JP3597644B2 - Water quality maintenance equipment for nuclear power plants - Google Patents

Water quality maintenance equipment for nuclear power plants Download PDF

Info

Publication number
JP3597644B2
JP3597644B2 JP21225896A JP21225896A JP3597644B2 JP 3597644 B2 JP3597644 B2 JP 3597644B2 JP 21225896 A JP21225896 A JP 21225896A JP 21225896 A JP21225896 A JP 21225896A JP 3597644 B2 JP3597644 B2 JP 3597644B2
Authority
JP
Japan
Prior art keywords
pure water
condensate
water
nuclear power
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21225896A
Other languages
Japanese (ja)
Other versions
JPH1054898A (en
Inventor
規行 佐々木
嘉弘 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP21225896A priority Critical patent/JP3597644B2/en
Publication of JPH1054898A publication Critical patent/JPH1054898A/en
Application granted granted Critical
Publication of JP3597644B2 publication Critical patent/JP3597644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電プラントに設置されている復水貯蔵タンク内の貯蔵水中のTOC(全有機炭素,Total Organic Carbon)を分解除去して貯蔵水の純度を維持する原子力発電プラントの水質維持装置に関する。
【0002】
【従来の技術】
図2により従来の沸騰水型原子力発電プラントの一次系を説明し、図3により復水貯蔵タンク内の貯蔵水の純度維持手段を説明し、図4により炉水中のTOCと導電率との関係を説明する。
【0003】
図2において、原子炉1内で発生した蒸気は主蒸気管2を介してタービン3に送られ、発電機4を回転させて発電させる。タービン3を駆動した蒸気は復水器5で凝縮されて復水となる。
【0004】
この復水は低圧復水ポンプ6によって昇圧され、空気抽出器7,グランド蒸気凝縮器8を介し、復水浄化系に設置されている復水ろ過装置9,復水脱塩装置10により不純物が除去される。復水脱塩装置10で浄化された復水は高圧復水ポンプ11でさらに昇圧され、低圧給水加熱器12に送られて加熱される。
【0005】
そして、さらに給水ポンプ13により昇圧され、高圧給水加熱器14を通過して加熱され、給水管15を通して原子炉1内に給水される。なお、原子炉1内の構造機器健全性のために水素を注入するが、この水素の注入は復水脱塩装置10と高圧復水ポンプ11との間の水素注入点16で行われる。
【0006】
ところで、沸騰水型原子力発電プラントには、復水脱塩装置10と高圧復水ポンプ11との間に図3に示す復水貯蔵タンク17が分岐配管を介して接続されている。図3は水源18からの原水を純水製造装置19により浄化した純水を復水貯蔵タンク17内に貯蔵する基本系統図を示している。
【0007】
図3において、通常は海水や河川水等の水源1から汲み上げた原水を純水製造装置19により浄化し、そのまま純水供給配管20を通して復水貯蔵タンク17へ貯蔵した後、復水補給ポンプ21を経由し、原子力発電プラント内の各装置22へ移送するようになっている。各装置22からのプラント余剰水はフィードバック配管23により復水貯蔵タンク17に戻すようになっている。
【0008】
図2に示した沸騰水型原子力発電プラントではプラントの定期検査終了後、図3に示した復水貯蔵タンク17に貯蔵している復水を復水補給ポンプを経由しプラント内の水張りを行う。プラントの起動前浄化は復水浄化系の復水ろ過装置9および復水脱塩装置10により行う。
【0009】
この浄化に際して、復水貯蔵タンク17のTOCが高い場合、復水ろ過装置9および復水脱塩装置10でも完全にTOC成分を除去することが困難な場合がある。このため、プラントの水張り前にTOC濃度を確認し、高い場合は復水貯蔵タンク17の全水量(約2000〜 3000m)をブローし、純水製造装置19から再び貯蔵してTOCが低いことを確認した後、プラントの再水張りを行う。プラント起動前浄化が完了し、プラントが起動後の水の流れは図2で説明したとおりである。
【0010】
【発明が解決しようとする課題】
従来の純水製造装置はろ過と脱塩作用を組み合わせて構成されている。すなわち、図3に示したように原水を純水製造装置19により純水を製造し、純水供給配管20を通して復水貯蔵タンク17に供給し貯蔵することとなる。純水製造装置19にはイオン交換樹脂が充填されており、原水の脱塩処理はイオン交換樹脂により行う。
【0011】
このイオン交換樹脂は経年的な酸化劣化等により樹脂母体から有機不純物を溶出する。この有機不純物はTOC(全有機炭素,Total Organic Carbon)と呼ばれる。イオン交換樹脂が発生するTOCは分解すると硫酸イオンや硝酸イオンを生じ、これがプラント構成材料の腐食等の悪影響を与えることになる。
【0012】
図4に復水のTOC濃度および炉水導電率と時間との関係を示す。図4中たて軸は左側がTOC濃度、右側は導電率で、よこ軸は日時で、符号aは炉水導電率(TOC高)、bは炉水導電率(TOC低)、cはTOC濃度(高)、dはTOC濃度(低)を示している。復水とは復水貯蔵タンク17内の貯蔵水であり、炉水とは原子炉1内に給水した冷却水である。
【0013】
図4から明らかなように、復水のTOC濃度(高)cが 150ppb程度の場合、炉水導電率TOC(高)aはプラント起動直後高くなる。復水のTOC濃度(低)dの場合は炉水導電率TOC(低)bのように低くなる。
【0014】
一般に、原子力発電プラントではプラント起動時等の補給水として使用する水を貯蔵する復水貯蔵タンク17を有している。このため、TOC成分の多い補給水でプラント起動時の水張りを行った場合、起動時の水質が悪化する事象が生じ、このTOCを低減することが課題となっている。
【0015】
また、復水貯蔵タンク17にはプラントの各装置22からの余剰水が集められる。この余剰水中に定期検査時に使用した防錆剤、油分等のTOC成分を同伴し、流入する可能性があり、復水貯蔵タンク水を単独でTOCを低減する方法の確立が課題となっている。
【0016】
本発明は上記課題を解決するためになされたもので、復水貯蔵タンク内の貯蔵水のTOC成分を分解除去して復水貯蔵タンク内貯蔵水の水質を高く維持することが可能で、水分解時に発生する水素を有効に利用することができる原子力発電プラントの水質維持装置を提供することにある。
【0017】
【課題を解決するための手段】
請求項1の発明は、原水を浄化する純水製造装置と、この純水製造装置に接続した純水供給配管と、この純水供給配管の下流側に接続し原子力発電プラントの復水脱塩装置と高圧復水ポンプとの間に分岐配管を介して接続された復水貯蔵タンクと、前記純水供給配管に接続した全有機炭素分解装置とを具備し、前記全有機炭素分解装置は、前記純水供給配管に接続した中空糸膜ろ過器と、この中空糸膜ろ過器に接続しイオン交換樹脂が充填された脱塩塔と、オゾン発生器とを備え、前記オゾン発生器は前記脱塩塔の出口側に脱塩水供給配管を介して接続され、前記オゾン発生器のオゾン出口側はオゾン注入配管によって前記復水貯蔵タンクの入口側の純水供給配管に接続され、前記オゾン発生器で発生した水素を原子力発電プラントの給水に注入するようにしたことを特徴とする。
【0018】
本発明によれば、水分解によるオゾン発生器により復水貯蔵タンクへ供給する純水のTOCをオゾンにより分解し、復水貯蔵タンクの水質を高く維持することができるとともに、オゾン発生器から発生するオゾンを復水浄化系に供給することができるため、プラント起動前の浄化運転時にTOC分解を行うことができる。また、原子炉内機器の健全性維持に有効な水素を供給することができる
【0020】
また本発明によれば、中空糸膜ろ過器および脱塩塔により純水製造装置で浄化された純水の純度をより高めることができ、オゾンによるTOCの分解効率を高め、復水貯蔵タンクの水質を維持できる。
【0021】
請求項の発明は、前記復水貯蔵タンクと、前記純水製造装置と前記全有機炭素分解装置との間の純水供給配管を接続する循環配管を設けてなることを特徴とする。本発明によれば、オゾンにより分解したTOC成分を含む貯蔵水を循環配管によりフィードバックして中空糸膜ろ過器および脱塩塔で除去することができるので、復水貯蔵タンクの水質をより一層高く維持することができる。
【0023】
請求項の発明は、前記全有機炭素分解装置を原子力発電プラント内の熱源に配管接続してなることを特徴とする。本発明によれば、オゾン発生器から発生する水素を燃焼させて、その熱エネルギを原子力発電プラントの熱源に利用することができる。
【0024】
【発明の実施の形態】
図1により本発明に係る原子力発電プラントの水質維持装置の実施の形態を説明する。図1中、図3と同一部分には同一符号を付して重複する部分の説明は省略する。
【0025】
本発明の実施の形態が図3に示す従来例と異なる点は、純水製造装置19と復水貯蔵タンク17とを接続する純水供給配管20にTOC分解装置24を設けて復水貯蔵タンク17へ流入する純水中のTOCを分解することにより、復水貯蔵タンク17内の貯蔵水のTOC濃度を低減して水質を高純度に維持し、例えば原子炉1へ供給する給水の水質を高純度に維持することにある。
【0026】
TOC分解装置20は純水製造装置19の下流側の純水供給配管20に直列接続した中空糸膜ろ過器25と脱塩塔26を備えている。中空糸膜ろ過器25の入口側と脱塩塔26の出口側にはバイパス弁27を有するバイパス配管28が設けられている。脱塩塔26の出口側には脱塩水供給配管29が接続し、この脱塩水供給配管29にオゾン発生器30が接続されている。
【0027】
このオゾン発生器30のオゾン出口側と脱塩塔26側のバイパス配管28の下流側はオゾン注入配管31により接続されている。オゾン発生器30には水素ガス流出管32が接続している。復水貯蔵タンク17と純水製造装置19との間には復水循環ポンプ33を有する循環配管34が設けられている。
【0028】
つぎに本実施の形態の作用を説明する。
図1に示すように、海水や河川水等の水源18から汲み上げた原水を純水製造装置19により浄化し、そのまま復水貯蔵タンク17へ貯蔵した後、復水補給ポンプ21を経由し、プラント内の各装置22へ移送するが、本実施の形態では、TOC濃度を低減するために純水製造装置19の下流側に水分解によるオゾン発生器30と、中空糸膜ろ過器25と、脱塩塔26からなるTOC分解装置24を設けたものである。
【0029】
また、図1はTOC分解装置24を実施した系統において、復水循環配管34を用いて、復水貯蔵タンク17内の水をTOC分解装置24との間で循環させる。これにより既に貯蔵している復水のTOC濃度が高い場合でも復水循環ポンプ33を経由し循環運転を行う。同時にオゾン発生器30から発生するオゾンをオゾン注入配管31から注入し、復水貯蔵タンク17に戻し、オゾンの分解作用によりTOCを分解させる。
【0030】
循環運転により中空糸膜ろ過器25と脱塩塔26を通すことによりTOCが分解し、生成する硫酸イオン,硝酸イオン等のイオン不純物を除去する。これにより復水貯蔵タンク17の水質を高純度に維持できる。この循環運転は復水貯蔵タンク17単独で実施することが可能である。この循環運転は中空糸膜ろ過器25,脱塩塔26をバイパス配管28によりバイパスすることが可能であり、オゾン単独の注入も可能である。
【0031】
また、TOC分解装置24を原子力発電プラントの復水浄化系に設けることができる。すなわち、オゾン発生器30から発生するオゾンを直接プラント内の復水脱塩装置10の下流に供給することにより、プラント起動前の浄化運転時にTOC分解を行うことが可能となる。
【0032】
さらに、TOC分解装置24を原子力発電プラント内の熱源,給水への水素注入時の水素源に配管接続することができる。すなわち、水分解によるオゾン発生器30はオゾン生成と同時に水素を発生させる。この水素を燃焼させた熱エネルギーを利用し所内の熱供給として利用することが可能である。
【0033】
原子力発電所の場合、近年炉内機器の健全性維持のため水素注入が有効なことが確認され、実機に適用を開始したプラントがある。この水素源としてオゾン発生器30から発生する水素を利用することが可能である。
【0034】
【発明の効果】
本発明によれば、水分解によるオゾン発生部を組み合わせた純水製造可能なTOC分解装置により復水貯蔵タンクへ流入するTOCをオゾンにより分解し、復水貯蔵タンクの貯蔵水のTOC濃度を低減する。また、プラント起動前の浄化運転時にTOC分解を行うとともに、原子炉内機器の健全性維持のための水素供給を行うことができる。
【0035】
また、内部に中空糸膜とイオン交換樹脂からなる浄化装置と水分解によるオゾン発生装置を組み合わせたTOC分解装置を純水製造装置の下流側に設置し、復水貯蔵タンクへ流入するTOCを分解することにより、復水貯蔵タンクの貯蔵水の水質を高純度に維持し、炉水水質を高純度に維持することができる。
【図面の簡単な説明】
【図1】本発明に係る原子力発電プラント水質維持装置の実施形態を示す系統図。
【図2】従来の沸騰水型原子力発電プラントの一次系を示す系統図。
【図3】図2のプラントの復水脱塩装置の下流側に設けた復水貯蔵タンク内への純水を貯蔵する基本系統図。
【図4】図3において炉水中のTOCと導電率の関係を示す特性図。
【符号の説明】
1…原子炉、2…主蒸気管、3…タービン、4…発電機、5…復水器、6…低圧復水ポンプ、7…空気抽出器、8…グランド蒸気復水器、9…復水ろ過装置、10…復水脱塩装置、11…高圧復水ポンプ、12…低圧給水加熱器、13…給水ポンプ、14…高圧給水加熱器、15…給水管、16…水素注入点、17…復水貯蔵タンク、18…水源、19…純水製造装置、20…給水供給配管、21…復水補給ポンプ、22…各装置、23…フィードバック配管、24…TOC分解装置、25…中空糸膜ろ過器、26…脱塩塔、27…バイパス弁、28…バイパス配管、29…脱塩塔供給配管、30…オゾン発生器、31…オゾン注入配管、32…水素ガス流出管、33…復水循環ポンプ、34…循環配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water quality maintenance device for a nuclear power plant that decomposes and removes TOC (Total Organic Carbon) in storage water in a condensate storage tank installed in the nuclear power plant to maintain the purity of the storage water. .
[0002]
[Prior art]
FIG. 2 illustrates a primary system of a conventional boiling water nuclear power plant, FIG. 3 illustrates a means for maintaining purity of stored water in a condensate storage tank, and FIG. 4 illustrates a relationship between TOC in reactor water and conductivity. Will be described.
[0003]
In FIG. 2, steam generated in a reactor 1 is sent to a turbine 3 via a main steam pipe 2, and a generator 4 is rotated to generate power. The steam that has driven the turbine 3 is condensed by the condenser 5 to be condensed.
[0004]
This condensate is pressurized by a low-pressure condensate pump 6, passes through an air extractor 7 and a ground steam condenser 8, and is contaminated by a condensate filtration device 9 and a condensate desalination device 10 installed in the condensate purification system. Removed. The condensate purified by the condensate desalination device 10 is further pressurized by a high-pressure condensate pump 11 and sent to a low-pressure feedwater heater 12 to be heated.
[0005]
Then, the pressure is further increased by the water supply pump 13, heated by passing through the high pressure water heater 14, and supplied into the reactor 1 through the water supply pipe 15. In addition, hydrogen is injected for the soundness of structural equipment in the nuclear reactor 1, and the injection of hydrogen is performed at a hydrogen injection point 16 between the condensate desalination device 10 and the high-pressure condensate pump 11.
[0006]
In the boiling water nuclear power plant, a condensate storage tank 17 shown in FIG. 3 is connected between the condensate desalination unit 10 and the high-pressure condensate pump 11 via a branch pipe. FIG. 3 shows a basic system diagram for storing pure water obtained by purifying raw water from a water source 18 by a pure water producing apparatus 19 in a condensate storage tank 17.
[0007]
In FIG. 3, raw water normally pumped from a water source 1 such as seawater or river water is purified by a pure water producing apparatus 19, stored as it is in a condensate storage tank 17 through a pure water supply pipe 20, and then supplied to a condensate supply pump 21. , And is transferred to each device 22 in the nuclear power plant. The plant surplus water from each device 22 is returned to the condensate storage tank 17 by a feedback pipe 23.
[0008]
In the boiling water nuclear power plant shown in FIG. 2, after the periodic inspection of the plant is completed, the condensate stored in the condensate storage tank 17 shown in FIG. 3 is filled with water through the condensate supply pump. . The purification before starting the plant is performed by the condensate filtration device 9 and the condensate desalination device 10 of the condensate purification system.
[0009]
In this purification, when the TOC of the condensate storage tank 17 is high, it may be difficult for the condensate filtration device 9 and the condensate desalination device 10 to completely remove the TOC component. For this reason, the TOC concentration is checked before filling the plant. If the TOC concentration is high, the total amount of water (about 2000 to 3000 m 3 ) in the condensate storage tank 17 is blown and stored again from the pure water production apparatus 19 to reduce the TOC. After confirming, refill the plant. The flow of water after the completion of the purification before the start of the plant and the start of the plant is as described in FIG.
[0010]
[Problems to be solved by the invention]
A conventional pure water production apparatus is configured by combining filtration and desalination. That is, as shown in FIG. 3, pure water is produced from pure water by the pure water production apparatus 19 , and supplied to the condensate storage tank 17 through the pure water supply pipe 20 for storage. The pure water production apparatus 19 is filled with an ion exchange resin, and the desalination treatment of the raw water is performed using the ion exchange resin.
[0011]
This ion-exchange resin elutes organic impurities from the resin matrix due to aging deterioration and the like. This organic impurity is called TOC (Total Organic Carbon). When the TOC generated by the ion exchange resin is decomposed, sulfate and nitrate ions are generated, which has an adverse effect such as corrosion of plant constituent materials.
[0012]
FIG. 4 shows the relationship between the TOC concentration of the condensate and the reactor water conductivity and time. In FIG. 4, the vertical axis is the TOC concentration on the left side, the electrical conductivity is on the right side, the horizontal axis is the date and time, the symbol a is reactor water electrical conductivity (TOC high), b is reactor water electrical conductivity (TOC low), and c is TOC. The concentration (high) and d indicate the TOC concentration (low). The condensed water is stored water in the condensed water storage tank 17, and the reactor water is cooling water supplied to the reactor 1.
[0013]
As is clear from FIG. 4, when the TOC concentration (high) c of the condensed water is about 150 ppb, the reactor water conductivity TOC (high) a becomes high immediately after the start of the plant. In the case of the TOC concentration (low) d of the condensate, it becomes low like the reactor water conductivity TOC (low) b.
[0014]
Generally, a nuclear power plant has a condensate storage tank 17 for storing water used as make-up water at the time of plant startup or the like. For this reason, when water is filled at the time of starting the plant with make-up water having a large amount of TOC components, an event that the water quality at the time of starting is deteriorated occurs, and reducing the TOC has been a problem.
[0015]
In the condensate storage tank 17, surplus water from each device 22 of the plant is collected. There is a possibility that TOC components such as rust preventives and oils used at the time of the periodic inspection may be introduced into the surplus water and may flow into the surplus water. Therefore, the establishment of a method for reducing the TOC by using the condensate storage tank water alone has become an issue. .
[0016]
The present invention has been made to solve the above-mentioned problem, and it is possible to decompose and remove the TOC component of the storage water in the condensate storage tank to maintain the quality of the storage water in the condensate storage tank high. An object of the present invention is to provide a water quality maintenance device for a nuclear power plant that can effectively use hydrogen generated during decomposition.
[0017]
[Means for Solving the Problems]
The invention according to claim 1 is a pure water producing apparatus for purifying raw water, a pure water supply pipe connected to the pure water production apparatus, and a condensate desalination of a nuclear power plant connected downstream of the pure water supply pipe. A condensate storage tank connected via a branch pipe between the apparatus and the high-pressure condensate pump, and a total organic carbon decomposition apparatus connected to the pure water supply pipe , A hollow fiber membrane filter connected to the pure water supply pipe; a desalination tower connected to the hollow fiber membrane filter and filled with an ion exchange resin; and an ozone generator. The outlet of the salt tower is connected via a desalinated water supply pipe, and the ozone outlet of the ozone generator is connected to a pure water supply pipe on the inlet side of the condensate storage tank by an ozone injection pipe . Generated by the plant for water supply to nuclear power plants Characterized by being adapted to enter.
[0018]
According to the present invention, the ozone generator by water decompose TOC of the pure water supplied to the condensate storage tank is decomposed by the ozone, it is possible to maintain a high quality of condensate storage tank, generated from the ozone generator Can be supplied to the condensate purification system, so that TOC decomposition can be performed during the purification operation before starting the plant. Further, it is possible to supply hydrogen that is effective for maintaining the integrity of the equipment in the reactor .
[0020]
Further , according to the present invention, the purity of purified water purified by the pure water production apparatus can be further increased by the hollow fiber membrane filter and the desalination tower, the TOC decomposition efficiency by ozone is increased, and the condensate storage tank is improved. Water quality can be maintained.
[0021]
The invention of claim 2 is characterized in that a circulation pipe is provided for connecting the condensate storage tank and a pure water supply pipe between the pure water producing apparatus and the total organic carbon decomposing apparatus. According to the present invention, since the storage water containing the TOC component decomposed by ozone can be fed back through the circulation pipe and removed by the hollow fiber membrane filter and the desalination tower, the water quality of the condensate storage tank can be further improved. Can be maintained.
[0023]
The invention of claim 3 is characterized in that the total organic carbon decomposition apparatus is connected to a heat source in a nuclear power plant by piping. ADVANTAGE OF THE INVENTION According to this invention, the hydrogen generated from an ozone generator can be burned, and the thermal energy can be utilized for the heat source of a nuclear power plant.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a water quality maintenance device for a nuclear power plant according to the present invention will be described with reference to FIG. 1, the same parts as those in FIG. 3 are denoted by the same reference numerals, and the description of the overlapping parts will be omitted.
[0025]
The embodiment of the present invention is different from the conventional example shown in FIG. 3 in that a TOC decomposing device 24 is provided in a pure water supply pipe 20 for connecting a pure water producing device 19 and a condensate storage tank 17 to a condensate storage tank. By decomposing the TOC in the pure water flowing into the condensate storage tank 17, the TOC concentration of the storage water in the condensate storage tank 17 is reduced and the water quality is maintained at high purity. Maintain high purity.
[0026]
The TOC decomposing device 20 includes a hollow fiber membrane filter 25 and a desalting tower 26 connected in series to a pure water supply pipe 20 downstream of the pure water producing device 19. A bypass pipe 28 having a bypass valve 27 is provided on the inlet side of the hollow fiber membrane filter 25 and on the outlet side of the desalination tower 26. A desalinated water supply pipe 29 is connected to the outlet side of the desalination tower 26, and an ozone generator 30 is connected to the desalinated water supply pipe 29.
[0027]
The ozone outlet side of the ozone generator 30 and the downstream side of the bypass pipe 28 on the desalination tower 26 side are connected by an ozone injection pipe 31. A hydrogen gas outlet pipe 32 is connected to the ozone generator 30. A circulation pipe 34 having a condensate circulation pump 33 is provided between the condensate storage tank 17 and the pure water production apparatus 19.
[0028]
Next, the operation of the present embodiment will be described.
As shown in FIG. 1, raw water pumped from a water source 18 such as seawater or river water is purified by a pure water production device 19, stored in a condensate storage tank 17 as it is, and then passed through a condensate replenishment pump 21 to the plant. In this embodiment, in order to reduce the TOC concentration, an ozone generator 30 by water decomposition, a hollow fiber membrane filter 25, This is provided with a TOC decomposing device 24 including a salt tower 26.
[0029]
FIG. 1 shows a system in which the TOC decomposer 24 is implemented, in which the water in the condensate storage tank 17 is circulated between the TOC decomposer 24 and the condensate storage tank 17 using a condensate circulation pipe 34. Thus, even when the TOC concentration of the condensed water already stored is high, the circulation operation is performed via the condensate circulation pump 33. At the same time, ozone generated from the ozone generator 30 is injected from the ozone injection pipe 31 and returned to the condensate storage tank 17, where TOC is decomposed by the decomposition action of ozone.
[0030]
The TOC is decomposed by passing through the hollow fiber membrane filter 25 and the desalting tower 26 by the circulation operation, and the generated ionic impurities such as sulfate ions and nitrate ions are removed. Thereby, the water quality of the condensate storage tank 17 can be maintained at high purity. This circulation operation can be performed by the condensate storage tank 17 alone. In this circulation operation, the hollow fiber membrane filter 25 and the desalination tower 26 can be bypassed by the bypass pipe 28, and ozone alone can be injected.
[0031]
Further, the TOC decomposition device 24 can be provided in a condensate purification system of a nuclear power plant. That is, by directly supplying the ozone generated from the ozone generator 30 to the downstream of the condensate desalination device 10 in the plant, it is possible to perform the TOC decomposition during the purification operation before starting the plant.
[0032]
Further, the TOC decomposer 24 can be connected to a heat source in the nuclear power plant and a hydrogen source at the time of injecting hydrogen into feed water. That is, the ozone generator 30 by water decomposition generates hydrogen at the same time as ozone is generated. It is possible to utilize the thermal energy obtained by burning the hydrogen as heat supply in the place.
[0033]
In the case of nuclear power plants, hydrogen injection has recently been confirmed to be effective for maintaining the integrity of in-furnace equipment, and some plants have begun to apply them to actual equipment. Hydrogen generated from the ozone generator 30 can be used as the hydrogen source.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the TOC which flows into a condensate storage tank is decomposed | disassembled by ozone by the TOC decomposer which can produce pure water combined with the ozone generation part by water decomposition, and the TOC concentration of the storage water of a condensate storage tank is reduced. I do. Further, it is possible to perform performs TOC degradation during purification of operation before the plant starts, the hydrogen supply for maintaining sound reactor equipment.
[0035]
In addition, a TOC decomposer, which combines a purifier consisting of a hollow fiber membrane and an ion exchange resin and an ozone generator by water splitting, is installed downstream of the pure water production unit to decompose TOC flowing into the condensate storage tank. By doing so, the quality of the stored water in the condensate storage tank can be maintained at high purity, and the water quality of the reactor water can be maintained at high purity.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a water quality maintenance device for a nuclear power plant according to the present invention.
FIG. 2 is a system diagram showing a primary system of a conventional boiling water nuclear power plant.
FIG. 3 is a basic system diagram for storing pure water in a condensate storage tank provided on the downstream side of the condensate desalination apparatus of the plant of FIG. 2;
FIG. 4 is a characteristic diagram showing a relationship between TOC in reactor water and electrical conductivity in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Main steam pipe, 3 ... Turbine, 4 ... Generator, 5 ... Condenser , 6 ... Low-pressure condensate pump, 7 ... Air extractor, 8 ... Ground steam condenser, 9 ... Condenser Water filtration device, 10… condensate desalination device, 11… high pressure condensate pump, 12… low pressure feedwater heater, 13… feedwater pump, 14… high pressure feedwater heater, 15… water supply pipe, 16… hydrogen injection point, 17 ... condensate storage tank, 18 ... water source, 19 ... pure water production equipment, 20 ... water supply supply pipe, 21 ... condensate supply pump, 22 ... each equipment, 23 ... feedback pipe, 24 ... TOC decomposition equipment, 25 ... hollow fiber Membrane filter, 26 ... desalination tower, 27 ... bypass valve, 28 ... bypass pipe, 29 ... desalination tower supply pipe, 30 ... ozone generator, 31 ... ozone injection pipe, 32 ... hydrogen gas outlet pipe, 33 ... return Water circulation pump, 34… circulation piping.

Claims (3)

原水を浄化する純水製造装置と、この純水製造装置に接続した純水供給配管と、この純水供給配管の下流側に接続し原子力発電プラントの復水脱塩装置と高圧復水ポンプとの間に分岐配管を介して接続された復水貯蔵タンクと、前記純水供給配管に接続した全有機炭素分解装置とを具備し、前記全有機炭素分解装置は、前記純水供給配管に接続した中空糸膜ろ過器と、この中空糸膜ろ過器に接続しイオン交換樹脂が充填された脱塩塔と、オゾン発生器とを備え、前記オゾン発生器は前記脱塩塔の出口側に脱塩水供給配管を介して接続され、前記オゾン発生器のオゾン出口側はオゾン注入配管によって前記復水貯蔵タンクの入口側の純水供給配管に接続され、前記オゾン発生器で発生した水素を原子力発電プラントの給水に注入するようにしたことを特徴とする原子力発電プラントの水質維持装置。A pure water production device for purifying raw water, a pure water supply pipe connected to the pure water production device, and a condensate desalination device and a high pressure condensate pump of a nuclear power plant connected downstream of the pure water supply piping A condensate storage tank connected via a branch pipe between the apparatus, and a total organic carbon decomposition apparatus connected to the pure water supply pipe, wherein the total organic carbon decomposition apparatus is connected to the pure water supply pipe. A hollow fiber membrane filter, a desalination tower connected to the hollow fiber membrane filter and filled with an ion exchange resin, and an ozone generator, wherein the ozone generator is removed to the outlet side of the desalination tower. The ozone outlet side of the ozone generator is connected to a pure water supply pipe on the inlet side of the condensate storage tank by an ozone injection pipe, and hydrogen generated by the ozone generator is connected to a nuclear power plant. Injected into plant water supply DOO quality maintenance system of a nuclear power plant, characterized in. 前記復水貯蔵タンクと、前記純水製造装置と前記全有機炭素分解装置との間の純水供給配管に循環ポンプを介して循環配管を設けてなることを特徴とする請求項1記載の原子力発電プラントの水質維持装置。2. The nuclear power plant according to claim 1, wherein a circulation pipe is provided via a circulation pump to a pure water supply pipe between the condensate storage tank and the pure water production apparatus and the total organic carbon decomposition apparatus. Water quality maintenance equipment for power plants. 前記全有機炭素分解装置を原子力発電プラント内の熱源に配管接続してなることを特徴とする請求項1記載の原子力発電プラントの水質維持装置。The water quality maintenance device for a nuclear power plant according to claim 1, wherein the total organic carbon decomposition device is connected to a heat source in the nuclear power plant by piping.
JP21225896A 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants Expired - Lifetime JP3597644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21225896A JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21225896A JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Publications (2)

Publication Number Publication Date
JPH1054898A JPH1054898A (en) 1998-02-24
JP3597644B2 true JP3597644B2 (en) 2004-12-08

Family

ID=16619602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21225896A Expired - Lifetime JP3597644B2 (en) 1996-08-12 1996-08-12 Water quality maintenance equipment for nuclear power plants

Country Status (1)

Country Link
JP (1) JP3597644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562675B2 (en) * 2010-02-18 2014-07-30 日立Geニュークリア・エナジー株式会社 Condensate demineralizer
JP5969355B2 (en) * 2012-10-31 2016-08-17 日立Geニュークリア・エナジー株式会社 Nuclear fuel cooling method and nuclear fuel cooling device

Also Published As

Publication number Publication date
JPH1054898A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
EP1921281B1 (en) Seawater desalinating apparatus using blowdown water of heat recovery steam generator
JP6420729B2 (en) Thermal power generation facility for recovering moisture from exhaust gas and method for treating recovered water of the thermal power generation facility
DE3146326A1 (en) Plant for producing potable water from sea water
DE102019217116A1 (en) Power-to-X system with optimized hydrogen drying and cleaning
US20070227154A1 (en) System and method for producing injection-quality steam for combustion turbine power augmentation
WO2002023027A1 (en) Water supply system for steam injection and inlet fogging in a gas turbine powerplant and operating method for this system
JP3597644B2 (en) Water quality maintenance equipment for nuclear power plants
US7146795B2 (en) System and method for producing injection-quality steam for combustion turbine power augmentation
JP2007147453A (en) Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JP2009162514A (en) System for purifying system water in secondary system of nuclear power plant with pressurized water reactor
JP2010064074A (en) Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer
JPH0790220B2 (en) Boiler feedwater treatment method and boiler feedwater treatment device
JP2993348B2 (en) Method for treating carbon dioxide, method for treating exhaust gas containing carbon dioxide, and its treatment equipment
JP2013245833A (en) Power generating plant
Al-Sofi et al. Means and merits of higher temperature operation in dual-purpose plants
JP4724194B2 (en) Water treatment apparatus and water treatment method
JP7168716B2 (en) fuel production system
JP3226604B2 (en) Condensate desalination equipment
JP2003136094A (en) Method and apparatus for treating boiler supply water
JP2933407B2 (en) Condensate purification device
JP3071306B2 (en) Removal system for organic impurities in water
JPH10160893A (en) Reactor power facility
JPH11304993A (en) Turbine equipment for power generation
DE19640460A1 (en) Water desalination reverse osmosis plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

EXPY Cancellation because of completion of term