described in JP-A-62-2217193. The emergency core cooling device includes a high-pressure core cooling device and a low-pressure core cooling device that supply cooling water of the pressure suppression pool in the reactor containment vessel to the core in the reactor pressure vessel. The high pressure core cooling device and the low pressure core cooling device have a configuration capable of supplying the cooling water in the condensate storage tank to the core instead of the cooling water in the pressure suppression pool.

また、沸騰水型原子力プラントでは、タービンから排出された蒸気を復水器で冷却して凝縮している。蒸気の凝縮により生成された復水器内の水は、給水として、給水配管を通して原子炉圧力容器内に供給される。復水器では、伝熱管内に海水を供給し、伝熱管内の海水によりその蒸気を凝縮している。イオン交換樹脂を充填している復水脱塩装置が給水配管に設けられる。   In a boiling water nuclear power plant, steam discharged from a turbine is cooled by a condenser and condensed. The water in the condenser generated by the condensation of steam is supplied as feed water into the reactor pressure vessel through the feed water pipe. In the condenser, seawater is supplied into the heat transfer tube, and the steam is condensed by the seawater in the heat transfer tube. A condensate demineralizer filled with ion exchange resin is provided in the water supply pipe.

この復水脱塩装置は、特開平6−170361号公報に記載されているように、海水を供給する、復水器内の伝熱管が損傷して海水が伝熱管から漏洩した場合に、海水成分を除去する。このため、復水器の伝熱管から復水器内に漏洩した海水成分の原子炉圧力容器内への流入が阻止される。   As described in Japanese Patent Laid-Open No. Hei 6-170361, this condensate demineralizer is configured to supply seawater when the heat transfer pipe in the condenser is damaged and seawater leaks from the heat transfer pipe. Remove ingredients. For this reason, inflow of the seawater component leaked into the condenser from the heat transfer tube of the condenser into the reactor pressure vessel is prevented.

加圧水型原子力プラントにおいても、復水器の伝熱管から海水が漏えいしたときの対策案が提案されている(特開2009−162514号公報参照)。この加圧水型原子力プラントでは、蒸気発生器で発生した蒸気が蒸気管を通してタービンに供給され、タービンから排出された蒸気が復水器で凝縮される。この凝縮で得られた水が、給水として、給水配管を通して蒸気発生器に供給される。復水器から蒸気発生器に供給される給水の一部が復水脱塩装置に供給される。上記の加圧水型原子力プラントには、補給水供給設備が設けられており、補給水供給設備は原水を浄化する純水装置、浄化された純水を貯蔵する純水タンクが設けられる。純水装置及び純水タンクは配管に設けられ、この配管は給水配管に接続される。蒸気発生器と復水器が給水配管とは別に処理水管で連絡される。この処理水管に流出管が接続され、ブローダウン水循環ラインが流出管に接続されて純水装置に連絡される。純水装置には逆浸透膜純水装置が用いられる。純水装置に供給される補給水としての原水は、海水をろ過してろ過水タンクに貯蔵されているろ過水が用いられる。   Also in a pressurized water nuclear power plant, a countermeasure plan when seawater leaks from a heat transfer tube of a condenser has been proposed (see Japanese Patent Application Laid-Open No. 2009-162514). In this pressurized water nuclear power plant, steam generated by a steam generator is supplied to a turbine through a steam pipe, and steam discharged from the turbine is condensed by a condenser. The water obtained by this condensation is supplied to the steam generator through the water supply pipe as water supply. Part of the feed water supplied from the condenser to the steam generator is supplied to the condensate demineralizer. The above pressurized water nuclear power plant is provided with a makeup water supply facility, and the makeup water supply facility is provided with a pure water device for purifying the raw water and a pure water tank for storing the purified water. The pure water device and the pure water tank are provided in the pipe, and this pipe is connected to the water supply pipe. The steam generator and the condenser are connected with the treated water pipe separately from the water supply pipe. An outflow pipe is connected to the treated water pipe, and a blowdown water circulation line is connected to the outflow pipe and communicated with the pure water apparatus. A reverse osmosis membrane pure water device is used as the pure water device. The raw water as makeup water supplied to the pure water device is filtered water stored in a filtered water tank after filtering seawater.

沸騰水型原子力プラントでは、炉心から取り出された使用済燃料集合体が、原子炉格納容器の外部に設けられた燃料貯蔵プール内に保管され、燃料貯蔵プール内の冷却水によって冷却されている。燃料貯蔵プール内の冷却水は、燃料貯蔵プール内に保管されている多数の使用済燃料集合体で発生する崩壊熱により加熱されて温度が上昇する。温度が上昇した燃料貯蔵プール内の冷却水は、冷却装置で冷却され、再び、燃料貯蔵プールに供給される。燃料貯蔵プール内の冷却水の一部は、前述の崩壊熱により加熱されて蒸発する。この蒸発により燃料貯蔵プール内の冷却水が減少するために、冷却水の蒸発量に相当する量の冷却水が、復水貯蔵タンクまたは圧力抑制プールから燃料貯蔵プール内に供給される。   In a boiling water nuclear power plant, spent fuel assemblies taken out from the core are stored in a fuel storage pool provided outside the reactor containment vessel, and are cooled by cooling water in the fuel storage pool. The cooling water in the fuel storage pool is heated by decay heat generated by a large number of spent fuel assemblies stored in the fuel storage pool, and the temperature rises. The cooling water in the fuel storage pool whose temperature has risen is cooled by the cooling device and supplied again to the fuel storage pool. A part of the cooling water in the fuel storage pool is heated by the decay heat and evaporates. Since the cooling water in the fuel storage pool is reduced by this evaporation, an amount of cooling water corresponding to the evaporation amount of the cooling water is supplied from the condensate storage tank or the pressure suppression pool into the fuel storage pool.

燃料貯蔵プールには、燃料貯蔵プール内の冷却水を冷却する冷却水冷却装置、及び蒸発量に相当する量の冷却水を供給する冷却水補給装置を有する核燃料冷却装置が設けられる。前述した非常用炉心冷却装置も、一種の核燃料冷却装置であり、原子炉圧力容器内の炉心に装荷された核燃料(燃料集合体)を冷却する。   The fuel storage pool is provided with a cooling water cooling device that cools the cooling water in the fuel storage pool, and a nuclear fuel cooling device that has a cooling water replenishing device that supplies cooling water in an amount corresponding to the evaporation amount. The above-described emergency core cooling device is also a kind of nuclear fuel cooling device, and cools the nuclear fuel (fuel assembly) loaded on the core in the reactor pressure vessel.

特開昭62−217193号公報JP 62-217193 A 特開平6−170361号公報JP-A-6-170361 特開2009−162514号公報JP 2009-162514 A

発明者らは、核燃料冷却装置、具体的には、非常用炉心冷却装置、及び燃料貯蔵プールに設けられた核燃料冷却装置の信頼性を向上させるために、これらの核燃料冷却装置で生じる事象を検討した。   The inventors have examined the events that occur in these nuclear fuel coolers to improve the reliability of the nuclear fuel coolers, specifically, the emergency core coolers, and the nuclear fuel coolers installed in the fuel storage pool. did.

非常用炉心冷却装置では、前述したように、圧力抑制プール内の冷却水及び復水貯蔵タンク内の冷却水が原子炉圧力容器内の炉心に供給される。しかしながら、圧力抑制プール及び復水貯蔵タンク内のそれぞれの冷却水は有限である。このため、非常時に非常用炉心冷却装置を用いて両方の冷却水を炉心に供給したときに冷却水の炉心への供給量が不足する事象が発生した場合、及び何らかの原因で圧力抑制プール内の冷却水の炉心への供給ができなくなり炉心に供給できる冷却水が復水貯蔵タンク内の冷却水のみである場合には、炉心内の核燃料の冷却が十分に行えなくなる可能性がある。   In the emergency core cooling device, as described above, the cooling water in the pressure suppression pool and the cooling water in the condensate storage tank are supplied to the core in the reactor pressure vessel. However, each cooling water in the pressure suppression pool and the condensate storage tank is finite. For this reason, when an emergency core cooling device is used to supply both cooling waters to the core in the event of an emergency, an event occurs in which the amount of cooling water supplied to the core is insufficient, and for some reason, If the cooling water cannot be supplied to the core and the cooling water that can be supplied to the core is only the cooling water in the condensate storage tank, the nuclear fuel in the core may not be sufficiently cooled.

このように、沸騰水型原子力プラントに蓄えられている冷却水が不足して炉心の冷却ができなくなった場合でも、炉心の冷却を可能にすることが望まれる。   As described above, it is desired to enable cooling of the core even when the cooling water stored in the boiling water nuclear power plant is insufficient and the core cannot be cooled.

また、燃料貯蔵プールに設けられた核燃料冷却装置でも、核燃料冷却装置を用いて両方の冷却水を燃料貯蔵プールに供給したときに冷却水の燃料貯蔵プールへの供給量が不足する事象が発生した場合、及び何らかの原因で圧力抑制プール内の冷却水の燃料貯蔵プールへの供給ができなくなり燃料貯蔵プールに供給できる冷却水が復水貯蔵タンク内の冷却水のみである場合には、燃料貯蔵プール内の核燃料(使用済燃料集合体)の冷却が十分にできなくなる可能性がある。   In addition, even in the nuclear fuel cooling device provided in the fuel storage pool, when both cooling waters were supplied to the fuel storage pool using the nuclear fuel cooling device, an event that the supply amount of the cooling water to the fuel storage pool was insufficient occurred. If the cooling water in the pressure suppression pool cannot be supplied to the fuel storage pool for any reason and the cooling water that can be supplied to the fuel storage pool is only the cooling water in the condensate storage tank, the fuel storage pool There is a possibility that the nuclear fuel (spent fuel assembly) inside cannot be sufficiently cooled.

本発明の目的は、原子力プラント内に保有する冷却水による核燃料の冷却が不可能になった場合においても核燃料を冷却することができる核燃料冷却方法及び核燃料冷却装置を提供することにある。   An object of the present invention is to provide a nuclear fuel cooling method and a nuclear fuel cooling apparatus capable of cooling nuclear fuel even when the nuclear fuel cannot be cooled by cooling water held in the nuclear power plant.

上記した目的を達成する本発明の特徴は、冷却水源タンク内の冷却水を、冷却水が充填されてこの冷却水中に核燃料を配置している、原子力プラントの構造物内に注入し、冷却水源タンク内の水位が設定水位に低下したとき、海水を淡水化装置に供給してこの海水から淡水を生成し、生成された淡水を冷却水源タンクに供給し、冷却水源タンク内の淡水を冷却水としてその構造物内に注入することにある。   A feature of the present invention that achieves the above-described object is that the cooling water in the cooling water source tank is injected into a structure of a nuclear power plant filled with cooling water and nuclear fuel is disposed in the cooling water, When the water level in the tank drops to the set water level, seawater is supplied to the desalination unit to generate fresh water from the seawater, the generated fresh water is supplied to the cooling water source tank, and the fresh water in the cooling water source tank is cooled to the cooling water. It is to be injected into the structure.

淡水化装置によって海水から生成された淡水を原子力プラントの、内部に核燃料を配置した構造物内に注入するので、原子力プラント内に保有する冷却水による核燃料の冷却が不可能になった場合においても、淡水化装置によって生成された淡水を用いて構造物内の核燃料を冷却することができる。   Since fresh water generated from seawater by a desalination device is injected into a nuclear power plant structure where nuclear fuel is placed inside, even when cooling of nuclear fuel by cooling water held in the nuclear power plant becomes impossible The nuclear fuel in the structure can be cooled using the fresh water generated by the desalination apparatus.

上記した構造物とは、例えば、原子炉圧力容器または燃料貯蔵プールである。   The above-described structure is, for example, a reactor pressure vessel or a fuel storage pool.

本発明によれば、原子力プラント内に保有する冷却水による核燃料の冷却が不可能になった場合においても核燃料を冷却することができる。   According to the present invention, nuclear fuel can be cooled even when the nuclear fuel cannot be cooled by the cooling water held in the nuclear power plant.

本発明の好適な一実施例である実施例1の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置の構成図である。It is a block diagram of the emergency core cooling device which is a nuclear fuel cooling device used for the nuclear fuel cooling method of Example 1 which is one suitable Example of this invention. 本発明の好適な他の実施例である実施例2の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置の構成図である。It is a block diagram of the emergency core cooling device which is a nuclear fuel cooling device used for the nuclear fuel cooling method of Example 2, which is another preferred embodiment of the present invention. 本発明の好適な他の実施例である実施例3の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置の構成図である。It is a block diagram of the emergency core cooling device which is a nuclear fuel cooling device used for the nuclear fuel cooling method of Example 3 which is another suitable Example of this invention. 本発明の好適な他の実施例である実施例4の核燃料冷却方法に用いられる核燃料冷却装置である、燃料貯蔵プールに設けられる核燃料冷却装置の構成図である。It is a block diagram of the nuclear fuel cooling device provided in a fuel storage pool which is a nuclear fuel cooling device used for the nuclear fuel cooling method of Example 4 which is another suitable Example of this invention. 本発明の好適な他の実施例である実施例5の核燃料冷却方法に用いられる核燃料冷却装置である、燃料貯蔵プールに設けられる核燃料冷却装置の構成図である。It is a block diagram of the nuclear fuel cooling device provided in a fuel storage pool which is a nuclear fuel cooling device used for the nuclear fuel cooling method of Example 5 which is another suitable Example of this invention.

本発明の実施例を以下に説明する。   Examples of the present invention will be described below.

本発明の好適な一実施例である実施例1の核燃料冷却方法を、図1を用いて説明する。本実施例の核燃料冷却方法は沸騰水型原子力プラントに適用される。   A nuclear fuel cooling method according to embodiment 1, which is a preferred embodiment of the present invention, will be described with reference to FIG. The nuclear fuel cooling method of this embodiment is applied to a boiling water nuclear plant.

本実施例の核燃料冷却方法が適用される沸騰水型原子力プラントは、図1に示すように、原子炉圧力容器2、及び原子炉圧力容器2を取り囲む原子炉格納容器3を有する。原子炉格納容器3は原子炉建屋23内に設置される。原子炉格納容器3内には、互いに分離されたドライウェル4及び圧力抑制室5が形成される。冷却水37が充填された圧力抑制プール6が、圧力抑制室5内に形成される。   As shown in FIG. 1, the boiling water nuclear power plant to which the nuclear fuel cooling method of the present embodiment is applied has a reactor pressure vessel 2 and a reactor containment vessel 3 surrounding the reactor pressure vessel 2. The reactor containment vessel 3 is installed in the reactor building 23. A dry well 4 and a pressure suppression chamber 5 which are separated from each other are formed in the reactor containment vessel 3. A pressure suppression pool 6 filled with cooling water 37 is formed in the pressure suppression chamber 5.

原子炉圧力容器2はドライウェル4内に配置される。核燃料を含んでいる複数の燃料集合体(図示せず)が装荷された炉心(図示せず)が、原子炉圧力容器2内に配置される。   The reactor pressure vessel 2 is disposed in the dry well 4. A core (not shown) loaded with a plurality of fuel assemblies (not shown) containing nuclear fuel is disposed in the reactor pressure vessel 2.

本実施例の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置1を、図1を用いて説明する。非常用炉心冷却装置1は、原子炉隔離時冷却装置16、高圧炉心注水装置8、低圧炉心注水装置(図示せず)、及び淡水化装置である逆浸透膜装置46を備えている。原子炉隔離時冷却装置16は、冷却水供給管18及び21、及び冷却水供給管18に設けられたポンプ17を有する。冷却水供給管18の一端が圧力抑制プール6内の冷却水37中に配置されたストレーナ19に接続される。冷却水供給管18の他端が原子炉圧力容器2に接続される。開閉弁20がポンプ17の上流で冷却水供給管18に設けられる。冷却水供給管21の一端が復水貯蔵タンク(冷却水源タンク)15に接続され、冷却水供給管21の他端が開閉弁20とポンプ17の間で冷却水供給管18に接続される。開閉弁22が冷却水供給管21に設けられる。ポンプ17には駆動用のタービンが設けられており、このタービンの蒸気供給口には原子炉圧力容器2に接続された蒸気供給管が接続される。タービンの蒸気排出口に接続された蒸気排出管は圧力抑制プール6の冷却水37中に達している。   An emergency core cooling device 1 that is a nuclear fuel cooling device used in the nuclear fuel cooling method of the present embodiment will be described with reference to FIG. The emergency core cooling device 1 includes a reactor isolation cooling device 16, a high pressure core water injection device 8, a low pressure core water injection device (not shown), and a reverse osmosis membrane device 46 which is a desalination device. The reactor isolation cooling device 16 includes cooling water supply pipes 18 and 21 and a pump 17 provided in the cooling water supply pipe 18. One end of the cooling water supply pipe 18 is connected to a strainer 19 disposed in the cooling water 37 in the pressure suppression pool 6. The other end of the cooling water supply pipe 18 is connected to the reactor pressure vessel 2. An on-off valve 20 is provided in the cooling water supply pipe 18 upstream of the pump 17. One end of the cooling water supply pipe 21 is connected to a condensate storage tank (cooling water source tank) 15, and the other end of the cooling water supply pipe 21 is connected to the cooling water supply pipe 18 between the on-off valve 20 and the pump 17. An on-off valve 22 is provided in the cooling water supply pipe 21. The pump 17 is provided with a driving turbine, and a steam supply pipe connected to the reactor pressure vessel 2 is connected to a steam supply port of the turbine. The steam discharge pipe connected to the steam discharge port of the turbine reaches the cooling water 37 of the pressure suppression pool 6.

高圧炉心注水装置8は、冷却水供給管10及び14、冷却水供給管10に設けられたポンプ9及び冷却水供給管14に設けられたポンプ12を有する。冷却水供給管10の一端が圧力抑制プール6内の冷却水37中に配置されたストレーナ11に接続される。冷却水供給管10の他端が原子炉圧力容器2に接続される。開閉弁44がポンプ9の上流で冷却水供給管10に設けられる。冷却水供給管14の一端が復水貯蔵タンク15に接続され、冷却水供給管14の他端がポンプ9の下流で冷却水供給管10に接続される。開閉弁13がポンプ12の下流で冷却水供給管14に設けられる。   The high-pressure core water injection device 8 includes cooling water supply pipes 10 and 14, a pump 9 provided in the cooling water supply pipe 10, and a pump 12 provided in the cooling water supply pipe 14. One end of the cooling water supply pipe 10 is connected to the strainer 11 disposed in the cooling water 37 in the pressure suppression pool 6. The other end of the cooling water supply pipe 10 is connected to the reactor pressure vessel 2. An on-off valve 44 is provided in the cooling water supply pipe 10 upstream of the pump 9. One end of the cooling water supply pipe 14 is connected to the condensate storage tank 15, and the other end of the cooling water supply pipe 14 is connected to the cooling water supply pipe 10 downstream of the pump 9. An on-off valve 13 is provided in the cooling water supply pipe 14 downstream of the pump 12.

逆浸透膜装置46は、後述の実施例2と同様に、逆浸透膜47及び高圧ポンプ48を有する(図2参照)。逆浸透膜装置46の詳細な構成を、図2を用いて説明する。逆浸透膜47は、容器52内に設置され、容器52内を被処理水(海水)領域と透過水領域に分離している。逆浸透膜47は、逆浸透圧に耐えるように、透過水を通す多孔質の支持部材(図示せず)に取り付けられている。高圧ポンプ48は容器52の上流に配置されて海水供給管24に設けられる。海水供給管24は海まで伸びている。高圧ポンプ48の下流で海水供給管24は、容器52に接続され、容器52内の被処理水領域に連絡される。逆浸透膜47を透過した透過水を導く配管26が、容器52に接続されて容器52内の透過水領域に連絡され、さらに、復水貯蔵タンク15に接続される。開閉弁53を設けた排出管51が、容器52に接続され、容器52内の被処理水領域に連絡される。   The reverse osmosis membrane device 46 includes a reverse osmosis membrane 47 and a high-pressure pump 48 as in Example 2 described later (see FIG. 2). The detailed configuration of the reverse osmosis membrane device 46 will be described with reference to FIG. The reverse osmosis membrane 47 is installed in the container 52, and the container 52 is separated into a treated water (seawater) region and a permeated water region. The reverse osmosis membrane 47 is attached to a porous support member (not shown) through which permeated water passes so as to withstand reverse osmosis pressure. The high-pressure pump 48 is disposed upstream of the container 52 and is provided in the seawater supply pipe 24. The seawater supply pipe 24 extends to the sea. The seawater supply pipe 24 is connected to the container 52 downstream of the high-pressure pump 48 and communicates with the treated water region in the container 52. A pipe 26 that guides the permeated water that has passed through the reverse osmosis membrane 47 is connected to the container 52, communicates with the permeated water region in the container 52, and is further connected to the condensate storage tank 15. A discharge pipe 51 provided with an on-off valve 53 is connected to a container 52 and communicates with a treated water region in the container 52.

水位計21が復水貯蔵タンク15に設けられる。外部電源27(または非常用ディーゼル発電機)に接続されるケーブル28が遮断器29を介して高圧ポンプ48に接続される。また、電源車30に搭載された発電設備(図示せず)がケーブル45により高圧ポンプ48に接続される。   A water level gauge 21 is provided in the condensate storage tank 15. A cable 28 connected to the external power source 27 (or emergency diesel generator) is connected to the high-pressure pump 48 via the circuit breaker 29. In addition, a power generation facility (not shown) mounted on the power supply vehicle 30 is connected to the high-pressure pump 48 by the cable 45.

図示されていないが、低圧炉心注水装置では、高圧炉心注水装置8と同様に、一端が圧力抑制プール6内の冷却水37中に配置された他のストレーナに接続されてポンプが設けられた冷却水供給管の他端が原子炉圧力容器2に接続され、一端が復水貯蔵タンクに接続されてポンプ及び開閉弁が設けられた他の冷却水供給管の他端が前述の他のストレーナに接続された冷却水供給管に接続される。   Although not shown in the figure, in the low pressure core water injection device, similarly to the high pressure core water injection device 8, cooling with one end connected to another strainer arranged in the cooling water 37 in the pressure suppression pool 6 and provided with a pump. The other end of the water supply pipe is connected to the reactor pressure vessel 2, the other end is connected to the condensate storage tank, and the other end of the other cooling water supply pipe provided with a pump and on-off valve is connected to the other strainer. Connected to the connected cooling water supply pipe.

冷却材喪失事故が発生したことを想定する。冷却水喪失事故では、原子炉圧力容器2に接続された配管、例えば、主蒸気配管が原子炉格納容器3内で破断し、原子炉圧力容器2内の高温高圧の冷却水が主蒸気配管の破断箇所からドライウェル4に高温の蒸気となって噴射される。このため、原子炉圧力容器2内の冷却水の水位が低下し、炉心に装荷された燃料集合体の冷却が阻害される危険性がある。このような状態を避けるために、非常用炉心冷却装置1の作動により原子炉圧力容器2内に冷却水を供給し、炉心の燃料集合体を冷却する。原子炉圧力容器2内の圧力が所定圧力よりも高いときには冷却水が高圧炉心注水装置8及び原子炉隔離時冷却装置16により原子炉圧力容器2内に供給され、原子炉圧力容器2内の圧力が所定圧力よりも高いときには冷却水が低圧炉心注水装置により原子炉圧力容器2内に供給される。このとき、原子炉圧力容器2内に注入される冷却水として、復水貯蔵タンク15内の冷却水36及び圧力抑制プール6内の冷却水37が使用される。   Assume that a coolant loss accident has occurred. In the cooling water loss accident, piping connected to the reactor pressure vessel 2, for example, the main steam piping breaks in the reactor containment vessel 3, and the high-temperature and high-pressure cooling water in the reactor pressure vessel 2 becomes the main steam piping. High temperature steam is injected from the breakage point into the dry well 4. For this reason, there is a risk that the level of the cooling water in the reactor pressure vessel 2 is lowered and the cooling of the fuel assembly loaded in the reactor core is hindered. In order to avoid such a state, the cooling water is supplied into the reactor pressure vessel 2 by the operation of the emergency core cooling device 1 to cool the fuel assembly in the core. When the pressure in the reactor pressure vessel 2 is higher than the predetermined pressure, cooling water is supplied into the reactor pressure vessel 2 by the high pressure core water injection device 8 and the reactor isolation cooling device 16, and the pressure in the reactor pressure vessel 2 is increased. Is higher than a predetermined pressure, cooling water is supplied into the reactor pressure vessel 2 by the low-pressure core water injection device. At this time, the cooling water 36 in the condensate storage tank 15 and the cooling water 37 in the pressure suppression pool 6 are used as the cooling water injected into the reactor pressure vessel 2.

高圧炉心注水装置8及び原子炉隔離時冷却装置16が正常な場合には、冷却材喪失事故が発生したとき、開閉弁13及び22が開いてポンプ12及び17が駆動し、高圧炉心注水装置8及び原子炉隔離時冷却装置16が作動する。ポンプ17は、原子炉圧力容器2内の蒸気がポンプ17の駆動用のタービンに導かれることにより駆動される。高圧炉心注水装置8では、復水貯蔵タンク15内の冷却水36が、冷却水供給管14及び冷却水供給管10を通って原子炉圧力容器2内に注入される。原子炉隔離時冷却装置16では、復水貯蔵タンク15内の冷却水36が、冷却水供給管21及び冷却水供給管18を通って原子炉圧力容器2内に注入される。冷却水36の原子炉圧力容器2内への注入によって炉心内の燃料集合体が冷却される。水位計21で計測された、復水貯蔵タンク15内の冷却水36の水位が下限の設定水位(以下、下限設定水位という)まで低下したとき、高圧炉心注水装置8及び原子炉隔離時冷却装置16が正常な場合には開閉弁44及び20が開いてポンプ9が駆動され、圧力抑制プール6内の冷却水37が冷却水供給管10及び18を通して原子炉圧力容器2内に供給される。このとき、ポンプ12が停止され、開閉弁13及び22が閉じられる。   When the high-pressure core water injection device 8 and the reactor isolation cooling device 16 are normal, when a coolant loss accident occurs, the on-off valves 13 and 22 are opened and the pumps 12 and 17 are driven, and the high-pressure core water injection device 8 And the reactor isolation cooling device 16 operates. The pump 17 is driven by the steam in the reactor pressure vessel 2 being guided to a turbine for driving the pump 17. In the high pressure core water injection device 8, the cooling water 36 in the condensate storage tank 15 is injected into the reactor pressure vessel 2 through the cooling water supply pipe 14 and the cooling water supply pipe 10. In the reactor isolation cooling device 16, the cooling water 36 in the condensate storage tank 15 is injected into the reactor pressure vessel 2 through the cooling water supply pipe 21 and the cooling water supply pipe 18. The fuel assembly in the core is cooled by injecting the cooling water 36 into the reactor pressure vessel 2. When the water level of the cooling water 36 in the condensate storage tank 15 measured by the water level gauge 21 drops to the lower limit set water level (hereinafter referred to as the lower limit set water level), the high pressure core water injection device 8 and the reactor isolation cooling device When 16 is normal, the on-off valves 44 and 20 are opened, the pump 9 is driven, and the cooling water 37 in the pressure suppression pool 6 is supplied into the reactor pressure vessel 2 through the cooling water supply pipes 10 and 18. At this time, the pump 12 is stopped and the on-off valves 13 and 22 are closed.

しかしながら、原子炉圧力容器2に供給する冷却水の水源を復水貯蔵タンク15から圧力抑制プール6に切り替えるとき、例えば、何らかの理由により開閉弁44及び20が開かなかったとする。この場合には、圧力抑制プール5内の冷却水37を原子炉圧力容器2に供給することができず、やがて、炉心内の燃料集合体の冷却が困難な事態に陥る。開閉弁44及び20のそれぞれの開度は検出されており、検出されたそれぞれの開度に基づいて、開閉弁44及び20が開状態になったか、閉状態のままかを知ることができる。   However, when the source of cooling water supplied to the reactor pressure vessel 2 is switched from the condensate storage tank 15 to the pressure suppression pool 6, for example, it is assumed that the on-off valves 44 and 20 are not opened for some reason. In this case, the cooling water 37 in the pressure suppression pool 5 cannot be supplied to the reactor pressure vessel 2, and eventually it becomes difficult to cool the fuel assembly in the core. The respective opening degrees of the on-off valves 44 and 20 are detected, and it can be known whether the on-off valves 44 and 20 are in an open state or in a closed state based on the detected opening degrees.

復水貯蔵タンク15内の冷却水36の水位が下限設定水位まで低下したときに、開閉弁44及び20が開かず、高圧炉心注水装置8及び原子炉隔離時冷却装置16による冷却水37の原子炉圧力容器2への供給が不可能な事態に陥った場合には、本実施例では、逆浸透膜装置46の高圧ポンプ48が駆動される。海水供給管24内を導かれてこの高圧ポンプ48で昇圧された海水が、逆浸透膜装置46の容器52内の被処理領域に供給される。この海水は、高圧ポンプ48の駆動により、海から海水供給管24内に流入する。その被処理領域に到達した海水に含まれる水が逆浸透膜47を透過する。その被処理水領域内の被処理水である海水の圧力が所定の逆浸透圧になるように、排出管51に設けられた開閉弁53の開度を調節する。逆浸透膜47を透過した透過水は、海水に含まれる成分を含んでいなくて淡水であり、容器52内の透過水領域に達する。淡水であるその透過水は、配管26を通って復水貯蔵タンク15に供給される。供給される透過水によって復水貯蔵タンク15内の水位が上昇する。容器52内の被処理水領域に流入した海水は、含まれる海水成分が濃縮されて排出管51に排出され、海に戻される。   When the water level of the cooling water 36 in the condensate storage tank 15 is lowered to the lower limit set water level, the on-off valves 44 and 20 are not opened, and the atoms of the cooling water 37 by the high pressure core water injection device 8 and the reactor isolation cooling device 16 are not opened. In the present embodiment, when the supply to the furnace pressure vessel 2 is impossible, the high pressure pump 48 of the reverse osmosis membrane device 46 is driven. The seawater led through the seawater supply pipe 24 and pressurized by the high-pressure pump 48 is supplied to the region to be processed in the container 52 of the reverse osmosis membrane device 46. The seawater flows from the sea into the seawater supply pipe 24 by driving the high-pressure pump 48. The water contained in the seawater that has reached the region to be treated passes through the reverse osmosis membrane 47. The opening degree of the on-off valve 53 provided in the discharge pipe 51 is adjusted so that the pressure of the seawater that is the water to be treated in the treated water region becomes a predetermined reverse osmosis pressure. The permeated water that has passed through the reverse osmosis membrane 47 does not contain components contained in seawater and is fresh water, and reaches the permeated water region in the container 52. The permeate, which is fresh water, is supplied to the condensate storage tank 15 through the pipe 26. The water level in the condensate storage tank 15 rises by the supplied permeate. Seawater that has flowed into the treated water region in the container 52 is concentrated in the contained seawater component, discharged to the discharge pipe 51, and returned to the sea.

高圧ポンプ48の駆動は、以下のようにして行われる。水位計21で計測された、復水貯蔵タンク15内の水位が制御装置25に入力される。制御装置25は、水位計21から入力した水位の計測値が低下して下限設定水位になったときで開閉弁20及び44が開かないときに遮断器29を閉じる。外部電源27から電力がケーブル28を通して高圧ポンプ48に供給され、高圧ポンプ48が駆動される。このとき、ポンプ12及び開閉弁13及び22には、外部電源27から電力が供給される。もし、開閉弁20及び44が正常であれば、ポンプ9も含めて外部電源から供給される電力により作動される。外部電源27が喪失しているときには、高圧ポンプ48を含むそれらは駆動されているディーゼル発電機から供給される電力で作動される。また、所内電源及び外部電源が喪失し、ディーゼル発電機が駆動されない場合には、開閉弁20及び44が開かない状態で水位が下限設定水位に低下したとき、制御装置25は、電源車30に搭載された発電機を駆動する。この発電機で発生した電力がケーブル45を通して高圧ポンプ48に供給され、高圧ポンプ48が駆動して逆浸透膜47内に海水を供給することができる。電源車30に搭載された発電機を駆動するときには、ポンプ12及び開閉弁13及び22は、別の電源車から供給される電力で作動されている。   The high pressure pump 48 is driven as follows. The water level in the condensate storage tank 15 measured by the water level gauge 21 is input to the control device 25. The control device 25 closes the circuit breaker 29 when the measured value of the water level input from the water level gauge 21 falls to the lower limit set water level and the on-off valves 20 and 44 do not open. Electric power is supplied from the external power source 27 to the high-pressure pump 48 through the cable 28, and the high-pressure pump 48 is driven. At this time, power is supplied from the external power source 27 to the pump 12 and the on-off valves 13 and 22. If the on-off valves 20 and 44 are normal, they are operated by electric power supplied from an external power source including the pump 9. When the external power supply 27 is lost, they, including the high pressure pump 48, are operated with power supplied from the diesel generator being driven. In addition, when the in-house power supply and the external power supply are lost and the diesel generator is not driven, the control device 25 is connected to the power supply car 30 when the water level drops to the lower limit set water level without opening the on-off valves 20 and 44. Drives the installed generator. Electric power generated by the generator is supplied to the high-pressure pump 48 through the cable 45, and the high-pressure pump 48 is driven to supply seawater into the reverse osmosis membrane 47. When the generator mounted on the power supply vehicle 30 is driven, the pump 12 and the on-off valves 13 and 22 are operated with electric power supplied from another power supply vehicle.

透過水の供給により復水貯蔵タンク15内の水位が下限設定水位よりも高い上限設定水位まで上昇したとき、制御装置25は、遮断器29を開いて高圧ポンプ48への電力の供給を停止する。これにより、逆浸透膜47内への海水の供給が停止される。復水貯蔵タンク15内の水位が、再度、下限設定水位まで低下したとき、遮断器29が閉じて高圧ポンプ48が駆動され、逆浸透膜47を透過した透過水が復水貯蔵タンク15に供給される。復水貯蔵タンク15内の水位が下限設定水位まで低下した場合には、その水位が上限設定水位になるまで、遮断器29が閉じており、高圧ポンプ48の駆動が継続され、配管26を通して透過水が復水貯蔵タンク15に供給される。   When the water level in the condensate storage tank 15 rises to the upper limit set water level higher than the lower limit set water level due to the supply of permeated water, the control device 25 opens the circuit breaker 29 and stops the supply of power to the high pressure pump 48. . Thereby, the supply of seawater into the reverse osmosis membrane 47 is stopped. When the water level in the condensate storage tank 15 drops again to the lower limit set water level, the circuit breaker 29 is closed and the high pressure pump 48 is driven, and the permeated water that has passed through the reverse osmosis membrane 47 is supplied to the condensate storage tank 15. Is done. When the water level in the condensate storage tank 15 drops to the lower limit set water level, the circuit breaker 29 is closed until the water level reaches the upper limit set water level, and the drive of the high-pressure pump 48 is continued and transmitted through the pipe 26. Water is supplied to the condensate storage tank 15.

逆浸透膜47を透過して復水貯蔵タンク15内に供給された淡水の透過水は、冷却水36として、高圧炉心注水装置8の冷却供給管14及び10を通して、原子炉隔離時冷却装置16の冷却水供給管21及び18を通して原子炉圧力容器2に供給される。例えば、開閉弁44及び20の不具合により高圧炉心注水装置8及び原子炉隔離時冷却装置16により圧力抑制プール6の冷却水37を原子炉圧力容器2内に供給することができない事象が生じても、逆浸透膜装置46による海水の淡水化により生成された淡水が復水貯蔵タンク15に供給され、この淡水である冷却水36によって原子炉圧力容器2内の炉心に装荷された燃料集合体を継続して冷却することができる。   The permeated fresh water that has passed through the reverse osmosis membrane 47 and supplied into the condensate storage tank 15 passes through the cooling supply pipes 14 and 10 of the high-pressure core water injection device 8 as cooling water 36, and the reactor isolation cooling device 16. Are supplied to the reactor pressure vessel 2 through the cooling water supply pipes 21 and 18. For example, even if an event occurs in which the cooling water 37 of the pressure suppression pool 6 cannot be supplied into the reactor pressure vessel 2 by the high pressure core water injection device 8 and the reactor isolation cooling device 16 due to a malfunction of the on-off valves 44 and 20. The fresh water generated by the desalination of seawater by the reverse osmosis membrane device 46 is supplied to the condensate storage tank 15, and the fuel assembly loaded into the reactor core in the reactor pressure vessel 2 by the cooling water 36 that is fresh water. Cooling can be continued.

原子炉圧力容器2内の圧力が設定圧力まで低下したとき、前述の低圧炉心注水装置が作動され、低圧炉心注水装置が正常である場合には、圧力抑制プール6の冷却水が原子炉圧力容器2内に供給される。もし、高圧炉心冷却装置8と同様に、低圧炉心冷却装置においても、圧力抑制プール6内の冷却水37中に配置されたストレーナと原子炉圧力容器2を連絡する冷却水供給管に設けられた開閉弁が開かないときには、低圧炉心冷却装置によって冷却水37を原子炉圧力容器2に供給することができない。この場合には、高圧炉心注水装置8及び原子炉隔離時冷却装置16の場合と同様に、逆浸透膜装置46によって生成されて復水貯蔵タンク15に蓄えられた淡水を、冷却水36として、復水貯蔵タンク15に接続される、低圧炉心冷却装置の冷却水供給管を利用して原子炉圧力容器2に供給することができる。このように、本実施例では、低圧炉心冷却装置により圧力抑制プール6内の冷却水37を原子炉圧力容器2に供給することができない事象が発生した場合でも、逆浸透膜装置46における海水の淡水化で生成された淡水を、冷却水36として原子炉圧力容器2に供給することができる。   When the pressure in the reactor pressure vessel 2 drops to the set pressure, the low-pressure core water injection device described above is operated, and when the low-pressure core water injection device is normal, the cooling water in the pressure suppression pool 6 is supplied to the reactor pressure vessel. 2 is supplied. Similar to the high-pressure core cooling device 8, the low-pressure core cooling device is also provided in the cooling water supply pipe connecting the strainer disposed in the cooling water 37 in the pressure suppression pool 6 and the reactor pressure vessel 2. When the on-off valve is not opened, the cooling water 37 cannot be supplied to the reactor pressure vessel 2 by the low-pressure core cooling device. In this case, the fresh water generated by the reverse osmosis membrane device 46 and stored in the condensate storage tank 15 is used as the cooling water 36, as in the case of the high pressure core water injection device 8 and the reactor isolation cooling device 16. It can be supplied to the reactor pressure vessel 2 using a cooling water supply pipe of a low-pressure core cooling device connected to the condensate storage tank 15. As described above, in this embodiment, even when an event in which the cooling water 37 in the pressure suppression pool 6 cannot be supplied to the reactor pressure vessel 2 by the low-pressure core cooling device occurs, The fresh water generated by the desalination can be supplied to the reactor pressure vessel 2 as the cooling water 36.

本実施例では、圧力抑制プール6と燃料貯蔵プール7がポンプ(図示せず)を設けた冷却水供給管(図示せず)で連絡されている。燃料貯蔵プール内の冷却水38が燃料貯蔵プール7内に保管されている使用済燃料集合体(図示せず)で発生する崩壊熱による加熱により蒸発した冷却水38の量を補給するために、この冷却水供給管を通して圧力抑制プール6内の冷却水37が燃料貯蔵プール7に供給される。   In this embodiment, the pressure suppression pool 6 and the fuel storage pool 7 are connected to each other by a cooling water supply pipe (not shown) provided with a pump (not shown). In order to replenish the amount of cooling water 38 evaporated by heating due to decay heat generated in a spent fuel assembly (not shown) stored in the fuel storage pool 7, the cooling water 38 in the fuel storage pool The cooling water 37 in the pressure suppression pool 6 is supplied to the fuel storage pool 7 through the cooling water supply pipe.

さらに、燃料貯蔵プール7内に保管されている使用済燃料集合体を冷却するための冷却水冷却装置55が燃料貯蔵プール7に設けられている。冷却水冷却装置55は、冷却装置56及びポンプ57を有する。冷却装置56及びポンプ57は、一端部が燃料貯蔵プール7の上端部に接続されて他端部が燃料貯蔵プール7の底部に接続される冷却水配管58に設置されている。燃料貯蔵プール7内で使用済燃料集合体内を上昇して使用済燃料集合体で発生する崩壊熱によって温度が上昇した冷却水38は、ポンプ57の駆動により、使用済燃料集合体よりの上方で冷却水配管58に流入する。この冷却水38は、冷却装置56で冷却されて温度が低下し、燃料貯蔵プール7の底部に供給される。燃料貯蔵プール7内の使用済燃料集合体は冷却装置56で冷却されて温度が低下した冷却水38によって冷却される。   Furthermore, a cooling water cooling device 55 for cooling the spent fuel assembly stored in the fuel storage pool 7 is provided in the fuel storage pool 7. The cooling water cooling device 55 includes a cooling device 56 and a pump 57. The cooling device 56 and the pump 57 are installed in a cooling water pipe 58 having one end connected to the upper end of the fuel storage pool 7 and the other end connected to the bottom of the fuel storage pool 7. The cooling water 38 that has risen in the spent fuel assembly within the fuel storage pool 7 and has risen in temperature due to decay heat generated in the spent fuel assembly is driven above the spent fuel assembly by driving the pump 57. It flows into the cooling water pipe 58. The cooling water 38 is cooled by the cooling device 56 and the temperature is lowered, and is supplied to the bottom of the fuel storage pool 7. The spent fuel assembly in the fuel storage pool 7 is cooled by the cooling water 38 which is cooled by the cooling device 56 and the temperature thereof is lowered.

低圧炉心冷却装置により原子炉圧力容器2に冷却水を供給するとき、何らかの要因(例えば、原子炉圧力容器2に接続された配管に微小な貫通き裂が発生してこの貫通き裂から原子炉圧力容器2内の冷却水が漏洩)により原子炉圧力容器2内に冷却水を供給する期間が長くなり、復水貯蔵タンク15内の冷却水36及び圧力抑制プール6内の冷却水37のうち原子炉圧力容器2に供給できる容量を全部使い切ってそれ以上、復水貯蔵タンク15及び圧力抑制プール6から冷却水を原子炉圧力容器2に供給することができなる場合であっても、逆浸透膜装置46における海水の淡水化で生成された淡水を復水貯蔵タンク15に供給する本実施例は、その淡水を冷却水37として原子炉圧力容器2に供給することができる。この場合には、低圧炉心冷却装置の、圧力抑制プールと原子炉圧力容器を連絡する冷却水供給管に設けられた開閉弁は正常に開いている。   When cooling water is supplied to the reactor pressure vessel 2 by the low-pressure core cooling device, some factor (for example, a minute through crack is generated in the pipe connected to the reactor pressure vessel 2 and the reactor is removed from the through crack. The period during which cooling water is supplied into the reactor pressure vessel 2 becomes longer due to leakage of the cooling water in the pressure vessel 2, and the cooling water 36 in the condensate storage tank 15 and the cooling water 37 in the pressure suppression pool 6 are Even if the capacity that can be supplied to the reactor pressure vessel 2 is fully used and cooling water can be supplied to the reactor pressure vessel 2 from the condensate storage tank 15 and the pressure suppression pool 6, reverse osmosis is possible. In the present embodiment in which fresh water generated by desalination of seawater in the membrane device 46 is supplied to the condensate storage tank 15, the fresh water can be supplied to the reactor pressure vessel 2 as cooling water 37. In this case, the on-off valve provided in the cooling water supply pipe connecting the pressure suppression pool and the reactor pressure vessel of the low-pressure core cooling device is normally opened.

本実施例によれば、原子炉圧力容器2内の高温高圧の冷却水がドライウェル4に高温の蒸気となって放出される事象(例えば、冷却材喪失事故)が発生したとき、逆浸透膜装置46における海水の淡水化で生成された淡水を復水貯蔵タンク15内に供給することができるので、圧力抑制プール6内の冷却水37を原子炉圧力容器2に供給することができない事象が発生しても、その淡水を冷却水として原子炉圧力容器に供給することができ、炉心内の燃料集合体を冷却することができる。   According to the present embodiment, when an event (for example, a coolant loss accident) in which the high-temperature and high-pressure cooling water in the reactor pressure vessel 2 is discharged as high-temperature steam to the dry well 4 occurs, the reverse osmosis membrane Since the fresh water generated by the desalination of seawater in the device 46 can be supplied into the condensate storage tank 15, there is an event that the cooling water 37 in the pressure suppression pool 6 cannot be supplied to the reactor pressure vessel 2. Even if it occurs, the fresh water can be supplied as cooling water to the reactor pressure vessel, and the fuel assembly in the core can be cooled.

また、本実施例では、海水の淡水化により生成された淡水を原子炉圧力容器2内に供給するので、海水成分(例えば、Cl)が原子炉圧力容器2内に供給されることを防止できる。このため、冷却材喪失事故が発生した沸騰水型原子力プラントは、修復後に再利用することができる。 Further, in this embodiment, since fresh water generated by desalination of seawater is supplied into the reactor pressure vessel 2, seawater components (for example, Cl ) are prevented from being supplied into the reactor pressure vessel 2. it can. For this reason, the boiling water nuclear power plant in which the coolant loss accident has occurred can be reused after repair.

水位計21で計測された復水貯蔵タンク15内の水位に基づいて制御装置25が高圧ポンプ48の駆動及び停止を制御するので、運転員の負担を軽減することができる。制御装置25を用いないで運転員が水位計21の計測値に基づいて遮断器29のON、OFFを行って高圧ポンプ48の駆動及び停止を制御しても良い。   Since the control device 25 controls the driving and stopping of the high-pressure pump 48 based on the water level in the condensate storage tank 15 measured by the water level gauge 21, the burden on the operator can be reduced. Without using the control device 25, the operator may control the driving and stopping of the high-pressure pump 48 by turning on and off the circuit breaker 29 based on the measured value of the water level gauge 21.

沸騰水型原子力プラントには、残留熱除去装置が設けられている。この残留熱除去装置は、原子炉の停止時に炉心で発生する崩壊熱を除去する機能を有し、原子炉圧力容器2内の冷却水を冷却装置に導いて冷却し、冷却された冷却水を原子炉圧力容器2に戻している。この残留熱除去装置の冷却装置の入口に接続される配管に、圧力抑制プール6の冷却水37中に浸漬される一端部を有する冷却水供給管及び復水貯蔵タンク15に接続される冷却水供給管を接続する。このような構成により、逆浸透膜装置46で淡水化されて復水貯蔵タンク15に供給された淡水を、冷却水37として残留熱除去装置の冷却装置を通して原子炉圧力容器2に供給することができる。このような残留熱除去装置に、逆浸透膜装置46に連絡される復水貯蔵タンク15を接続して構成される装置も、低圧炉心冷却装置として機能させることができ、冷却材喪失事故時において炉心の燃料集合体を冷却することができる。   The boiling water nuclear power plant is provided with a residual heat removal device. This residual heat removal device has a function of removing decay heat generated in the core when the reactor is shut down. The cooling water in the reactor pressure vessel 2 is guided to the cooling device for cooling, and the cooled cooling water is removed. It is returned to the reactor pressure vessel 2. Cooling water connected to a condensate storage tank 15 and a cooling water supply pipe having one end immersed in the cooling water 37 of the pressure suppression pool 6 in a pipe connected to the inlet of the cooling device of the residual heat removal device Connect the supply pipe. With such a configuration, fresh water that has been desalinated by the reverse osmosis membrane device 46 and supplied to the condensate storage tank 15 can be supplied to the reactor pressure vessel 2 as cooling water 37 through the cooling device of the residual heat removal device. it can. An apparatus configured by connecting the condensate storage tank 15 connected to the reverse osmosis membrane apparatus 46 to such a residual heat removal apparatus can also function as a low-pressure core cooling apparatus, and at the time of a loss of coolant accident The fuel assembly in the core can be cooled.

本発明の好適な他の実施例である実施例2の核燃料冷却方法を、図2を用いて説明する。本実施例の核燃料冷却方法は沸騰水型原子力プラントに適用される。   A nuclear fuel cooling method according to embodiment 2, which is another preferred embodiment of the present invention, will be described with reference to FIG. The nuclear fuel cooling method of this embodiment is applied to a boiling water nuclear plant.

本実施例の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置1Aを、図2を用いて説明する。非常用炉心冷却装置1Aは、実施例1に用いられる非常用炉心冷却装置1に、開閉弁34が設けられて復水貯蔵タンク15をバイパスするバイパス配管33を追加した構成を有する。バイパス配管33の上流端部が配管26に接続され、バイパス配管33の下流端部が冷却水供給管14に接続される。開閉弁32が配管26とバイパス配管33の接続点よりも下流で配管26に設けられる。開閉弁31が高圧ポンプ48の上流で海水供給管24に設けられる。開閉弁32の下流側の配管26と高圧ポンプ48と開閉弁31の間の海水供給管24が、開閉弁37を設けた配管36によって接続される。開閉弁50を設けた配管49の一端部が高圧ポンプ48と容器52の間で海水供給管24に接続され、配管49の他端部が配管26とバイパス配管33の接続点よりも上流で配管26に接続される。逆止弁35がバイパス配管33と冷却水供給管14の接続点よりも上流で冷却水供給管14に設けられる。非常用炉心冷却装置1Aの他の構成は非常用炉心冷却装置1と同じである。   An emergency core cooling device 1A, which is a nuclear fuel cooling device used in the nuclear fuel cooling method of the present embodiment, will be described with reference to FIG. The emergency core cooling device 1 </ b> A has a configuration in which an on-off valve 34 is provided to the emergency core cooling device 1 used in the first embodiment and a bypass pipe 33 that bypasses the condensate storage tank 15 is added. The upstream end of the bypass pipe 33 is connected to the pipe 26, and the downstream end of the bypass pipe 33 is connected to the cooling water supply pipe 14. An on-off valve 32 is provided in the pipe 26 downstream of the connection point between the pipe 26 and the bypass pipe 33. An on-off valve 31 is provided in the seawater supply pipe 24 upstream of the high-pressure pump 48. The pipe 26 on the downstream side of the on-off valve 32, the high-pressure pump 48, and the seawater supply pipe 24 between the on-off valve 31 are connected by a pipe 36 provided with an on-off valve 37. One end of the pipe 49 provided with the on-off valve 50 is connected to the seawater supply pipe 24 between the high-pressure pump 48 and the container 52, and the other end of the pipe 49 is piped upstream from the connection point between the pipe 26 and the bypass pipe 33. 26. A check valve 35 is provided in the cooling water supply pipe 14 upstream of the connection point between the bypass pipe 33 and the cooling water supply pipe 14. Other configurations of the emergency core cooling device 1A are the same as those of the emergency core cooling device 1.

逆浸透膜装置46の詳細な構成の説明は、図2を用いて実施例1で行っているので、ここでは省略する。図2に示された逆浸透膜装置46は、前述の実施例1、及び後述の実施例3〜5においても用いられる。   The detailed configuration of the reverse osmosis membrane device 46 is described in the first embodiment with reference to FIG. The reverse osmosis membrane device 46 shown in FIG. 2 is also used in the above-described first embodiment and later-described third to fifth embodiments.

万が一、冷却材喪失事故が発生したとき、実施例1と同様に、高圧炉心注水装置8及び原子炉隔離時冷却装置16を用いて復水貯蔵タンク15内の冷却水37を原子炉圧力容器2内に供給する。また、水位計21で計測された復水貯蔵タンク15内の冷却水36が下限設定水位まで低下したときで、高圧炉心注水装置8及び原子炉隔離時冷却装置16により圧力抑制プール6内の冷却水37の原子炉圧力容器2への注水ができない事象が発生したときには、実施例1と同様に、水位計21で計測された水位を入力する制御装置25が、遮断器29を閉じ、高圧ポンプ48を駆動させる。開閉弁31及び32が開いており、開閉弁34,37及び50が閉じている。海水供給管24によって導かれる海水が容器52内の被処理水領域に供給され、海水に含まれる水が逆浸透膜47を透過する透過水となって容器52内の透過水領域から配管26に排出される。この透過水は復水貯蔵タンク15に流入し、ポンプ12により昇圧されて冷却水供給管14及び10を通って原子炉圧力容器2に注入される。復水貯蔵タンク15内の透過水は、さらに、ポンプ17の駆動によって冷却水供給管21及び18を通って原子炉圧力容器2に注入される。容器52内の被処理水領域で塩分濃度が高くなった濃縮水は排出管51に排出される。   If a coolant loss accident occurs, the cooling water 37 in the condensate storage tank 15 is transferred to the reactor pressure vessel 2 using the high pressure core water injection device 8 and the reactor isolation cooling device 16 as in the first embodiment. Supply in. In addition, when the cooling water 36 in the condensate storage tank 15 measured by the water level gauge 21 falls to the lower limit set water level, the cooling in the pressure suppression pool 6 is performed by the high pressure core water injection device 8 and the reactor isolation cooling device 16. When an event in which water 37 cannot be injected into the reactor pressure vessel 2 occurs, as in the first embodiment, the control device 25 for inputting the water level measured by the water level gauge 21 closes the circuit breaker 29 and closes the high-pressure pump. 48 is driven. The on-off valves 31 and 32 are open, and the on-off valves 34, 37, and 50 are closed. Seawater guided by the seawater supply pipe 24 is supplied to the treated water region in the container 52, and water contained in the seawater becomes permeated water that permeates the reverse osmosis membrane 47 from the permeated water region in the container 52 to the pipe 26. Discharged. This permeate flows into the condensate storage tank 15, is pressurized by the pump 12, and is injected into the reactor pressure vessel 2 through the cooling water supply pipes 14 and 10. The permeate in the condensate storage tank 15 is further injected into the reactor pressure vessel 2 through the cooling water supply pipes 21 and 18 by driving the pump 17. The concentrated water having a high salinity concentration in the treated water region in the container 52 is discharged to the discharge pipe 51.

このとき、万が一、ポンプ12に不具合が生じてポンプ12が駆動されないときには、開閉弁31及び32が閉じられ、開閉弁34,37及び50が開けられる。ポンプ12に不具合が生じて冷却水36の昇圧が不可能になったときには、冷却水供給管14に設けられた圧力計54で計測される圧力が低下するので、圧力計54で計測された圧力を監視することによりポンプ12に不具合が生じていることを知ることができる。高圧ポンプ48が駆動されているので、復水貯蔵タンク15内の水(冷却水36)が配管26及び36を通って高圧ポンプ48に導かれて昇圧され、配管49及び26、及びバイパス配管33を通って冷却水供給管14に流入する。また、高圧ポンプ48で昇圧されたその水の一部は、容器52内の被処理水領域に流入する。開閉弁53が閉じているので、被処理水領域に流入したその水は、逆浸透膜47を透過して透過水となって、容器52内の透過水領域から配管26に排出され、配管26内で配管49から配管26に供給される水に混合されて冷却水供給管14に流入する。冷却水供給管14に流入したこの水は、冷却水として、冷却水供給管14及び10を通って原子炉圧力容器2に供給される。   At this time, if a failure occurs in the pump 12 and the pump 12 is not driven, the on-off valves 31 and 32 are closed and the on-off valves 34, 37, and 50 are opened. When the pump 12 fails and the cooling water 36 cannot be boosted, the pressure measured by the pressure gauge 54 provided in the cooling water supply pipe 14 decreases, so the pressure measured by the pressure gauge 54 By monitoring this, it is possible to know that a malfunction has occurred in the pump 12. Since the high-pressure pump 48 is driven, the water (cooling water 36) in the condensate storage tank 15 is led to the high-pressure pump 48 through the pipes 26 and 36 to be pressurized, and the pipes 49 and 26 and the bypass pipe 33 are used. Through the cooling water supply pipe 14. Further, part of the water whose pressure has been increased by the high-pressure pump 48 flows into the treated water region in the container 52. Since the on-off valve 53 is closed, the water that has flowed into the treated water region passes through the reverse osmosis membrane 47 to become permeated water, is discharged from the permeated water region in the container 52 to the pipe 26, and The water is mixed with the water supplied from the pipe 49 to the pipe 26 and flows into the cooling water supply pipe 14. This water flowing into the cooling water supply pipe 14 is supplied as cooling water to the reactor pressure vessel 2 through the cooling water supply pipes 14 and 10.

復水貯蔵タンク15内の水位が下限設定水位まで低下したとき、水位計21の計測値を入力する制御装置25が、高圧ポンプ48を一旦停止させ、開閉弁31及び32を開いて開閉弁34,37及び50を閉じる。その後、高圧ポンプ48が制御装置25によって駆動され、海水供給管24で供給される海水が高圧ポンプ48で昇圧されて容器52内の被処理水領域に供給される。この被処理水領域内の海水に含まれる水が逆浸透膜27を透過して淡水となり、さらに、容器52内の透過水領域から配管26を通して復水貯蔵タンク15に供給される。復水貯蔵タンク15内に透過水が蓄えられ、復水貯蔵タンク15内の水位が上昇する。この水位が上限設定水位に達したとき、制御装置25の作用により、高圧ポンプ48の駆動が停止され、開閉弁31及び32が閉じられて開閉弁34,37及び50が開く。その後、高圧ポンプ48が駆動されると、復水貯蔵タンク15内の透過水が、冷却水として、前述したように、配管26,36,49及び26、及びバイパス配管33を通って冷却水供給管14内に流入する。この透過水は、冷却水供給管14及び10を通って原子炉圧力容器2に供給される。   When the water level in the condensate storage tank 15 falls to the lower limit set water level, the control device 25 that inputs the measured value of the water level meter 21 temporarily stops the high-pressure pump 48, opens the on-off valves 31 and 32, and opens the on-off valve 34. , 37 and 50 are closed. Thereafter, the high-pressure pump 48 is driven by the control device 25, and the seawater supplied through the seawater supply pipe 24 is pressurized by the high-pressure pump 48 and supplied to the treated water region in the container 52. Water contained in seawater in the treated water region passes through the reverse osmosis membrane 27 to become fresh water, and is further supplied from the permeated water region in the container 52 to the condensate storage tank 15 through the pipe 26. The permeate is stored in the condensate storage tank 15 and the water level in the condensate storage tank 15 rises. When this water level reaches the upper limit set water level, the operation of the control device 25 stops the drive of the high-pressure pump 48, the on-off valves 31 and 32 are closed, and the on-off valves 34, 37 and 50 are opened. Thereafter, when the high-pressure pump 48 is driven, the permeated water in the condensate storage tank 15 is supplied as cooling water through the pipes 26, 36, 49 and 26 and the bypass pipe 33 as described above. It flows into the tube 14. This permeated water is supplied to the reactor pressure vessel 2 through the cooling water supply pipes 14 and 10.

前述の開閉弁31,32,34,37及び50の開閉操作は、図2に図示されていないが、制御装置25で行われる。   The aforementioned opening / closing operation of the opening / closing valves 31, 32, 34, 37 and 50 is performed by the control device 25, although not shown in FIG.

本実施例では、復水貯蔵タンク15内の水が高圧ポンプ48により原子炉圧力容器2内に供給されて復水貯蔵タンク15内の水位が下限設定水位まで低下した後で、逆浸透膜装置46で生成された淡水が復水貯蔵タンク15に供給されている間、復水貯蔵タンク15から原子炉圧力容器2への冷却水の注入が停止される。しかしながら、この冷却水の注入停止期間は短いので、その間、冷却水が原子炉圧力容器2に供給されなくても、原子炉圧威力容器2内の水位が炉心よりも上方に存在し、炉心内の燃料集合体は十分に冷却される。その淡水の供給により復水貯蔵タンク15内の水位が上限設定水位に達したとき、再び、復水貯蔵タンク5から原子炉圧力容器2に冷却水を注入することができる。   In this embodiment, after the water in the condensate storage tank 15 is supplied into the reactor pressure vessel 2 by the high pressure pump 48 and the water level in the condensate storage tank 15 is lowered to the lower limit set water level, the reverse osmosis membrane device While the fresh water generated at 46 is supplied to the condensate storage tank 15, the injection of cooling water from the condensate storage tank 15 to the reactor pressure vessel 2 is stopped. However, since this cooling water injection stop period is short, even if the cooling water is not supplied to the reactor pressure vessel 2, the water level in the reactor pressure vessel 2 exists above the core, The fuel assembly is sufficiently cooled. When the water level in the condensate storage tank 15 reaches the upper limit set water level due to the supply of the fresh water, the cooling water can be injected into the reactor pressure vessel 2 from the condensate storage tank 5 again.

逆浸透膜装置46の基数を増加することにより、逆浸透膜装置46で生成される淡水の量を増加させることができる。このような対策を講じることにより、復水貯蔵タンク15内の水位を下限設定水位から上限設定水位まで上昇させる時間を短縮することができ、復水貯蔵タンク15から原子炉圧力容器2に冷却水が注入できなくなる時間を短縮することができる。このため、原子炉圧力容器2内の冷却水の温度上昇を抑制することができ、炉心内の燃料集合体の冷却効率が向上する。   By increasing the radix of the reverse osmosis membrane device 46, the amount of fresh water produced by the reverse osmosis membrane device 46 can be increased. By taking such measures, it is possible to shorten the time for raising the water level in the condensate storage tank 15 from the lower limit set water level to the upper limit set water level, and to supply cooling water from the condensate storage tank 15 to the reactor pressure vessel 2. It is possible to reduce the time during which the injection becomes impossible. For this reason, the temperature rise of the cooling water in the reactor pressure vessel 2 can be suppressed, and the cooling efficiency of the fuel assembly in the core is improved.

バイパス弁34を有する他のバイパス配管33は、配管26、及び低圧炉心冷却装置の、復水貯蔵タンク15に連絡される冷却水供給管に接続される。このように、配管26に接続された他のバイパス配管33を、低圧炉心冷却装置の、復水貯蔵タンク15に連絡される冷却水供給管に接続することにより、低圧炉心冷却装置による圧力抑制プール6内の冷却水37の原子炉圧力容器2への供給が不可能な事象が発生し、低圧炉心冷却装置のその冷却水供給管に設けられたポンプに不具合が生じた場合でも、前述した高圧炉心注水装置8でポンプ12に不具合が生じた場合と同様に、逆浸透膜装置46による海水の淡水化で生成された淡水を、冷却水として、低圧炉心冷却装置により原子炉圧力容器2に供給することができる。   Another bypass pipe 33 having a bypass valve 34 is connected to the pipe 26 and a cooling water supply pipe connected to the condensate storage tank 15 of the low-pressure core cooling device. In this way, by connecting the other bypass pipe 33 connected to the pipe 26 to the cooling water supply pipe connected to the condensate storage tank 15 of the low-pressure core cooling apparatus, the pressure suppression pool by the low-pressure core cooling apparatus. Even if an event occurs in which the cooling water 37 in the reactor 6 cannot be supplied to the reactor pressure vessel 2 and a failure occurs in the pump provided in the cooling water supply pipe of the low-pressure core cooling device, the above-described high pressure In the same way as when the pump 12 malfunctions in the core water injection device 8, fresh water generated by desalination of seawater by the reverse osmosis membrane device 46 is supplied as cooling water to the reactor pressure vessel 2 by the low pressure core cooling device. can do.

本実施例は実施例1で生じる各効果を得ることができる。さらに、本実施例は、高圧炉心注水装置8または低圧炉心注水装置の、復水貯蔵タンク15内の冷却水を原子炉圧力容器2に供給するポンプに不具合が生じた場合においても、逆浸透膜装置46の高圧ポンプ48を用いて逆浸透膜装置46で生成された透過水(淡水)を、冷却水として原子炉圧力容器2に供給することができ、炉心内の燃料集合体を冷却することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. Furthermore, the present embodiment provides a reverse osmosis membrane even when a malfunction occurs in the pump that supplies the cooling water in the condensate storage tank 15 to the reactor pressure vessel 2 of the high pressure core water injection device 8 or the low pressure core water injection device. Permeated water (fresh water) generated by the reverse osmosis membrane device 46 using the high-pressure pump 48 of the device 46 can be supplied to the reactor pressure vessel 2 as cooling water, and the fuel assembly in the core is cooled. Can do.

本実施例では、ポンプ12に不具合が生じて高圧水ポンプ48を用いて復水貯蔵タンク15内の冷却水36(透過水)を原子炉圧力容器2に注水するとき、高圧ポンプ48で昇圧された冷却水36の一部が容器52内の被処理水領域に供給されるが、高圧ポンプ48で昇圧された大部分の冷却水36が配管49を通るので、逆浸透膜47の損傷を防止することができる。   In this embodiment, when a malfunction occurs in the pump 12 and the cooling water 36 (permeated water) in the condensate storage tank 15 is poured into the reactor pressure vessel 2 using the high-pressure water pump 48, the pressure is increased by the high-pressure pump 48. A part of the cooling water 36 is supplied to the treated water region in the container 52, but most of the cooling water 36 pressurized by the high-pressure pump 48 passes through the pipe 49, thereby preventing the reverse osmosis membrane 47 from being damaged. can do.

本発明の好適な他の実施例である実施例3の核燃料冷却方法を、図3を用いて説明する。本実施例の核燃料冷却方法は沸騰水型原子力プラントに適用される。   A nuclear fuel cooling method according to embodiment 3, which is another preferred embodiment of the present invention, will be described with reference to FIG. The nuclear fuel cooling method of this embodiment is applied to a boiling water nuclear plant.

本実施例の核燃料冷却方法に用いられる核燃料冷却装置である非常用炉心冷却装置1Bを、図3を用いて説明する。非常用炉心冷却装置1Bは、実施例1に用いられる非常用炉心冷却装置1に脱塩装置39、及び開閉弁41を設けたバイパス配管40を追加した構成を有する。脱塩装置39は配管26に設けられ、脱塩装置39をバイパスするバイパス配管40の両端部が配管26に接続される。非常用炉心冷却装置1Bの他の構成は実施例1に用いられる非常用炉心冷却装置1と同じである。   An emergency core cooling apparatus 1B, which is a nuclear fuel cooling apparatus used in the nuclear fuel cooling method of this embodiment, will be described with reference to FIG. The emergency core cooling apparatus 1B has a configuration in which a demineralizer 39 and a bypass pipe 40 provided with an on-off valve 41 are added to the emergency core cooling apparatus 1 used in the first embodiment. The desalinator 39 is provided in the pipe 26, and both ends of a bypass pipe 40 that bypasses the desalinator 39 are connected to the pipe 26. Other configurations of the emergency core cooling device 1B are the same as those of the emergency core cooling device 1 used in the first embodiment.

本実施例においても、実施例1と同様に、冷却材喪失事故が発生したとき、高圧炉心注水装置8及び原子炉隔離時冷却装置16による復水貯蔵タンク15内の冷却水36の原子炉圧力容器2への注水が行われる。さらに、水位計21で計測された復水貯蔵タンク15内の冷却水36が下限設定水位まで低下したときで、高圧炉心注水装置8及び原子炉隔離時冷却装置16により圧力抑制プール6内の冷却水37の原子炉圧力容器2への注水が不可能な事象が発生したときには、実施例1と同様に、逆浸透膜装置46による海水の淡水化で生成された淡水が、冷却水として、高圧炉心注水装置8及び原子炉隔離時冷却装置16により原子炉圧力容器2に注水することができる。低圧炉心注水装置を駆動しているときにおいても、圧力抑制プール6内の冷却水37の原子炉圧力容器2への注水が不可能な事象が発生したときには、逆浸透膜装置46により生成された淡水を、冷却水として、低圧炉心注水装置により原子炉圧力容器2に注水することができる。   Also in the present embodiment, as in the first embodiment, when a coolant loss accident occurs, the reactor pressure of the cooling water 36 in the condensate storage tank 15 by the high pressure core water injection device 8 and the reactor isolation cooling device 16 is reduced. Water is poured into the container 2. Further, when the cooling water 36 in the condensate storage tank 15 measured by the water level gauge 21 is lowered to the lower limit set water level, the cooling in the pressure suppression pool 6 is performed by the high pressure core water injection device 8 and the reactor isolation cooling device 16. When an event in which water 37 cannot be injected into the reactor pressure vessel 2 occurs, fresh water generated by desalination of seawater by the reverse osmosis membrane device 46 is used as cooling water in the same way as in the first embodiment. Water can be injected into the reactor pressure vessel 2 by the core water injection device 8 and the reactor isolation cooling device 16. Even when the low-pressure core water injection device is driven, when an event in which the cooling water 37 in the pressure suppression pool 6 cannot be injected into the reactor pressure vessel 2 occurs, the reverse osmosis membrane device 46 generates the event. Fresh water can be injected into the reactor pressure vessel 2 as cooling water by a low pressure core water injection device.

逆浸透膜装置46の運転開始時及び運転末期では、逆浸透膜47の性能が低下するので、逆浸透膜装置46で生成される透過水の水質が悪化する。すなわち、逆浸透膜47を透過する透過水の導電率の値が高くなる。このため、本実施例では、逆浸透膜装置46の運転開始時及び運転末期において開閉弁41を閉じ、逆浸透膜装置46により生成された淡水である透過水を、脱塩装置39を通過させて復水貯蔵タンク15に供給する。その透過水が脱塩装置39に供給されるため、透過水が浄化され、透過水の導電率が低下する。このため、逆浸透膜装置46の運転開始時及び運転末期においても、導電率の低い透過水を、冷却水として高圧炉心注水装置8及び原子炉隔離時冷却装置16または低圧炉心注水装置により原子炉圧力容器2に注水することができる。   At the start and end of operation of the reverse osmosis membrane device 46, the performance of the reverse osmosis membrane 47 deteriorates, so the quality of the permeated water generated by the reverse osmosis membrane device 46 deteriorates. That is, the conductivity value of the permeated water that passes through the reverse osmosis membrane 47 increases. Therefore, in this embodiment, the on-off valve 41 is closed at the start and end of the operation of the reverse osmosis membrane device 46, and the permeated water, which is fresh water generated by the reverse osmosis membrane device 46, is allowed to pass through the demineralizer 39. To the condensate storage tank 15. Since the permeated water is supplied to the demineralizer 39, the permeated water is purified and the conductivity of the permeated water is reduced. Therefore, even when the reverse osmosis membrane device 46 starts operation and at the end of operation, the permeated water having low conductivity is used as cooling water by the high pressure core water injection device 8 and the reactor isolation cooling device 16 or the low pressure core water injection device. Water can be poured into the pressure vessel 2.

逆浸透膜装置46の運転開始時及び運転末期以外の逆浸透膜装置46の運転時においては、開閉弁41を開いて、逆浸透膜装置46で生成された淡水の透過水を、バイパス配管40を通して復水貯蔵タンク15に導く。このときの透過水の導電率は低いので、逆浸透膜装置46の、運転開始時及び運転末期以外の運転時においても、導電率の低い透過水を冷却水として原子炉圧力容器2に注水することができる。   At the start of operation of the reverse osmosis membrane device 46 and at the time of operation of the reverse osmosis membrane device 46 other than the end of operation, the on-off valve 41 is opened, and the permeated water of fresh water generated by the reverse osmosis membrane device 46 is passed through the bypass pipe 40. To the condensate storage tank 15. At this time, since the conductivity of the permeated water is low, even when the reverse osmosis membrane device 46 is operated at the start of operation and other than the end of the operation, the permeated water having a low conductivity is poured into the reactor pressure vessel 2 as cooling water. be able to.

本実施例は実施例1で生じる各効果を得ることができる。本実施例では、脱塩装置39を配管に設けているので、導電率の低い透過水を冷却水として原子炉圧力容器2に注水することができる。また、開閉弁41を設けたバイパス配管40を設けているので、透過水の導電率が低い、逆浸透膜装置46の、運転開始時及び運転末期以外の運転時において、脱塩装置39に透過水の供給量が低減され、脱塩装置39内に充填されたイオン交換樹脂の脱塩性能の劣化を抑制することができる。開閉弁41を設けたバイパス配管40を配管26に接続しなくても、導電率の低い透過水を冷却水として原子炉圧力容器2に注水することができる。   In the present embodiment, each effect produced in the first embodiment can be obtained. In the present embodiment, since the desalination apparatus 39 is provided in the pipe, the permeated water having low conductivity can be poured into the reactor pressure vessel 2 as cooling water. Further, since the bypass pipe 40 provided with the on-off valve 41 is provided, the reverse osmosis membrane device 46 having low conductivity of the permeated water permeates the desalinator 39 at the time of operation other than the start of operation and the end of operation. The supply amount of water is reduced, and deterioration of the desalting performance of the ion exchange resin filled in the desalting apparatus 39 can be suppressed. Even if the bypass pipe 40 provided with the on-off valve 41 is not connected to the pipe 26, the permeated water having low conductivity can be poured into the reactor pressure vessel 2 as cooling water.

実施例2において用いられる構成、すなわち、開閉弁34を設けたバイパス配管33、開閉弁37を設けた配管36及び開閉弁50を設けた配管49、及び開閉弁31及び32を本実施例に適用することができる。この場合には、バイパス配管33と配管26の接続点、及び配管49と配管26の接続点は、脱塩装置39の下流に配置される。このような構成を用いることによって、本実施例は、実施例2と同様に、高圧ポンプ48を用いて復水貯蔵タンク15内の冷却水(例えば、逆浸透膜47の透過水)を原子炉圧力容器2に供給することができる。   The configuration used in the second embodiment, that is, the bypass pipe 33 provided with the on-off valve 34, the pipe 36 provided with the on-off valve 37, the pipe 49 provided with the on-off valve 50, and the on-off valves 31 and 32 are applied to this embodiment. can do. In this case, the connection point between the bypass pipe 33 and the pipe 26 and the connection point between the pipe 49 and the pipe 26 are arranged downstream of the demineralizer 39. By using such a configuration, in the present embodiment, similarly to the second embodiment, the high-pressure pump 48 is used to supply the cooling water (for example, the permeated water of the reverse osmosis membrane 47) in the condensate storage tank 15 to the reactor. The pressure vessel 2 can be supplied.

本発明の好適な他の実施例である実施例4の核燃料冷却方法を、図4を用いて説明する。本実施例の核燃料冷却方法は、沸騰水型原子力プラントの燃料貯蔵プールに貯蔵される使用済燃料集合体の冷却に適用される。   A nuclear fuel cooling method according to embodiment 4, which is another preferred embodiment of the present invention, will be described with reference to FIG. The nuclear fuel cooling method of the present embodiment is applied to cooling spent fuel assemblies stored in a fuel storage pool of a boiling water nuclear plant.

本実施例の核燃料冷却方法に用いられる核燃料冷却装置1Cを、図4を用いて説明する。核燃料冷却装置1Cは、冷却水冷却装置55、冷却水補給装置59及び逆浸透膜装置46を備えている。冷却水冷却装置55は、実施例1と同じ構成を有する。   A nuclear fuel cooling device 1C used in the nuclear fuel cooling method of the present embodiment will be described with reference to FIG. The nuclear fuel cooling device 1 </ b> C includes a cooling water cooling device 55, a cooling water supply device 59, and a reverse osmosis membrane device 46. The cooling water cooling device 55 has the same configuration as that of the first embodiment.

冷却水補給装置59は、冷却水供給管43及び14A、冷却水供給管43に設けられたポンプ42及び冷却水供給管14Aに設けられたポンプ12Aを有する。冷却水供給管43の一端が圧力抑制プール6内の冷却水37中に配置されたストレーナ19Aに接続される。冷却水供給管43の他端が原子炉圧力容器2に接続される。開閉弁44がポンプ42の上流で冷却水供給管43に設けられる。冷却水供給管14Aの一端が復水貯蔵タンク15に接続され、冷却水供給管14Aの他端がポンプ42の下流で冷却水供給管43に接続される。開閉弁13Aがポンプ12Aの下流で冷却水供給管14に設けられる。   The cooling water supply device 59 includes cooling water supply pipes 43 and 14A, a pump 42 provided in the cooling water supply pipe 43, and a pump 12A provided in the cooling water supply pipe 14A. One end of the cooling water supply pipe 43 is connected to a strainer 19 </ b> A disposed in the cooling water 37 in the pressure suppression pool 6. The other end of the cooling water supply pipe 43 is connected to the reactor pressure vessel 2. An on-off valve 44 is provided in the cooling water supply pipe 43 upstream of the pump 42. One end of the cooling water supply pipe 14 A is connected to the condensate storage tank 15, and the other end of the cooling water supply pipe 14 A is connected to the cooling water supply pipe 43 downstream of the pump 42. An on-off valve 13A is provided in the cooling water supply pipe 14 downstream of the pump 12A.

逆浸透膜装置46は、実施例2と同様に、高圧ポンプ48、及び内部に逆浸透膜47を設置した容器52を有する。   Similar to the second embodiment, the reverse osmosis membrane device 46 includes a high-pressure pump 48 and a container 52 in which a reverse osmosis membrane 47 is installed.

原子炉圧力容器2の炉心から取り出された、核燃料を含む複数の使用済燃料集合体は、燃料貯蔵プール7内の冷却水中に設置された燃料貯蔵ラック(図示せず)内に収納されて保管される。これらの使用済燃料集合体は燃料貯蔵プール7内の冷却水38によって冷却される。冷却水38は、使用済燃料集合体内の核燃料の崩壊熱によって加熱され、温度が上昇する。温度が上昇した燃料貯蔵プール7内の冷却水38は、冷却水冷却装置55の冷却装置56に導かれて冷却され、底部から燃料貯蔵プール7内に供給される。   A plurality of spent fuel assemblies including nuclear fuel taken out from the core of the reactor pressure vessel 2 are stored and stored in a fuel storage rack (not shown) installed in the cooling water in the fuel storage pool 7. Is done. These spent fuel assemblies are cooled by cooling water 38 in the fuel storage pool 7. The cooling water 38 is heated by the decay heat of the nuclear fuel in the spent fuel assembly, and the temperature rises. The cooling water 38 in the fuel storage pool 7 whose temperature has risen is led to the cooling device 56 of the cooling water cooling device 55 to be cooled, and is supplied into the fuel storage pool 7 from the bottom.

燃料貯蔵プール7内の冷却水の一部は、前述の崩壊熱により加熱されて蒸発する。この蒸発により燃料貯蔵プール7内の冷却水38が減少するために、冷却水の蒸発量に相当する量の冷却水が燃料貯蔵プール7に補給される。この冷却水の補給が冷却水補給装置59を用いて行われる。   A part of the cooling water in the fuel storage pool 7 is heated by the decay heat and evaporates. Due to this evaporation, the cooling water 38 in the fuel storage pool 7 decreases, so that an amount of cooling water corresponding to the evaporation amount of the cooling water is supplied to the fuel storage pool 7. This cooling water supply is performed using the cooling water supply device 59.

冷却水補給装置59を用いた、燃料貯蔵プール7への冷却水の補給について具体的に説明する。燃料貯蔵プール7に設置された水位計(図示せず)で計測された燃料貯蔵プール7内の水位が計測され、計測されたこの水位が第1下限設定水位まで低下したとき、開閉弁13Aが開いてポンプ12Aが駆動される。ポンプ12Aの駆動によって復水貯蔵タンク15内の冷却水36が冷却水供給管14A及び43を通って燃料貯蔵プール7に供給される。このとき、開閉弁44は閉じており、ポンプ42も停止している。冷却水36の供給により燃料貯蔵プール7内の冷却水38の水位が第1上限設定水位まで上昇したとき、ポンプ42の駆動が停止され、燃料貯蔵プール7への冷却水36の供給が停止される。冷却水補給装置による燃料貯蔵プール7への冷却水の供給は、沸騰水型原子力プラントの運転停止中だけでなく、沸騰水型原子力プラントの運転中においても行われる。燃料貯蔵プール7内における冷却水38の水位は、燃料貯蔵プール7内に保管された使用済燃料集合体の冷却に支障が生じないように保持される。   The replenishment of the cooling water to the fuel storage pool 7 using the cooling water replenishing device 59 will be specifically described. When the water level in the fuel storage pool 7 measured by a water level meter (not shown) installed in the fuel storage pool 7 is measured and the measured water level drops to the first lower limit set water level, the on-off valve 13A It opens and the pump 12A is driven. By driving the pump 12A, the cooling water 36 in the condensate storage tank 15 is supplied to the fuel storage pool 7 through the cooling water supply pipes 14A and 43. At this time, the on-off valve 44 is closed and the pump 42 is also stopped. When the level of the cooling water 38 in the fuel storage pool 7 rises to the first upper limit set water level due to the supply of the cooling water 36, the driving of the pump 42 is stopped and the supply of the cooling water 36 to the fuel storage pool 7 is stopped. The The supply of the cooling water to the fuel storage pool 7 by the cooling water supply device is performed not only during the operation of the boiling water nuclear plant but also during the operation of the boiling water nuclear plant. The water level of the cooling water 38 in the fuel storage pool 7 is maintained so as not to hinder the cooling of the spent fuel assembly stored in the fuel storage pool 7.

復水貯蔵プール15内の冷却水36の水位が第2下限設定水位まで低下したとき、ポンプ12Aの駆動が停止されて開閉弁13Aが閉じられ、そして、開閉弁44が開けられてポンプ42が駆動される。ポンプ42の駆動によって圧力抑制プール6の冷却水37が冷却水供給管43を通して燃料貯蔵プール7に供給される。しかしながら、復水貯蔵プール15内の水位が第2下限設定水位まで低下したときにおいて、開閉弁44が開かず、圧力抑制プール6の冷却水37の燃料貯蔵プール7への供給が不可能な状態になった場合には、開閉弁13Aが開いてポンプ12Aが運転されたままの状態になっており、実施例1と同様に、高圧ポンプ48が駆動されて海水供給管24内を導かれる海水が逆浸透膜装置46の容器52内の被処理水領域に供給される。この海水に含まれる水が逆浸透膜47を透過して淡水になる淡水である透過水が、容器52内の透過水領域から排出され、配管26を通って復水貯蔵タンク15に供給される。この透過水が、冷却水36として、ポンプ12Aにより昇圧され、冷却水供給管14A及び43を通って燃料貯蔵プール7に供給される。結果的に、逆浸透膜装置46で生成された淡水が、燃料貯蔵プール7内で使用済燃料集合体の冷却に使用される。   When the water level of the cooling water 36 in the condensate storage pool 15 is lowered to the second lower limit set water level, the drive of the pump 12A is stopped, the on-off valve 13A is closed, and the on-off valve 44 is opened to turn off the pump 42. Driven. The cooling water 37 in the pressure suppression pool 6 is supplied to the fuel storage pool 7 through the cooling water supply pipe 43 by driving the pump 42. However, when the water level in the condensate storage pool 15 drops to the second lower limit set water level, the on-off valve 44 does not open, and the supply of the cooling water 37 of the pressure suppression pool 6 to the fuel storage pool 7 is impossible. In this case, the on-off valve 13A is opened and the pump 12A is kept in operation, and the high-pressure pump 48 is driven and the seawater supplied through the seawater supply pipe 24 as in the first embodiment. Is supplied to the treated water region in the container 52 of the reverse osmosis membrane device 46. The permeated water, which is fresh water that passes through the reverse osmosis membrane 47 and becomes fresh water, is contained in the seawater is discharged from the permeated water region in the container 52 and supplied to the condensate storage tank 15 through the pipe 26. . This permeated water is boosted by the pump 12A as cooling water 36 and supplied to the fuel storage pool 7 through the cooling water supply pipes 14A and 43. As a result, the fresh water generated by the reverse osmosis membrane device 46 is used for cooling the spent fuel assembly in the fuel storage pool 7.

燃料集合体の交換時等の沸騰水型原子力プラントの運転停止中では、高圧ポンプ48は外部電源27から供給される電力で駆動される。沸騰水型原子力プラントの運転時においては、高圧ポンプ48は内部電源から供給される電力で駆動される。なお、外部電源27、内部電源及びデ非常用ディーゼル発電機から高圧ポンプ48に電力が供給できないときには、電源車30からく高圧ポンプ48に電力が供給される。   The high pressure pump 48 is driven by the electric power supplied from the external power source 27 while the operation of the boiling water nuclear plant is stopped, such as when the fuel assembly is replaced. During operation of the boiling water nuclear power plant, the high-pressure pump 48 is driven by electric power supplied from an internal power source. When power cannot be supplied from the external power supply 27, the internal power supply, and the emergency diesel generator to the high-pressure pump 48, power is supplied from the power supply vehicle 30 to the high-pressure pump 48.

本実施例によれば、逆浸透膜装置46における海水の淡水化で生成された淡水を復水貯蔵タンク15内に供給することができるので、圧力抑制プール6内の冷却水37を原子炉圧力容器2に供給することができない事象が発生しても、その淡水を冷却水として燃料貯蔵プール7に供給することができ、燃料貯蔵プール7内に保管されている使用済燃料集合体を冷却することができる。   According to the present embodiment, since fresh water generated by desalination of seawater in the reverse osmosis membrane device 46 can be supplied into the condensate storage tank 15, the cooling water 37 in the pressure suppression pool 6 is supplied to the reactor pressure. Even if an event that cannot be supplied to the container 2 occurs, the fresh water can be supplied to the fuel storage pool 7 as cooling water, and the spent fuel assembly stored in the fuel storage pool 7 is cooled. be able to.

また、本実施例では、海水の淡水化により生成された淡水を燃料貯蔵プール72内に供給するので、海水成分(例えば、Cl)が燃料貯蔵プール7内に供給されることを防止できる。このため、燃料貯蔵プール7の内面を形成しているライニング材、及び燃料貯蔵プールに保管されている使用済燃料集合体に含まれる燃料棒の被覆管の、海水成分による腐食の危険性を解消することができる。 In this embodiment, since fresh water generated by seawater desalination is supplied into the fuel storage pool 72, seawater components (for example, Cl ) can be prevented from being supplied into the fuel storage pool 7. For this reason, the risk of corrosion due to seawater components of the lining material forming the inner surface of the fuel storage pool 7 and the cladding of the fuel rods contained in the spent fuel assembly stored in the fuel storage pool is eliminated. can do.

実施例1と同様に、水位計21で計測された復水貯蔵タンク15内の水位に基づいて制御装置25が高圧ポンプ48の駆動及び停止を制御するので、運転員の負担を軽減することができる。   As in the first embodiment, since the control device 25 controls the driving and stopping of the high-pressure pump 48 based on the water level in the condensate storage tank 15 measured by the water level gauge 21, the burden on the operator can be reduced. it can.

本実施例においても、実施例2と同様に、開閉弁34を設けたバイパス配管33、開閉弁37を設けた配管36及び開閉弁50を設けた配管49、及び開閉弁31及び32を適用することができる。   Also in this embodiment, as in the second embodiment, the bypass pipe 33 provided with the on-off valve 34, the pipe 36 provided with the on-off valve 37, the pipe 49 provided with the on-off valve 50, and the on-off valves 31 and 32 are applied. be able to.

本発明の好適な他の実施例である実施例5の核燃料冷却方法を、図5を用いて説明する。本実施例の核燃料冷却方法は、沸騰水型原子力プラントの燃料貯蔵プールに貯蔵される使用済燃料集合体の冷却に適用される。   A nuclear fuel cooling method according to embodiment 5, which is another preferred embodiment of the present invention, will be described with reference to FIG. The nuclear fuel cooling method of the present embodiment is applied to cooling spent fuel assemblies stored in a fuel storage pool of a boiling water nuclear plant.

本実施例の核燃料冷却方法に用いられる核燃料冷却装置1Dを、図5を用いて説明する。核燃料冷却装置1Dは、実施例4で用いる核燃料冷却装置1Cに、実施例3と同様に脱塩装置39、及び開閉弁41を設けたバイパス配管40を追加した構成を有する。核燃料冷却装置1Dの他の構成は核燃料冷却装置1Cと同じである。   A nuclear fuel cooling device 1D used in the nuclear fuel cooling method of the present embodiment will be described with reference to FIG. The nuclear fuel cooling device 1D has a configuration in which a demineralizer 39 and a bypass pipe 40 provided with an on-off valve 41 are added to the nuclear fuel cooling device 1C used in the fourth embodiment, as in the third embodiment. Other configurations of the nuclear fuel cooling device 1D are the same as those of the nuclear fuel cooling device 1C.

本実施例における核燃料冷却装置1Cを用いた燃料貯蔵プール7内の使用済燃料集合体の冷却方法は、実施例4における核燃料冷却装置1Cを用いた燃料貯蔵プール7内の使用済燃料集合体の冷却方法と同様に行われる。   The method of cooling the spent fuel assembly in the fuel storage pool 7 using the nuclear fuel cooling device 1C in the present embodiment is the same as that of the spent fuel assembly in the fuel storage pool 7 using the nuclear fuel cooling device 1C in the fourth embodiment. It is performed in the same manner as the cooling method.

ただし、本実施例では、逆浸透膜装置46の運転開始時及び運転末期において開閉弁41を閉じ、逆浸透膜装置46により生成された淡水である透過水を、脱塩装置39を通過させて復水貯蔵タンク15に供給する。また、逆浸透膜装置46の運転開始時及び運転末期以外の逆浸透膜装置46の運転時においては、開閉弁41を開いて、逆浸透膜装置46で生成された淡水の透過水を、バイパス配管40を通して復水貯蔵タンク15に導く。   However, in this embodiment, the on-off valve 41 is closed at the start and end of the operation of the reverse osmosis membrane device 46, and the permeated water, which is fresh water generated by the reverse osmosis membrane device 46, is allowed to pass through the desalination device 39. Supply to the condensate storage tank 15. In addition, when the reverse osmosis membrane device 46 is started and when the reverse osmosis membrane device 46 is in operation other than the end of the operation, the on-off valve 41 is opened to bypass the fresh water permeate generated by the reverse osmosis membrane device 46. It is led to the condensate storage tank 15 through the pipe 40.

このため、本実施例では、導電率は低い透過水を、冷却水として燃料貯蔵プール7に供給することができる。本実施例は実施例4で生じる各効果を得ることができる。   For this reason, in this embodiment, permeated water having low conductivity can be supplied to the fuel storage pool 7 as cooling water. In the present embodiment, each effect produced in the fourth embodiment can be obtained.

本実施例においても、実施例3と同様に、開閉弁34を設けたバイパス配管33、開閉弁37を設けた配管36及び開閉弁50を設けた配管49、及び開閉弁31及び32を適用することができる。   Also in the present embodiment, as in the third embodiment, the bypass pipe 33 provided with the on-off valve 34, the pipe 36 provided with the on-off valve 37, the pipe 49 provided with the on-off valve 50, and the on-off valves 31 and 32 are applied. be able to.

1,1A,1B…非常用炉心冷却装置(核燃料冷却装置)、1C,1D…核燃料冷却装置、2…原子炉圧力容器、3…原子炉格納容器、4…ドライウェル、5…圧力抑制室、6…圧力抑制プール、7…燃料貯蔵プール、8…高圧炉心注水装置、9,12,12A,17,42…ポンプ、10,14,14A,16,21,43…冷却水供給管、15…復水貯蔵タンク、21…水位計、24…海水供給管、25…制御装置、26,36,49…配管、33,40…バイパス配管、39…脱塩装置、46…逆浸透膜装置、47…逆浸透膜、48…高圧ポンプ、52…容器、55…冷却水冷却装置、59…冷却水補給装置。   DESCRIPTION OF SYMBOLS 1,1A, 1B ... Emergency core cooling device (nuclear fuel cooling device), 1C, 1D ... Nuclear fuel cooling device, 2 ... Reactor pressure vessel, 3 ... Reactor containment vessel, 4 ... Dry well, 5 ... Pressure suppression chamber, 6 ... Pressure suppression pool, 7 ... Fuel storage pool, 8 ... High pressure core water injection device, 9, 12, 12A, 17, 42 ... Pump, 10, 14, 14A, 16, 21, 43 ... Cooling water supply pipe, 15 ... Condensate storage tank, 21 ... water level gauge, 24 ... seawater supply pipe, 25 ... control device, 26, 36, 49 ... piping, 33, 40 ... bypass piping, 39 ... desalination device, 46 ... reverse osmosis membrane device, 47 ... reverse osmosis membrane, 48 ... high pressure pump, 52 ... container, 55 ... cooling water cooling device, 59 ... cooling water supply device.

Claims (9)

冷却水源タンク内の冷却水を、冷却水が充填されてこの冷却水中に核燃料を配置している、原子力プラントの構造物内に注入し、前記冷却水源タンク内の水位が設定水位に低下したとき、海水を淡水化装置に供給して前記海水から淡水を生成し、生成された前記淡水を前記冷却水源タンクに供給し、前記冷却水源タンク内の前記淡水を前記冷却水として前記構造物内に注入することを特徴とする核燃料冷却方法。   When cooling water in the cooling water source tank is injected into a structure of a nuclear power plant filled with cooling water and nuclear fuel is disposed in the cooling water, and the water level in the cooling water source tank drops to a set water level , Supplying seawater to a desalination apparatus to generate fresh water from the seawater, supplying the generated fresh water to the cooling water source tank, and using the fresh water in the cooling water source tank as the cooling water in the structure A nuclear fuel cooling method, characterized by being injected. 前記冷却水源タンク内の前記淡水が前記構造物である原子炉圧力容器または燃料貯蔵プールに注入される請求項1に記載の核燃料冷却方法。   The nuclear fuel cooling method according to claim 1, wherein the fresh water in the cooling water source tank is injected into a reactor pressure vessel or a fuel storage pool which is the structure. 前記淡水化装置として逆浸透膜装置を用い、前記冷却水源タンク内の水位が設定水位に低下し且つ前記冷却水源タンク内の前記冷却水を前記構造物内に供給するポンプに不具合が生じたときには、前記逆浸透膜装置に設けられた高圧ポンプを用いて前記海水を前記逆浸透膜装置の逆浸透膜に供給することにより前記海水から前記淡水を生成してこの淡水を前記冷却水源タンクに供給し、前記冷却水源タンクから前記構造物内への前記淡水の注入が前記高圧ポンプを用いて行われる請求項1または2に記載の核燃料冷却方法。   When a reverse osmosis membrane device is used as the desalination device, the water level in the cooling water source tank drops to a set water level, and a failure occurs in the pump that supplies the cooling water in the cooling water source tank into the structure The fresh water is generated from the seawater by supplying the seawater to the reverse osmosis membrane of the reverse osmosis membrane device using a high-pressure pump provided in the reverse osmosis membrane device, and the fresh water is supplied to the cooling water source tank The nuclear fuel cooling method according to claim 1, wherein the fresh water is injected from the cooling water source tank into the structure using the high-pressure pump. 前記淡水化装置で生成された前記淡水を脱塩装置で浄化し、浄化された前記淡水を前記冷却水源タンクに供給する請求項1または2に記載の核燃料冷却方法。   The nuclear fuel cooling method according to claim 1 or 2, wherein the fresh water generated by the desalination apparatus is purified by a desalting apparatus, and the purified fresh water is supplied to the cooling water source tank. 冷却水が充填される冷却水源タンクと、前記冷却水源タンクに接続されて、冷却水が充填されてこの冷却水中に核燃料を配置している、原子力プラントの構造物に接続される冷却水注入管と、前記冷却水注入管に設けられて前記冷却水源タンク内の前記冷却水を昇圧するポンプと、海水を淡水化し、生成された淡水を前記冷却水源タンクに供給する海水淡水化装置とを備えたことを特徴とする核燃料冷却装置。   A cooling water source tank filled with cooling water, and a cooling water injection pipe connected to the structure of the nuclear power plant connected to the cooling water source tank and filled with cooling water and nuclear fuel is disposed in the cooling water And a pump provided in the cooling water injection pipe for boosting the cooling water in the cooling water source tank, and a seawater desalination device for desalinating seawater and supplying the generated fresh water to the cooling water source tank. A nuclear fuel cooling device characterized by that. 前記冷却水源タンクに設けられた水位計測装置と、前記水位計測装置で計測された水位の情報を入力し、この計測された水位が下限設定水位まで低下したとき、前記淡水化装置を駆動させて前記淡水を生成させる制御装置が設けられた請求項5に記載の核燃料冷却装置。   The water level measuring device provided in the cooling water source tank and the water level information measured by the water level measuring device are input, and when the measured water level falls to the lower limit set water level, the desalination device is driven. The nuclear fuel cooling device according to claim 5, wherein a control device for generating the fresh water is provided. 前記冷却水供給管が前記構造物である原子炉圧力容器または燃料貯蔵プールに接続される請求項5または6に記載の核燃料冷却装置。   The nuclear fuel cooling device according to claim 5 or 6, wherein the cooling water supply pipe is connected to a reactor pressure vessel or a fuel storage pool which is the structure. 前記淡水化装置が前記海水を淡水化する逆浸透膜、及び前記逆浸透膜に供給する高圧ポンプを有する逆浸透膜装置であり、第1開閉弁が設けられて前記逆浸透膜で生成された前記淡水を前記冷却水源タンクに導く第1管路、第2開閉弁が設けられて前記冷却水源タンクをバイパスし、前記第1開閉弁の上流で前記第1管路に接続され、前記冷却水注入管に接続される第2管路、前記冷却水源タンクと前記高圧ポンプの流入口を連絡し、第3開閉弁が設けられる第3管路、及び前記高圧ポンプの吐出口に連絡され、前記第1管路と前記第2管路の接続点よりも上流で前記第1管路に接続され、第4開閉弁が設けられる第4管路が設けられている請求項5または6に記載の核燃料冷却装置。   The desalination apparatus is a reverse osmosis membrane apparatus having a reverse osmosis membrane that desalinates the seawater, and a high-pressure pump that supplies the reverse osmosis membrane. A first on-off valve is provided and the reverse osmosis membrane is generated. A first pipe and a second on-off valve for guiding the fresh water to the cooling water source tank are provided to bypass the cooling water source tank, and are connected to the first pipe upstream of the first on-off valve. A second pipe connected to the injection pipe, connected to the cooling water source tank and the inlet of the high-pressure pump, connected to a third pipe provided with a third on-off valve, and a discharge port of the high-pressure pump; 7. The fourth pipe according to claim 5, wherein a fourth pipe connected to the first pipe upstream of a connection point between the first pipe and the second pipe and provided with a fourth on-off valve is provided. Nuclear fuel cooling system. 前記淡水化装置で生成された前記淡水が前記冷却水源タンクに供給されるときに通過する脱塩装置が設けられた請求項5または6に記載の核燃料冷却装置。   The nuclear fuel cooling device according to claim 5 or 6, further comprising a desalination device that passes when the fresh water generated by the desalination device is supplied to the cooling water source tank.
JP2012240024A 2012-10-31 2012-10-31 Nuclear fuel cooling method and nuclear fuel cooling device Active JP5969355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240024A JP5969355B2 (en) 2012-10-31 2012-10-31 Nuclear fuel cooling method and nuclear fuel cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240024A JP5969355B2 (en) 2012-10-31 2012-10-31 Nuclear fuel cooling method and nuclear fuel cooling device

Publications (2)

Publication Number Publication Date
JP2014089139A true JP2014089139A (en) 2014-05-15
JP5969355B2 JP5969355B2 (en) 2016-08-17

Family

ID=50791145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240024A Active JP5969355B2 (en) 2012-10-31 2012-10-31 Nuclear fuel cooling method and nuclear fuel cooling device

Country Status (1)

Country Link
JP (1) JP5969355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156749A (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 Fuel storage facility
CN109273112A (en) * 2018-09-13 2019-01-25 中国核动力研究设计院 A kind of direct cooling passive residual heat removal system of anti-gravity direction flowing

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151586A (en) * 1984-01-18 1985-08-09 株式会社東芝 Treater for suppression pool water
JPH05172980A (en) * 1991-12-24 1993-07-13 Toshiba Corp Reactor container
JPH06258491A (en) * 1993-03-02 1994-09-16 Toshiba Eng Co Ltd Water supply equipment for condensate storage tank
JPH0755977A (en) * 1993-08-17 1995-03-03 Toshiba Corp Water injection system for reactor container
JPH0755978A (en) * 1993-08-19 1995-03-03 Toshiba Corp Water injection device for reactor container cooling system
JPH07318684A (en) * 1994-05-30 1995-12-08 Toshiba Corp Alternative water injector for reactor machinery and facility
JPH1054898A (en) * 1996-08-12 1998-02-24 Toshiba Corp Device for maintaining quality of condensate stored in condensate tank
JP2000206284A (en) * 1999-01-07 2000-07-28 Hitachi Ltd Condensate reservoir equipment and its operation control method
JP4765843B2 (en) * 2006-08-31 2011-09-07 東洋紡績株式会社 Seawater desalination method
JP2013238539A (en) * 2012-05-16 2013-11-28 Mitsubishi Heavy Ind Ltd Relief ship

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151586A (en) * 1984-01-18 1985-08-09 株式会社東芝 Treater for suppression pool water
JPH05172980A (en) * 1991-12-24 1993-07-13 Toshiba Corp Reactor container
JPH06258491A (en) * 1993-03-02 1994-09-16 Toshiba Eng Co Ltd Water supply equipment for condensate storage tank
JPH0755977A (en) * 1993-08-17 1995-03-03 Toshiba Corp Water injection system for reactor container
JPH0755978A (en) * 1993-08-19 1995-03-03 Toshiba Corp Water injection device for reactor container cooling system
JPH07318684A (en) * 1994-05-30 1995-12-08 Toshiba Corp Alternative water injector for reactor machinery and facility
JPH1054898A (en) * 1996-08-12 1998-02-24 Toshiba Corp Device for maintaining quality of condensate stored in condensate tank
JP2000206284A (en) * 1999-01-07 2000-07-28 Hitachi Ltd Condensate reservoir equipment and its operation control method
JP4765843B2 (en) * 2006-08-31 2011-09-07 東洋紡績株式会社 Seawater desalination method
JP2013238539A (en) * 2012-05-16 2013-11-28 Mitsubishi Heavy Ind Ltd Relief ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156749A (en) * 2015-02-25 2016-09-01 三菱重工業株式会社 Fuel storage facility
CN109273112A (en) * 2018-09-13 2019-01-25 中国核动力研究设计院 A kind of direct cooling passive residual heat removal system of anti-gravity direction flowing
CN109273112B (en) * 2018-09-13 2022-03-18 中国核动力研究设计院 Direct cooling passive residual heat removal system capable of flowing in anti-gravity direction

Also Published As

Publication number Publication date
JP5969355B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5027258B2 (en) Nuclear power plant using nanoparticles in a closed circuit of an emergency system and associated method
JP5904859B2 (en) Emergency core cooling device and nuclear reactor facility equipped with the same
JP6368617B2 (en) Power plant
TW201940222A (en) Water treatment device
JP5969355B2 (en) Nuclear fuel cooling method and nuclear fuel cooling device
JP2014010049A (en) Hydrogen treatment system for nuclear power plant
JP5276362B2 (en) Cavitation removal system and power plant water supply device
JP6858156B2 (en) Seawater cooling system
JP2015034734A (en) Steam processing system of nuclear power plant
JP5315167B2 (en) Boiling water nuclear power plant and reactor pressure vessel pressure leak test method
JP2007101332A (en) Aqueous boric acid solution injector and aqueous boric acid solution injection method
CN108447570B (en) Marine reactor and secondary side passive waste heat discharging system thereof
JP6578134B2 (en) Water treatment equipment and nuclear equipment
JP2011128090A (en) Nuclear power plant using kalina cycle
JP2013224889A (en) High pressure core injection system
JP2013092392A (en) Anticorrosion system of nuclear power plant
WO2019181253A1 (en) Pure water producing device
JP2010266131A (en) Steam generator scale adhesion suppressing method
WO2015093059A1 (en) Reactor water injection system, nuclear facility, and pipeline of nuclear plant
JP2007187518A (en) System for supplying control rod water pressure in nuclear power plant
JP5513846B2 (en) Nuclear power plant and method for operating the same
JP2005207936A (en) Method for reducing stress corrosion cracking, device for injecting chemical solution and nuclear power plant
JP6154989B2 (en) Cooling water treatment device in fuel pool
JP6562107B1 (en) Pure water production equipment
JP6562105B1 (en) Pure water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5969355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150