JP5562675B2 - Condensate demineralizer - Google Patents

Condensate demineralizer Download PDF

Info

Publication number
JP5562675B2
JP5562675B2 JP2010033263A JP2010033263A JP5562675B2 JP 5562675 B2 JP5562675 B2 JP 5562675B2 JP 2010033263 A JP2010033263 A JP 2010033263A JP 2010033263 A JP2010033263 A JP 2010033263A JP 5562675 B2 JP5562675 B2 JP 5562675B2
Authority
JP
Japan
Prior art keywords
valve
tower
washing
condensate
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010033263A
Other languages
Japanese (ja)
Other versions
JP2011169723A (en
Inventor
享一 大久保
雅男 片岡
修一 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010033263A priority Critical patent/JP5562675B2/en
Publication of JP2011169723A publication Critical patent/JP2011169723A/en
Application granted granted Critical
Publication of JP5562675B2 publication Critical patent/JP5562675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、復水脱塩装置に係り、特に、沸騰水型原子力プラントに適用するのに好適な復水脱塩装置に関するものである。   The present invention relates to a condensate demineralizer, and more particularly to a condensate demineralizer suitable for application to a boiling water nuclear power plant.

沸騰水型原子力プラント(以下、BWRプラントという)は、原子炉で発生した蒸気をタービンに供給してタービンを回転させ、タービンから排出された蒸気を復水器で凝縮して水にしている。さらに、復水器で凝縮された水である給水が、給水配管を通って原子炉に供給される。給水配管に設けられた復水ろ過装置及び復水脱塩塔は、復水器から原子炉に供給する給水の浄化を行っている。復水ろ過装置は給水に含まれているクラッドを除去する。復水脱塩塔は、給水に含まれている溶解性不純物(イオン)及び復水ろ過装置で除去されなかったクラッドを除去する。BWRプラントにおいて、給水配管に復水脱塩塔を設けることは、特開平8−5779号公報に記載されている。   In a boiling water nuclear power plant (hereinafter referred to as a BWR plant), steam generated in a nuclear reactor is supplied to a turbine to rotate the turbine, and steam discharged from the turbine is condensed into water by a condenser. Furthermore, the water supply which is the water condensed by the condenser is supplied to the nuclear reactor through the water supply pipe. The condensate filtration device and the condensate demineralizer provided in the feed water pipe purify the feed water supplied from the condenser to the reactor. The condensate filter removes the clad contained in the feed water. The condensate demineralization tower removes soluble impurities (ions) contained in the feed water and clads that have not been removed by the condensate filtration device. In the BWR plant, providing a condensate demineralization tower in the water supply pipe is described in JP-A-8-5779.

BWRプラントでは、複数の復水脱塩塔が設けられており、陽イオン交換樹脂及び陰イオン交換樹脂が各復水脱塩塔に充填されている。   In the BWR plant, a plurality of condensate demineralization towers are provided, and each condensate demineralization tower is filled with a cation exchange resin and an anion exchange resin.

BWRプラントにおける1つの運転サイクルでの運転が終了すると、BWRプラントは、定期検査を実施するために運転を停止する。定期検査の期間中、復水脱塩塔に通水が行われず、陽イオン交換樹脂及び陰イオン交換樹脂のイオン交換樹脂は、定期検査が終了するまでの長期間の間、復水脱塩塔内で保管されることになる。この期間中に、復水脱塩塔内で保管されている陽イオン交換樹脂及び陰イオン交換樹脂から全有機炭素が溶出する。溶出した全有機炭素は、各復水脱塩塔内に存在する。このような状態で、定期検査終了後、BWRプラントの起動によって各復水脱塩塔に給水を供給したとき、各復水脱塩塔内に存在する全有機炭素が給水と共に原子炉に流入する。全有機炭素の原子炉への流入が、原子炉内の冷却水(炉水)の水質悪化の一因になる。   When the operation in one operation cycle in the BWR plant is completed, the BWR plant stops the operation in order to perform the periodic inspection. During the period of the regular inspection, water is not passed through the condensate demineralization tower, and the cation exchange resin and anion exchange resin ion exchange resin remain in the condensate demineralization tower for a long period of time until the regular inspection ends. Will be stored within. During this period, all organic carbon is eluted from the cation exchange resin and the anion exchange resin stored in the condensate demineralization tower. The total organic carbon eluted is present in each condensate demineralization tower. In this state, when the feed water is supplied to each condensate demineralization tower by starting the BWR plant after the periodic inspection is completed, all organic carbon existing in each condensate demineralization tower flows into the reactor together with the feed water. . The inflow of all organic carbon into the reactor contributes to deterioration of the water quality of the cooling water (reactor water) in the reactor.

全有機炭素による炉水の水質悪化を避けるために、特開平5−72386号公報は、BWRプラントの停止中において、復水脱塩塔のボトムドレンを全有機炭素測定装置により監視する復水脱塩塔監視設備を提案している。この復水脱塩塔監視設備は、復水脱塩塔の出口ラインにボトムドレンラインを接続し、ボトムドレンラインに全有機炭素測定装置を設置している。BWRプラントが停止している期間中において、出口ラインとボトムドレンラインの接続点よりも下流で出口ラインに設けられた弁、及び復水脱塩塔の入口側に設けられた弁をそれぞれ閉じ、ボトムドレンラインに設けたボトムドレン元弁を開いて、復水脱塩塔内のドレン水をボトムドレンラインに排出し、このドレン水に含まれた全有機炭素の濃度を全有機炭素測定装置で計測する。次に、ボトムドレン元弁を閉じて補給水を復水脱塩塔内に供給する。復水脱塩塔内で補給水が所定レベルに到達したとき、補給水の供給を停止し、ボトムドレン元弁を開いて、復水脱塩塔からボトムドレンラインに排出された水に含まれている全有機炭素の濃度を全有機炭素測定装置で計測する。このような操作を繰り返し、BWRプラントの停止期間中で、復水脱塩塔内の全有機炭素濃度を監視している。BWRプラントの起動後に復水器からの給水を原子炉に供給するときには、全有機炭素測定装置での計測により復水脱塩塔内の全有機炭素濃度が基準値以下になっていることを確認している。復水脱塩塔に供給される補給水はイオン交換樹脂の洗浄水である。   In order to avoid deterioration of reactor water quality due to total organic carbon, Japanese Patent Application Laid-Open No. 5-72386 discloses condensate dewatering in which the bottom drain of the condensate demineralization tower is monitored by a total organic carbon measuring device while the BWR plant is stopped. A salt tower monitoring facility is proposed. In this condensate demineralization tower monitoring facility, a bottom drain line is connected to the outlet line of the condensate demineralization tower, and a total organic carbon measuring device is installed in the bottom drain line. During the period when the BWR plant is stopped, the valve provided on the outlet line downstream of the connection point of the outlet line and the bottom drain line and the valve provided on the inlet side of the condensate demineralizer are each closed, Open the bottom drain valve on the bottom drain line, discharge the drain water in the condensate demineralizer to the bottom drain line, and measure the total organic carbon concentration in this drain water with the total organic carbon measuring device. measure. Next, the bottom drain valve is closed to supply makeup water into the condensate demineralizer. When make-up water reaches the specified level in the condensate demineralizer, the supply of make-up water is stopped, the bottom drain valve is opened, and it is contained in the water discharged from the condensate demineralizer to the bottom drain line. The total organic carbon concentration is measured with a total organic carbon measuring device. Such an operation is repeated, and the total organic carbon concentration in the condensate demineralizer is monitored during the stoppage period of the BWR plant. When supplying water from the condenser to the reactor after starting the BWR plant, confirm that the total organic carbon concentration in the condensate demineralizer is below the reference value by measuring with the total organic carbon measuring device. doing. The makeup water supplied to the condensate demineralization tower is ion-exchange resin washing water.

特開平8−5779号公報Japanese Patent Laid-Open No. 8-5779 特開平5−72386号公報JP-A-5-72386

復水脱塩塔のイオン交換樹脂から溶出した全有機炭素を原子炉に流入させないように、上記したように、復水脱塩塔に補給水を供給してイオン交換樹脂から溶出した全有機炭素を復水脱塩塔から排出している。これは、実質的に、洗浄水である補給水を用いて復水脱塩塔のイオン交換樹脂を洗浄しているのである。BWRプラントでは、この補給水は、復水貯蔵タンクから供給する。   As described above, the total organic carbon eluted from the ion exchange resin by supplying make-up water to the condensate demineralization tower so that the total organic carbon eluted from the ion exchange resin of the condensate demineralization tower does not flow into the reactor. Is discharged from the condensate demineralizer. This is because the ion-exchange resin of the condensate demineralization tower is substantially washed with makeup water that is washing water. In a BWR plant, this makeup water is supplied from a condensate storage tank.

各復水脱塩塔に供給される補給水は、非常に多量であるため、復水貯蔵タンクに貯蔵されている補給水に対しての使用負荷が大きく、補給水系統設備容量の増加要因となっている。   The amount of make-up water supplied to each condensate demineralizer is very large, so the use load for the make-up water stored in the condensate storage tank is large, and this increases the capacity of the make-up water system. It has become.

本発明の目的は、イオン交換樹脂を洗浄する洗浄水の使用量を低減できる復水脱塩装置を提供することにある。   An object of the present invention is to provide a condensate demineralizer capable of reducing the amount of washing water used for washing an ion exchange resin.

上記した目的を達成する本発明の特徴は、陽イオン交換樹脂及び陰イオン交換樹脂を内部に有する復水脱塩塔と、復水脱塩塔に接続され、復水脱塩塔に洗浄水である温水を供給する温水供給装置と、復水脱塩塔に接続された洗浄水排出管に設けられた全有機炭素測定装置とを備えたことにある。   A feature of the present invention that achieves the above-described object is that a condensate demineralization tower having a cation exchange resin and an anion exchange resin inside, and a condensate demineralization tower connected to the condensate demineralization tower with washing water. A hot water supply device for supplying certain hot water and a total organic carbon measuring device provided in a wash water discharge pipe connected to the condensate demineralization tower are provided.

復水脱塩塔に接続された温水供給装置を設けているので、温水供給装置から供給される洗浄水である温水を用いて、復水脱塩塔内の陽イオン交換樹脂及び陰イオン交換樹脂の洗浄を行うことができる。このため、その洗浄時において、陽イオン交換樹脂から溶出する全有機炭素量を多くすることができてイオン交換樹脂の洗浄に要する時間を短縮することができる。イオン交換樹脂の洗浄時間の短縮は、洗浄水の使用量を低減することになる。   Since the hot water supply device connected to the condensate demineralization tower is provided, the cation exchange resin and the anion exchange resin in the condensate demineralization tower using the hot water that is the wash water supplied from the hot water supply device Can be cleaned. For this reason, at the time of the washing | cleaning, the total amount of organic carbon eluted from a cation exchange resin can be increased, and the time which washing | cleaning of an ion exchange resin can be shortened. Shortening the cleaning time of the ion exchange resin reduces the amount of cleaning water used.

本発明によれば、復水脱塩装置においてイオン交換樹脂を洗浄する洗浄水の使用量を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the usage-amount of the washing water which wash | cleans an ion exchange resin in a condensate desalination apparatus can be reduced.

本発明の好適な一実施例である実施例1の復水脱塩装置の構成図である。It is a block diagram of the condensate demineralizer of Example 1 which is one suitable Example of this invention. 実施例1の復水脱塩装置が適用される沸騰水型原子力プラントの構成図である。It is a block diagram of the boiling water nuclear power plant to which the condensate demineralization apparatus of Example 1 is applied. 陽イオン交換樹脂からの全有機炭素の溶出速度と陽イオン交換樹脂の浸漬水への浸漬日数との関係を、陽イオン交換樹脂を浸漬した浸漬水の温度をパラメータとして示した特性図である。It is the characteristic view which showed the relationship between the elution rate of the total organic carbon from a cation exchange resin, and the immersion days of the cation exchange resin in the immersion water, using the temperature of the immersion water in which the cation exchange resin was immersed as a parameter. 本発明の他の実施例である実施例2の復水脱塩装置の構成図である。It is a block diagram of the condensate demineralization apparatus of Example 2 which is another Example of this invention. 本発明の他の実施例である実施例3の復水脱塩装置の構成図である。It is a block diagram of the condensate demineralizer of Example 3 which is another Example of this invention.

発明者らは、復水脱塩塔内のイオン交換樹脂の洗浄に用いる洗浄水の量の低減について検討した。   The inventors examined reduction of the amount of washing water used for washing the ion exchange resin in the condensate demineralization tower.

復水脱塩塔から樹脂洗浄塔へのイオン交換樹脂の移送後に樹脂洗浄塔内で行われるイオン交換樹脂の洗浄に用いている洗浄水の温度が30〜40℃であるため、そのイオン交換樹脂の洗浄に約60mの洗浄水を使用している。また、樹脂洗浄塔で洗浄したイオン交換樹脂を復水脱塩器に戻した後、復水脱塩器内で長期間に亘って保管したイオン交換樹脂の復水脱塩塔内での洗浄においても、さらに、30〜40℃の洗浄水を約40m使用している。このような洗浄水の多量使用を考慮し、発明者らは、イオン交換樹脂を水(浸漬水)に浸漬させて、イオン交換樹脂から溶出する全有機炭素の溶出量(全有機炭素溶出速度)とイオン交換樹脂が浸漬された浸漬水の温度との関係を調べた。この結果、図3に示すように、浸漬水の温度が低いほど、イオン交換樹脂からの全有機炭素の溶出量が少なくなることが分かった。すなわち、浸漬水の温度が50℃及び60℃になると、浸漬水の温度が40度の場合に比べてイオン交換樹脂からの全有機炭素の溶出量が多くなった。発明者らは、30〜40℃の洗浄水でイオン交換樹脂を洗浄することが、多量の洗浄水の使用につながり、補給水系統設備容量の増加要因になっていることを認識した。このため、発明者らは、図3に示す結果に基づいて、イオン交換樹脂の洗浄上に用いる洗浄水の温度を、50〜60℃に高めればよいとの考えに至った。イオン交換樹脂の耐用温度は、陽イオン交換樹脂が120℃、陰イオン交換樹脂が60℃であるので、イオン交換樹脂と接触する洗浄水の温度を50〜60℃にしても、それぞれのイオン交換樹脂の劣化を防止できる。イオン交換樹脂の洗浄に用いる洗浄水の温度を50〜60℃にすることによって、陽イオン交換樹脂及び陰イオン交換樹脂の劣化を防止できるとともに、陽イオン交換樹脂から溶出する全有機炭素量を多くすることができてイオン交換樹脂の洗浄に要する時間を短縮することができる。イオン交換樹脂の洗浄時間の短縮は、洗浄水の使用量を減少させることができ、補給水系統設備容量を低減できる。 Since the temperature of the washing water used for washing the ion exchange resin performed in the resin washing tower after the transfer of the ion exchange resin from the condensate demineralization tower to the resin washing tower is 30 to 40 ° C., the ion exchange resin using wash water of about 60 m 3 for cleaning. In addition, after returning the ion exchange resin washed in the resin washing tower to the condensate demineralizer, the ion exchange resin stored for a long time in the condensate demineralizer is washed in the condensate demineralizer. Furthermore, about 40 m 3 of washing water at 30 to 40 ° C. is used. In consideration of such a large amount of use of washing water, the inventors immerse the ion exchange resin in water (immersion water), and elution amount of total organic carbon eluted from the ion exchange resin (total organic carbon elution rate) And the temperature of the immersion water in which the ion exchange resin was immersed were investigated. As a result, as shown in FIG. 3, it was found that the lower the temperature of the immersion water, the smaller the amount of total organic carbon eluted from the ion exchange resin. That is, when the temperature of immersion water was 50 ° C. and 60 ° C., the amount of elution of total organic carbon from the ion exchange resin increased as compared with the case where the temperature of immersion water was 40 ° C. The inventors have recognized that washing the ion exchange resin with 30 to 40 ° C. washing water leads to the use of a large amount of washing water, which is an increase factor in the makeup water system capacity. For this reason, the inventors arrived at the idea that the temperature of the washing water used for washing the ion exchange resin should be increased to 50 to 60 ° C. based on the result shown in FIG. The service temperature of the ion exchange resin is 120 ° C. for the cation exchange resin and 60 ° C. for the anion exchange resin. Therefore, even if the temperature of the washing water in contact with the ion exchange resin is 50 to 60 ° C., each ion exchange resin The deterioration of the resin can be prevented. Deterioration of the cation exchange resin and anion exchange resin can be prevented by setting the temperature of the washing water used for washing the ion exchange resin to 50 to 60 ° C., and the total amount of organic carbon eluted from the cation exchange resin is increased. The time required for cleaning the ion exchange resin can be shortened. Shortening the cleaning time of the ion exchange resin can reduce the amount of cleaning water used and can reduce the capacity of the makeup water system.

上記の検討結果を反映した本発明の実施例を、以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

本発明の好適な一実施例である実施例1の復水脱塩装置を、図1を用いて説明する。   A condensate demineralizer according to Embodiment 1 which is a preferred embodiment of the present invention will be described with reference to FIG.

まず、本実施例の復水脱塩装置4が適用されるBWRプラントについて説明する。BWRプラントは、図2に示すように、原子炉9、タービン10、復水器1、復水ろ過装置3、復水脱塩装置4、低圧給水加熱器6及び高圧給水加熱器8を備えている。タービン10が主蒸気配管50によって原子炉9に接続される。復水器1がタービン10の排出口に連絡される。給水配管12が復水器1と原子炉9を接続する。給水配管12には、復水器1から原子炉9に向って、低圧復水ポンプ2、復水ろ過装置3、復水脱塩装置4、高圧復水ポンプ5、低圧給水加熱器6、給水ポンプ7及び高圧給水加熱器8がこの順番に設置されている。復水脱塩装置4では、復水脱塩装置4に含まれる複数基の復水脱塩塔13(図1参照)が給水配管12に設置される。復水貯蔵タンク51が、移送ポンプ52を設けた復水供給管58によって復水器1に接続される。純水貯蔵タンク53が、移送ポンプ54を設けた純水供給管59によって復水貯蔵タンク51に接続される。移送ポンプ55が設けられて低伝導度廃液処理系に接続された配管62が、復水貯蔵タンク51に接続される。移送ポンプ56が設けられて高伝導度廃液処理系に接続された配管66が、移送ポンプ55の下流で配管62に接続される。復水脱塩装置4と高圧復水ポンプ5の間で給水配管12に接続された戻り配管60が、復水貯蔵タンク51に接続される。洗浄水供給管22が、移送ポンプ52の下流で復水供給管58に接続され、さらに、復水脱塩装置4の復水脱塩塔13等に接続される。   First, a BWR plant to which the condensate demineralizer 4 of the present embodiment is applied will be described. As shown in FIG. 2, the BWR plant includes a nuclear reactor 9, a turbine 10, a condenser 1, a condensate filtration device 3, a condensate demineralizer 4, a low-pressure feed water heater 6, and a high-pressure feed water heater 8. Yes. Turbine 10 is connected to reactor 9 by main steam line 50. The condenser 1 is communicated with the outlet of the turbine 10. A water supply pipe 12 connects the condenser 1 and the reactor 9. From the condenser 1 to the reactor 9, a low-pressure condensate pump 2, a condensate filtration device 3, a condensate demineralizer 4, a high-pressure condensate pump 5, a low-pressure feed water heater 6, The pump 7 and the high-pressure feed water heater 8 are installed in this order. In the condensate demineralizer 4, a plurality of condensate demineralizers 13 (see FIG. 1) included in the condensate demineralizer 4 are installed in the water supply pipe 12. A condensate storage tank 51 is connected to the condenser 1 by a condensate supply pipe 58 provided with a transfer pump 52. The pure water storage tank 53 is connected to the condensate storage tank 51 by a pure water supply pipe 59 provided with a transfer pump 54. A pipe 62 provided with a transfer pump 55 and connected to the low conductivity waste liquid treatment system is connected to the condensate storage tank 51. A pipe 66 provided with a transfer pump 56 and connected to the high conductivity waste liquid treatment system is connected to the pipe 62 downstream of the transfer pump 55. A return pipe 60 connected to the water supply pipe 12 between the condensate demineralizer 4 and the high-pressure condensate pump 5 is connected to the condensate storage tank 51. The washing water supply pipe 22 is connected to the condensate supply pipe 58 downstream of the transfer pump 52, and further connected to the condensate demineralization tower 13 of the condensate demineralizer 4.

ある運転サイクルでのBWRプラントの運転中、原子炉9で発生した蒸気は、主蒸気配管50を通ってタービン10に供給され、タービン10を回転させる。タービン10の回転によって、タービン10に連結された発電機(図示せず)が回転し、電力が発電機で発生する。タービン10から排出された蒸気は、復水器1で凝縮されて水になる。   During operation of the BWR plant in a certain operation cycle, steam generated in the nuclear reactor 9 is supplied to the turbine 10 through the main steam pipe 50 to rotate the turbine 10. Due to the rotation of the turbine 10, a generator (not shown) connected to the turbine 10 rotates, and electric power is generated by the generator. The steam discharged from the turbine 10 is condensed in the condenser 1 to become water.

蒸気の凝縮によって発生した水は、給水として、復水器1から給水配管12を通って原子炉9に供給される。給水配管12を通る間に、給水が低圧復水ポンプ2で昇圧され、給水に含まれるクラッドが復水ろ過装置3で除去され、給水に含まれる溶解性不純物(イオン)及び復水ろ過装置3で除去されなかったクラッドが復水脱塩装置4の各復水脱塩塔13内のイオン交換樹脂充填層77(図4参照)で除去される。クラッドは不溶解性不純物であり、クラッドの主成分はFe、Fe等である。復水脱塩塔13から排出された給水は、高圧復水ポンプ5でさらに昇圧されて、給水配管12により、低圧給水加熱器6及び高圧給水加熱器8へと導かれる。給水配管12内を流れる給水は、低圧給水加熱器6で加熱されて給水ポンプ7でさらに昇圧され、高圧給水加熱器8でさらに加熱される。高圧給水加熱器8から排出された高温の給水が、給水配管12により原子炉9に供給される。 The water generated by the condensation of the steam is supplied to the reactor 9 from the condenser 1 through the water supply pipe 12 as water supply. While passing through the feed water pipe 12, the feed water is pressurized by the low-pressure condensate pump 2, the clad contained in the feed water is removed by the condensate filtration device 3, and soluble impurities (ions) contained in the feed water and the condensate filtration device 3 The clad that was not removed in step (b) is removed by the ion exchange resin packed bed 77 (see FIG. 4) in each condensate demineralization tower 13 of the condensate demineralizer 4. The clad is an insoluble impurity, and the main component of the clad is Fe 2 O 3 , Fe 3 O 4 or the like. The feed water discharged from the condensate demineralization tower 13 is further pressurized by the high-pressure condensate pump 5 and guided to the low-pressure feed water heater 6 and the high-pressure feed water heater 8 through the feed water pipe 12. The feed water flowing in the feed water pipe 12 is heated by the low pressure feed water heater 6, further pressurized by the feed water pump 7, and further heated by the high pressure feed water heater 8. High-temperature feed water discharged from the high-pressure feed water heater 8 is supplied to the reactor 9 through the feed water pipe 12.

本実施例の復水脱塩装置4を、図1を用いて具体的に説明する。復水脱塩装置4は、複数の復水脱塩塔13、樹脂洗浄塔26、樹脂移送管21,32、樹脂移送装置33,38、洗浄水排出管25,36、全有機炭素測定装置42及び温水供給装置71,72を有する。複数の復水脱塩塔13が、前述したように、給水配管12に設けられる。復水脱塩塔13の上流側に形成された、給水配管12の複数の第1分岐部が、各復水脱塩塔13の頂部に別々に接続される。弁11が各第1分岐部にそれぞれ設けられる。復水脱塩塔13の下流側に形成された、給水配管12の複数の第2分岐部が、復水脱塩塔13の底部に別々に接続される。弁15が各第2分岐部にそれぞれ設けられる。   The condensate demineralizer 4 of a present Example is demonstrated concretely using FIG. The condensate demineralizer 4 includes a plurality of condensate demineralizers 13, a resin washing tower 26, resin transfer pipes 21 and 32, resin transfer apparatuses 33 and 38, washing water discharge pipes 25 and 36, and a total organic carbon measuring apparatus 42. And hot water supply devices 71 and 72. A plurality of condensate demineralization towers 13 are provided in the water supply pipe 12 as described above. A plurality of first branch portions of the feed water pipe 12 formed on the upstream side of the condensate demineralization tower 13 are separately connected to the top of each condensate demineralization tower 13. A valve 11 is provided at each first branch. A plurality of second branch portions of the feed water pipe 12 formed on the downstream side of the condensate demineralization tower 13 are separately connected to the bottom of the condensate demineralization tower 13. A valve 15 is provided at each second branch.

弁20を有して各復水脱塩塔13の底部にそれぞれ接続された樹脂移送管21が、樹脂洗浄塔26の上端部に接続される。樹脂洗浄塔26の底部に接続されて弁31を有する樹脂移送管32が、各復水脱塩塔13の上端部にそれぞれ接続される。それぞれの復水脱塩塔13内には、陽イオン交換樹脂及び陰イオン交換樹脂が充填されたイオン交換樹脂充填層77が設けられている。樹脂移送装置33が、復水脱塩塔13ごとに設けられ、弁17が設けられた空気供給管16、及び弁19が設けられた移送水供給管18を有する。空気供給管16が、復水脱塩塔13と弁15の間で、給水配管12の第2分岐部に接続される。移送水供給管18が弁17の下流で空気供給管16に接続される。樹脂移送装置38が、樹脂洗浄塔26に設けられ、弁28が設けられた空気供給管27、及び弁30が設けられた移送水供給管29を有する。空気供給管27が樹脂洗浄塔26の底部に接続される。移送水供給管29が弁28の下流で空気供給管27に接続される。   A resin transfer pipe 21 having a valve 20 and connected to the bottom of each condensate demineralization tower 13 is connected to the upper end of the resin washing tower 26. A resin transfer pipe 32 having a valve 31 connected to the bottom of the resin washing tower 26 is connected to the upper end of each condensate demineralizer 13. In each condensate demineralization tower 13, an ion exchange resin packed layer 77 filled with a cation exchange resin and an anion exchange resin is provided. The resin transfer device 33 is provided for each condensate demineralization tower 13 and includes an air supply pipe 16 provided with a valve 17 and a transfer water supply pipe 18 provided with a valve 19. An air supply pipe 16 is connected to the second branch portion of the water supply pipe 12 between the condensate demineralization tower 13 and the valve 15. A transfer water supply pipe 18 is connected to the air supply pipe 16 downstream of the valve 17. The resin transfer device 38 is provided in the resin cleaning tower 26, and has an air supply pipe 27 provided with a valve 28 and a transfer water supply pipe 29 provided with a valve 30. An air supply pipe 27 is connected to the bottom of the resin cleaning tower 26. A transfer water supply pipe 29 is connected to the air supply pipe 27 downstream of the valve 28.

弁24を設けた洗浄水排出管25が復水脱塩塔13の底部に接続される。弁44を設けた低伝導度廃液供給管45、及び弁46を設けた高伝導度廃液供給管47が洗浄水排出管25に接続される。低伝導度廃液供給管45が低伝導度廃液処理系に接続され、高伝導度廃液供給管47が高伝導度廃液処理系に接続される。ストレーナ37が弁24の下流で洗浄水排出管25に設けられる。全有機炭素測定装置42が、ストレーナ37よりも下流で洗浄水排出管25に設けられる。弁35を有して樹脂洗浄塔26の底部に接続された洗浄水排出管36が、弁24とストレーナ37の間で洗浄水排出管25に接続される。洗浄水排出管36は、1つの復水脱塩塔13に接続された1本の洗浄水排出管25に接続される。残りの復水脱塩塔13にも、弁24、ストレーナ37及び全有機炭素測定装置42を前述のように設けた洗浄水排出管25がそれぞれ接続されている。それぞれの洗浄水排出管25には、弁44を設けた他の低伝導度廃液供給管45、及び弁46を設けた他の高伝導度廃液供給管47がそれぞれ接続される。各低伝導度廃液供給管45は弁44の下流で合流しており、各高伝導度廃液供給管47も弁46の下流で合流している。   A wash water discharge pipe 25 provided with a valve 24 is connected to the bottom of the condensate demineralizer 13. A low conductivity waste liquid supply pipe 45 provided with a valve 44 and a high conductivity waste liquid supply pipe 47 provided with a valve 46 are connected to the washing water discharge pipe 25. The low conductivity waste liquid supply pipe 45 is connected to the low conductivity waste liquid treatment system, and the high conductivity waste liquid supply pipe 47 is connected to the high conductivity waste liquid treatment system. A strainer 37 is provided in the washing water discharge pipe 25 downstream of the valve 24. A total organic carbon measuring device 42 is provided in the washing water discharge pipe 25 downstream of the strainer 37. A cleaning water discharge pipe 36 having a valve 35 and connected to the bottom of the resin cleaning tower 26 is connected to the cleaning water discharge pipe 25 between the valve 24 and the strainer 37. The washing water discharge pipe 36 is connected to one washing water discharge pipe 25 connected to one condensate demineralization tower 13. The remaining condensate demineralization tower 13 is also connected to the wash water discharge pipe 25 provided with the valve 24, the strainer 37, and the total organic carbon measuring device 42 as described above. Each washing water discharge pipe 25 is connected to another low conductivity waste liquid supply pipe 45 provided with a valve 44 and another high conductivity waste liquid supply pipe 47 provided with a valve 46. Each low-conductivity waste liquid supply pipe 45 joins downstream of the valve 44, and each high-conductivity waste liquid supply pipe 47 joins downstream of the valve 46.

復水脱塩塔13に洗浄水である洗浄温水を供給する温水供給装置71、及び樹脂洗浄塔26に洗浄温水を供給する温水供給装置72が設けられる。温水供給装置71が、弁63を有する洗浄温水供給管69A、及び加熱装置65Aを有する。洗浄温水供給管69Aが、加熱装置65Aに接続され、さらに、弁11の下流で給水配管12の第1分岐部に接続される。洗浄水供給管22に接続された洗浄水供給管22Aが、加熱装置65Aに接続される。蒸気流量調節弁64を有する蒸気供給管73、及び蒸気排出管74が加熱装置65Aに接続される。温水供給装置72が、弁67を有する洗浄温水供給管69B、及び加熱装置65Bを有する。加熱装置65Bに接続された洗浄温水供給管69Bが、樹脂洗浄塔26の頂部に接続される。洗浄水供給管22に接続された洗浄水供給管22Bが、加熱装置65Bに接続される。蒸気流量調節弁68を有する蒸気供給管75、及び蒸気排出管76が加熱装置65Bに接続される。   A hot water supply device 71 for supplying cleaning warm water as cleaning water to the condensate demineralization tower 13 and a hot water supply device 72 for supplying cleaning hot water to the resin cleaning tower 26 are provided. The hot water supply device 71 includes a cleaning hot water supply pipe 69 </ b> A having a valve 63 and a heating device 65 </ b> A. The washing hot water supply pipe 69 </ b> A is connected to the heating device 65 </ b> A, and further connected to the first branch portion of the water supply pipe 12 downstream of the valve 11. A cleaning water supply pipe 22A connected to the cleaning water supply pipe 22 is connected to the heating device 65A. A steam supply pipe 73 having a steam flow rate adjusting valve 64 and a steam discharge pipe 74 are connected to the heating device 65A. The hot water supply device 72 includes a washing hot water supply pipe 69B having a valve 67 and a heating device 65B. A washing hot water supply pipe 69 </ b> B connected to the heating device 65 </ b> B is connected to the top of the resin washing tower 26. The cleaning water supply pipe 22B connected to the cleaning water supply pipe 22 is connected to the heating device 65B. A steam supply pipe 75 having a steam flow control valve 68 and a steam discharge pipe 76 are connected to the heating device 65B.

BWRプラントが定期検査のために停止した直後に、復水脱塩塔13に充填された陽イオン交換樹脂及び陰イオン交換樹脂が、樹脂移送装置33から供給される空気及び移送水によって樹脂洗浄塔26に移送される。具体的には、BWRプラントの運転中には閉じている弁17及び19を開いて、空気供給管16から移送用空気を、移送水供給管18から移送水を復水脱塩塔13に供給する。BWRプラントが停止したとき、弁11,15が閉じられる。このため、移送用空気及び移送水が、給水配管12の第2分岐部を通って復水脱塩塔13内に流入する。弁20が開いており、復水脱塩塔13のイオン交換樹脂充填層77内の陽イオン交換樹脂及び陰イオン交換樹脂が、移送用空気及び移送水によって樹脂移送管21を通って樹脂洗浄塔26内に移送される。復水脱塩塔13から樹脂洗浄塔26へのイオン交換樹脂の移送が完了した後、弁20が閉じられる。そして、樹脂洗浄塔26内で陽イオン交換樹脂及び陰イオン交換樹脂の洗浄が行われる。   Immediately after the BWR plant is stopped for periodic inspection, the cation exchange resin and the anion exchange resin filled in the condensate demineralization tower 13 are washed by the air and the transfer water supplied from the resin transfer device 33. 26. Specifically, during operation of the BWR plant, the closed valves 17 and 19 are opened to supply transfer air from the air supply pipe 16 and supply water from the transfer water supply pipe 18 to the condensate demineralization tower 13. To do. When the BWR plant is stopped, the valves 11 and 15 are closed. For this reason, the transfer air and the transfer water flow into the condensate demineralization tower 13 through the second branch portion of the water supply pipe 12. The valve 20 is open, and the cation exchange resin and the anion exchange resin in the ion exchange resin packed bed 77 of the condensate demineralization tower 13 pass through the resin transfer pipe 21 by the transfer air and the transfer water, and the resin washing tower. 26. After the transfer of the ion exchange resin from the condensate demineralization tower 13 to the resin washing tower 26 is completed, the valve 20 is closed. Then, the cation exchange resin and the anion exchange resin are washed in the resin washing tower 26.

樹脂洗浄塔26への洗浄水の供給は、温水供給装置72から行われる。蒸気流量調節弁68が開いて所内ボイラ(図示せず)で発生した蒸気が蒸気供給管75を通して加熱装置65Bに供給される。移送ポンプ52が駆動されているので、復水貯蔵タンク51内の水が、復水供給管58、洗浄水供給管22及び22Bを介して加熱装置65Bに供給される。この水が、加熱装置65Bで蒸気供給管75から供給される蒸気によって加熱され、50℃〜60℃の範囲内の温度、例えば、55℃に昇温されて温水になる。加熱装置65Bに供給された蒸気は蒸気排出管76に排出される。温水の温度調節は、図示されていないが、加熱装置65Bの出口側の洗浄温水供給管69Bで温度計(図示せず)により計測した温水の温度に基づいて、制御装置(図示せず)が蒸気流量調節弁68の開度を調節することによって行われる。弁67が開いており、加熱装置65Bから排出された洗浄温水が洗浄温水供給管69Bを通って樹脂洗浄塔26に供給される。樹脂洗浄塔26内の陽イオン交換樹脂及び陰イオン交換樹脂は、55℃の洗浄温水によって洗浄される。樹脂洗浄塔26内での洗浄温水による陽イオン交換樹脂及び陰イオン交換樹脂の洗浄によって、これらのイオン交換樹脂に付着しているクラッドがイオン交換樹脂から取り除かれる。   The washing water is supplied to the resin washing tower 26 from the hot water supply device 72. The steam flow control valve 68 is opened and the steam generated in the in-house boiler (not shown) is supplied to the heating device 65B through the steam supply pipe 75. Since the transfer pump 52 is driven, the water in the condensate storage tank 51 is supplied to the heating device 65B via the condensate supply pipe 58 and the wash water supply pipes 22 and 22B. This water is heated by the steam supplied from the steam supply pipe 75 by the heating device 65B, and is heated to a temperature within a range of 50 ° C. to 60 ° C., for example, 55 ° C. to become hot water. The steam supplied to the heating device 65B is discharged to the steam discharge pipe 76. Although the temperature adjustment of the hot water is not shown, the control device (not shown) is based on the temperature of the hot water measured by the thermometer (not shown) in the washing hot water supply pipe 69B on the outlet side of the heating device 65B. This is done by adjusting the opening of the steam flow rate control valve 68. The valve 67 is open, and the washing hot water discharged from the heating device 65B is supplied to the resin washing tower 26 through the washing hot water supply pipe 69B. The cation exchange resin and the anion exchange resin in the resin washing tower 26 are washed with 55 ° C. washing hot water. By washing the cation exchange resin and the anion exchange resin with washing hot water in the resin washing tower 26, the clad adhering to these ion exchange resins is removed from the ion exchange resin.

弁35が開いているので、樹脂洗浄塔26へのイオン交換樹脂の移送に用いた移送水、及びイオン交換樹脂を洗浄した洗浄温水が、廃液として、樹脂洗浄塔26から排出され、洗浄水排出管36及び洗浄水排出管25を経て低伝導度廃液供給管45または高伝導度廃液供給管47に導かれる。イオン交換樹脂に付着していたクラッドが、洗浄温水と共に洗浄水排出管36に排出される。樹脂洗浄塔26からイオン交換樹脂が漏洩した場合には、このイオン交換樹脂がストレーナ37で捕捉される。ストレーナ37を通過した廃液の伝導度が、洗浄水排出管25に設けられた伝導度計(図示せず)によって計測される。伝導度計で計測された廃液の伝導度が設定値以下のときには、弁44が開いて弁46が閉じられる。このため、洗浄水排出管25内を流れる廃液が、低伝導度廃液供給管45により低伝導度廃液処理系に供給される。もし、伝導度計で計測された廃液の伝導度が設定値を超えたときには、弁46が開いて弁44が閉じられる。このため、洗浄水排出管25内を流れる廃液が、高伝導度廃液供給管47により高伝導度廃液処理系に供給される。   Since the valve 35 is open, the transfer water used for transferring the ion exchange resin to the resin washing tower 26 and the washing warm water washing the ion exchange resin are discharged from the resin washing tower 26 as waste liquid, and the washing water is discharged. It is led to the low conductivity waste liquid supply pipe 45 or the high conductivity waste liquid supply pipe 47 through the pipe 36 and the washing water discharge pipe 25. The clad adhering to the ion exchange resin is discharged to the cleaning water discharge pipe 36 together with the cleaning warm water. When the ion exchange resin leaks from the resin cleaning tower 26, the ion exchange resin is captured by the strainer 37. The conductivity of the waste liquid that has passed through the strainer 37 is measured by a conductivity meter (not shown) provided in the washing water discharge pipe 25. When the conductivity of the waste liquid measured by the conductivity meter is equal to or lower than the set value, the valve 44 is opened and the valve 46 is closed. For this reason, the waste liquid flowing in the washing water discharge pipe 25 is supplied to the low conductivity waste liquid treatment system by the low conductivity waste liquid supply pipe 45. If the waste liquid conductivity measured by the conductivity meter exceeds the set value, the valve 46 is opened and the valve 44 is closed. For this reason, the waste liquid flowing in the washing water discharge pipe 25 is supplied to the high conductivity waste liquid treatment system by the high conductivity waste liquid supply pipe 47.

樹脂洗浄塔26から排出されて洗浄水排出管25内を流れる廃液の全有機炭素濃度が、全有機炭素測定装置42で計測される。全有機炭素測定装置42で計測された全有機炭素濃度が、制御装置70に入力される。入力した全有機炭素濃度の計測値が設定濃度(約50ppb)以下になったとき、制御装置70が制御信号43を弁35及び67に出力する。弁35及び67は制御信号43によって閉じられる。弁67が閉じられることによって、樹脂洗浄塔26への洗浄温水の供給が停止され、樹脂洗浄塔26内でのイオン交換樹脂の洗浄が終了する。このとき、蒸気流量調節弁68も閉じられ、加熱装置65Bへの蒸気の供給が停止される。   The total organic carbon concentration of the waste liquid discharged from the resin cleaning tower 26 and flowing in the cleaning water discharge pipe 25 is measured by the total organic carbon measuring device 42. The total organic carbon concentration measured by the total organic carbon measuring device 42 is input to the control device 70. When the input measurement value of the total organic carbon concentration is equal to or lower than the set concentration (about 50 ppb), the control device 70 outputs a control signal 43 to the valves 35 and 67. Valves 35 and 67 are closed by a control signal 43. By closing the valve 67, the supply of the washing hot water to the resin washing tower 26 is stopped, and the washing of the ion exchange resin in the resin washing tower 26 is completed. At this time, the steam flow rate control valve 68 is also closed, and the supply of steam to the heating device 65B is stopped.

樹脂洗浄塔26内での洗浄温水によるイオン交換樹脂の洗浄が終了したとき、弁31が開く。空気及び移送水が樹脂移送装置38から樹脂洗浄塔26に供給される。弁28及び30を開いて、空気供給管27から移送用空気を、移送水供給管29から移送水を樹脂洗浄塔26に供給する。樹脂洗浄塔26内の、洗浄が終了した陽イオン交換樹脂及び陰イオン交換樹脂が、樹脂移送管32を通って復水脱塩塔13内のイオン交換樹脂充填層77に戻される。このイオン交換樹脂の移送が終了した後、弁28,30,31が閉じられる。弁20,24,63は閉じている。樹脂洗浄塔26で洗浄された陽イオン交換樹脂及び陰イオン交換樹脂は、BWRプラントの停止している間、復水脱塩塔13内に保管される。   When the washing of the ion exchange resin with the washing hot water in the resin washing tower 26 is completed, the valve 31 is opened. Air and transfer water are supplied from the resin transfer device 38 to the resin cleaning tower 26. The valves 28 and 30 are opened to supply the transfer air from the air supply pipe 27 and the transfer water from the transfer water supply pipe 29 to the resin washing tower 26. The washed cation exchange resin and anion exchange resin in the resin washing tower 26 are returned to the ion exchange resin packed bed 77 in the condensate demineralization tower 13 through the resin transfer pipe 32. After the transfer of the ion exchange resin is completed, the valves 28, 30, and 31 are closed. Valves 20, 24 and 63 are closed. The cation exchange resin and the anion exchange resin washed by the resin washing tower 26 are stored in the condensate demineralization tower 13 while the BWR plant is stopped.

滞留水と共にイオン交換樹脂が、BWRプラントが起動されるまでの長期間に亘って、復水脱塩塔13内に保管される。このため、復水脱塩塔13内で、保管されている陽イオン交換樹脂より滞留水中に全有機炭素が溶出する。保管されている間に復水脱塩塔13内で溶出した全有機炭素が給水と共に原子炉9に流入することを防ぐために、原子炉起動時で原子炉の昇温昇圧を開始する前に、各復水脱塩塔13内でイオン交換樹脂の洗浄が行われる。   The ion exchange resin together with the retained water is stored in the condensate demineralizer 13 for a long period until the BWR plant is started. For this reason, in the condensate demineralizer 13, all organic carbon is eluted from the stored cation exchange resin into the retained water. In order to prevent all the organic carbon eluted in the condensate demineralization tower 13 during storage from flowing into the reactor 9 together with the feed water, The ion exchange resin is washed in each condensate demineralizer 13.

復水脱塩塔13内で実施されるイオン交換樹脂の洗浄は、図1に示された1つの復水脱塩塔13内でのその洗浄を例にとって説明する。他の復水脱塩塔13でも、同じように、イオン交換樹脂の洗浄が行われる。   The cleaning of the ion exchange resin performed in the condensate demineralizer 13 will be described by taking the cleaning in one condensate demineralizer 13 shown in FIG. 1 as an example. In the other condensate demineralization tower 13, the ion exchange resin is washed in the same manner.

復水脱塩塔13内での陽イオン交換樹脂及び陰イオン交換樹脂の洗浄は、温水供給装置71から供給される洗浄温水を用いて行われる。蒸気流量調節弁64が開いて所内ボイラで発生した蒸気が蒸気供給管73を通して加熱装置65Aに供給される。復水貯蔵タンク51内の水が、復水供給管58、洗浄水供給管22及び22Aを介して加熱装置65Aに供給される。この水が加熱装置65Aで蒸気供給管73から供給される蒸気によって加熱され、例えば、55℃に昇温されて温水になる。加熱装置65Aに供給された蒸気は蒸気排出管74に排出される。温水の温度調節は、図示されていないが、加熱装置65Aの出口側の洗浄温水供給管69Aで温度計(図示せず)により計測した温水の温度に基づいて、蒸気流量調節弁68の開度制御を実行する前述の制御装置が、蒸気流量調節弁64の開度を調節することによって行われる。弁63が開いており、加熱装置65Aから排出された洗浄温水が洗浄温水供給管69A及び給水配管12の第1分岐部を通って各復水脱塩塔13に供給される。各復水脱塩塔13内の陽イオン交換樹脂及び陰イオン交換樹脂は、55℃の洗浄温水によって洗浄される。蒸気流量調節弁64,68の開度調節を行う制御は、制御装置70で行ってもよい。   Washing of the cation exchange resin and the anion exchange resin in the condensate demineralization tower 13 is performed using washing hot water supplied from the hot water supply device 71. The steam flow control valve 64 is opened and the steam generated in the in-house boiler is supplied to the heating device 65A through the steam supply pipe 73. The water in the condensate storage tank 51 is supplied to the heating device 65A through the condensate supply pipe 58 and the wash water supply pipes 22 and 22A. This water is heated by the steam supplied from the steam supply pipe 73 by the heating device 65A, and is heated to, for example, 55 ° C. to become warm water. The steam supplied to the heating device 65A is discharged to the steam discharge pipe 74. Although the temperature adjustment of the hot water is not shown, the opening degree of the steam flow rate adjusting valve 68 is based on the temperature of the hot water measured by a thermometer (not shown) in the washing hot water supply pipe 69A on the outlet side of the heating device 65A. The above-described control device that performs control is performed by adjusting the opening of the steam flow rate control valve 64. The valve 63 is open, and the washing warm water discharged from the heating device 65 </ b> A is supplied to each condensate demineralization tower 13 through the washing warm water supply pipe 69 </ b> A and the first branch portion of the water supply pipe 12. The cation exchange resin and the anion exchange resin in each condensate demineralization tower 13 are washed with 55 ° C. washing hot water. Control for adjusting the opening degree of the steam flow rate control valves 64 and 68 may be performed by the control device 70.

復水脱塩塔13内の陽イオン交換樹脂及び陰イオン交換樹脂の洗浄が行われている間、復水脱塩塔13に供給された洗浄温水が復水脱塩塔13から排出される。弁24が開いているので、復水脱塩塔13に供給されてイオン交換樹脂を洗浄した洗浄温水が、廃液として、復水脱塩塔13から排出され、樹脂洗浄塔26から排出された廃液と同様に、洗浄水排出管25を経て低伝導度廃液供給管45または高伝導度廃液供給管47に導かれる。   While the cation exchange resin and the anion exchange resin in the condensate demineralization tower 13 are being washed, the washing warm water supplied to the condensate demineralization tower 13 is discharged from the condensate demineralization tower 13. Since the valve 24 is open, the washing warm water supplied to the condensate demineralization tower 13 to wash the ion exchange resin is discharged as waste liquid from the condensate demineralization tower 13 and discharged from the resin washing tower 26. In the same manner as described above, the low-conductivity waste liquid supply pipe 45 or the high-conductivity waste liquid supply pipe 47 is guided through the washing water discharge pipe 25.

ストレーナ37を通過した、復水脱塩塔13から排出された廃液の伝導度が、前述の伝導度計によって計測される。伝導度計で計測された廃液の伝導度が設定値以下のときには、弁44が開いて弁46が閉じられ、その廃液が、低伝導度廃液供給管45により低伝導度廃液処理系に供給される。計測された廃液の伝導度が設定値を超えたときには、弁46が開いて弁44が閉じられ、洗浄水排出管25内を流れる廃液が、高伝導度廃液供給管47により高伝導度廃液処理系に供給される。   The conductivity of the waste liquid discharged from the condensate demineralization tower 13 that has passed through the strainer 37 is measured by the aforementioned conductivity meter. When the conductivity of the waste liquid measured by the conductivity meter is less than the set value, the valve 44 is opened and the valve 46 is closed, and the waste liquid is supplied to the low conductivity waste liquid treatment system through the low conductivity waste liquid supply pipe 45. The When the measured conductivity of the waste liquid exceeds the set value, the valve 46 is opened and the valve 44 is closed, and the waste liquid flowing in the washing water discharge pipe 25 is treated with the high conductivity waste liquid by the high conductivity waste liquid supply pipe 47. Supplied to the system.

復水脱塩塔13から排出されて洗浄水排出管25内を流れる廃液の全有機炭素濃度が、全有機炭素測定装置42で計測される。全有機炭素測定装置42で計測された全有機炭素濃度が制御装置70に入力される。入力した全有機炭素濃度の計測値が設定濃度(約50ppb)以下になったとき、制御装置70が制御信号43を弁24及び63に出力する。弁24及び63が制御信号43によって閉じられる。弁63が閉じられることによって、復水脱塩塔13への洗浄温水の供給が停止され、復水脱塩塔13内でのイオン交換樹脂の洗浄が終了する。このとき、蒸気流量調節弁64も閉じられ、加熱装置65Aへの蒸気の供給が停止される。復水脱塩塔13内でのイオン交換樹脂の洗浄は、前述したように、原子炉の昇温昇圧が開始される前に終了する。   The total organic carbon concentration of the waste liquid discharged from the condensate demineralization tower 13 and flowing in the washing water discharge pipe 25 is measured by the total organic carbon measuring device 42. The total organic carbon concentration measured by the total organic carbon measuring device 42 is input to the control device 70. When the input measurement value of the total organic carbon concentration is equal to or lower than the set concentration (about 50 ppb), the control device 70 outputs a control signal 43 to the valves 24 and 63. Valves 24 and 63 are closed by control signal 43. By closing the valve 63, the supply of the washing hot water to the condensate demineralization tower 13 is stopped, and the washing of the ion exchange resin in the condensate demineralization tower 13 is completed. At this time, the steam flow rate adjustment valve 64 is also closed, and the supply of steam to the heating device 65A is stopped. As described above, the cleaning of the ion exchange resin in the condensate demineralization tower 13 is completed before the temperature increase / pressure increase of the reactor is started.

以上により、復水脱塩器13内に長期間保管されていた陽イオン交換樹脂及び陰イオン交換樹脂の洗浄が終了し、復水脱塩塔13内の水中の全有機炭素濃度が設定濃度以下になっている。BWRプラントが起動され、復水脱塩塔13内の全有機炭素濃度が設定濃度以下になっている状態で、弁11及び15が開き、低圧復水ポンプ2、高圧復水ポンプ5及び給水ポンプ7の各ポンプの駆動により、復水器1からの給水が給水配管12を通って原子炉9に供給される。低圧復水ポンプ2で昇圧された給水は、復水ろ過装置3及び復水脱塩塔13で浄化される。原子炉9への給水を開始する直前で、復水脱塩塔13内の全有機炭素濃度が設定濃度以下になっているので、原子炉9に導入される供給される全有機炭素の濃度は、著しく低減されて設定濃度(約50ppb)以下になる。このため、原子炉9内の炉心に装荷された燃料集合体に含まれた核燃料物質の核分裂によって発生する熱及び放射線により、原子炉9内に流入した全有機炭素が分解されて生成される硫酸イオンの量が、著しく低減される。硫酸イオンの生成量の低減は、原子炉9内に設置されたオーステナイト系ステレンス鋼製の炉内構造物、及び原子炉9に接続されたオーステナイト系ステレンス鋼製の配管における応力腐食割れの発生を著しく抑制する。   Thus, the cleaning of the cation exchange resin and the anion exchange resin that have been stored in the condensate demineralizer 13 for a long time is completed, and the total organic carbon concentration in the water in the condensate demineralizer 13 is below the set concentration. It has become. When the BWR plant is activated and the total organic carbon concentration in the condensate demineralizer 13 is below the set concentration, the valves 11 and 15 are opened, and the low pressure condensate pump 2, the high pressure condensate pump 5 and the feed water pump are opened. 7, the water supply from the condenser 1 is supplied to the nuclear reactor 9 through the water supply pipe 12. The feed water boosted by the low-pressure condensate pump 2 is purified by the condensate filtration device 3 and the condensate demineralizer 13. Immediately before starting the water supply to the reactor 9, the total organic carbon concentration in the condensate demineralization tower 13 is equal to or lower than the set concentration. Therefore, the concentration of the total organic carbon supplied to the reactor 9 is The concentration is significantly reduced to below the set concentration (about 50 ppb). For this reason, the sulfuric acid produced by decomposing all organic carbon flowing into the reactor 9 by the heat and radiation generated by the nuclear fission of the nuclear fuel material contained in the fuel assembly loaded in the reactor core in the reactor 9 The amount of ions is significantly reduced. The reduction in the amount of sulfate ions produced is due to the occurrence of stress corrosion cracking in the in-reactor structure made of austenitic stainless steel installed in the reactor 9 and in the piping made of austenitic stainless steel connected to the reactor 9. Remarkably suppressed.

本実施例では、復水脱塩塔13及び樹脂洗浄塔26のそれぞれにおけるイオン交換樹脂の洗浄に55℃の洗浄温水を用いているので、復水脱塩塔13及び樹脂洗浄塔26内でイオン交換樹脂の洗浄において、陽イオン交換樹脂から溶出する全有機炭素量を多くすることができる。このため、復水脱塩塔13及び樹脂洗浄塔26のそれぞれにおいて、イオン交換樹脂の洗浄に要する時間を短縮することができる。イオン交換樹脂の洗浄時間の短縮は、洗浄水の使用量を減少させることができ、補給水系統設備容量を低減できる。具体的には、55℃の洗浄温水を用いることによって、復水脱塩塔13で使用される洗浄温水が約30mになり(30〜40℃の洗浄水を用いたときに比べて約10m減少)、樹脂洗浄塔26で使用される洗浄温水が約45mになる(30〜40℃の洗浄水を用いたときに比べて約15m減少)。また、洗浄温水の温度が55℃で60℃以下であるので、洗浄温水により陽イオン交換樹脂及び陰イオン交換樹脂のそれぞれの劣化を防止できる。 In this embodiment, since the hot water of 55 ° C. is used for washing the ion exchange resin in each of the condensate demineralization tower 13 and the resin washing tower 26, the ion in the condensate demineralization tower 13 and the resin washing tower 26 is used. In washing the exchange resin, the total amount of organic carbon eluted from the cation exchange resin can be increased. For this reason, in each of the condensate demineralization tower 13 and the resin washing tower 26, the time required for washing the ion exchange resin can be shortened. Shortening the cleaning time of the ion exchange resin can reduce the amount of cleaning water used and can reduce the capacity of the makeup water system. Specifically, by using the hot water of 55 ° C., the hot water used in the condensate demineralization tower 13 becomes about 30 m 3 (about 10 m compared with the case of using 30 to 40 ° C. wash water). 3 decrease), the washing hot water used in the resin washing tower 26 becomes about 45 m 3 (about 15 m 3 reduction compared with the case of using 30 to 40 ° C. washing water). Moreover, since the temperature of the washing warm water is 55 ° C. and 60 ° C. or less, each of the cation exchange resin and the anion exchange resin can be prevented from being deteriorated by the washing warm water.

また、全有機炭素測定装置42で計測された全有機炭素濃度が設定濃度(約50ppb)以下になったとき、制御装置70が、樹脂洗浄塔26で洗浄が行われている場合には弁67に、復水脱塩塔13で洗浄が行われている場合には弁63に、それぞれ制御信号43を出力する。このため、前者の場合には、弁67が閉じられて樹脂洗浄塔26への洗浄温水の供給が停止される。後者の場合には、弁63が閉じられて復水脱塩塔13への洗浄温水の供給が停止される。したがって、洗浄温水、すなわち、洗浄水の使用量がさらに低減され、洗浄水の供給元である補給水系統設備容量をさらに低減することができる。   In addition, when the total organic carbon concentration measured by the total organic carbon measuring device 42 is equal to or lower than the set concentration (about 50 ppb), the control device 70 performs the valve 67 when the resin cleaning tower 26 is cleaning. When the condensate demineralizer 13 is washing, a control signal 43 is output to each valve 63. For this reason, in the former case, the valve 67 is closed and the supply of the washing hot water to the resin washing tower 26 is stopped. In the latter case, the valve 63 is closed and the supply of the washing hot water to the condensate demineralizer 13 is stopped. Therefore, the usage amount of the washing hot water, that is, the washing water is further reduced, and the makeup water system facility capacity that is the supply source of the washing water can be further reduced.

本発明の他の実施例である実施例2の復水脱塩装置を、図4を用いて説明する。   The condensate demineralizer of Example 2 which is another Example of this invention is demonstrated using FIG.

本実施例の復水脱塩装置4Aは、実施例1の復水脱塩装置4において制御装置70を制御装置70Aに替えた構成を有する。実施例1の復水脱塩装置4では、弁44,46の開閉を、洗浄水排出管25内を流れる廃液の伝導度を計測する伝導度計の出力に基づいて行っている。これに対し、本実施例の復水脱塩装置4Aでは、制御装置70Aが、全有機炭素測定装置42で計測された全有機炭素濃度に基づいて、弁44,46の開閉を行う。   The condensate demineralizer 4A of the present embodiment has a configuration in which the control device 70 is replaced with the control device 70A in the condensate demineralizer 4 of the first embodiment. In the condensate demineralizer 4 of the first embodiment, the valves 44 and 46 are opened and closed based on the output of a conductivity meter that measures the conductivity of the waste liquid flowing through the wash water discharge pipe 25. On the other hand, in the condensate demineralizer 4A of the present embodiment, the control device 70A opens and closes the valves 44 and 46 based on the total organic carbon concentration measured by the total organic carbon measuring device 42.

実施例1と同様に、樹脂洗浄塔26でイオン交換樹脂の洗浄が行われているときに樹脂洗浄塔26から洗浄水排出管25に排出された廃液、及び復水脱塩塔13でイオン交換樹脂の洗浄が行われているときに復水脱塩塔13から洗浄水排出管25に排出された廃液のそれぞれの全有機炭素濃度が、全有機炭素測定装置42で計測される。それぞれの洗浄が実施されているとき、全有機炭素測定装置42で計測された全有機炭素濃度が制御装置70Aに入力される。洗浄温水を供給するとはいえ、復水脱塩塔13及び樹脂洗浄塔26でのイオン交換樹脂の洗浄時に発生する廃液は、BWRプラントの他の機器に比べて多量に発生するとともに、特に、復水脱塩塔13内に滞留水にて長期間保管されることによって、復水脱塩塔13内の陽イオン交換樹脂48より高濃度の全有機炭素が発生する。このため、復水脱塩塔13及び樹脂洗浄塔26内でのイオン交換樹脂の洗浄開始時には、制御装置70Aによって、弁44が閉じられ、弁46が開けられている。したがって、それらにおけるイオン交換樹脂の洗浄開始時には、復水脱塩塔13及び樹脂洗浄塔26での洗浄によって発生する各廃液は、高伝導度廃液供給管47によって高伝導度廃液処理系に供給される。実際には、イオン交換樹脂の洗浄開始時に復水脱塩塔13及び樹脂洗浄塔26のそれぞれから排出された各廃液の全有機炭素濃度が低電導度廃液処理系に廃液を供給する設定基準(約80ppb)を超えるので、全有機炭素測定装置42で計測された全有機炭素濃度を入力する制御装置70Aが、弁44を閉じて弁46を開ける。   As in the first embodiment, the waste liquid discharged from the resin washing tower 26 to the washing water discharge pipe 25 when the ion exchange resin is washed in the resin washing tower 26, and the ion exchange in the condensate demineralization tower 13. The total organic carbon concentration of the waste liquid discharged from the condensate demineralization tower 13 to the washing water discharge pipe 25 when the resin is being washed is measured by the total organic carbon measuring device 42. When each cleaning is performed, the total organic carbon concentration measured by the total organic carbon measuring device 42 is input to the control device 70A. Although the washing hot water is supplied, a large amount of waste liquid is generated when the ion exchange resin is washed in the condensate demineralization tower 13 and the resin washing tower 26 as compared with other equipment in the BWR plant. By being stored in the water desalting tower 13 for a long period of time as retained water, total organic carbon having a higher concentration than the cation exchange resin 48 in the condensate desalting tower 13 is generated. For this reason, at the start of the washing of the ion exchange resin in the condensate demineralization tower 13 and the resin washing tower 26, the valve 44 is closed and the valve 46 is opened by the control device 70A. Therefore, at the start of cleaning of the ion exchange resin in them, each waste liquid generated by the cleaning in the condensate demineralization tower 13 and the resin cleaning tower 26 is supplied to the high conductivity waste liquid treatment system through the high conductivity waste liquid supply pipe 47. The In practice, the total organic carbon concentration of each waste liquid discharged from each of the condensate demineralization tower 13 and the resin washing tower 26 at the start of the ion exchange resin cleaning is a setting standard for supplying the waste liquid to the low conductivity waste liquid treatment system ( Therefore, the control device 70A that inputs the total organic carbon concentration measured by the total organic carbon measuring device 42 closes the valve 44 and opens the valve 46.

復水脱塩塔13及び樹脂洗浄塔26でのイオン交換樹脂の洗浄時間が経過すると、全有機炭素測定装置42で計測された全有機炭素濃度が減少する。計測された全有機炭素濃度が上記の設定基準(約80ppb)以下になったとき、制御装置70Aは、弁44を開けて弁46を閉じる。イオン交換樹脂の洗浄時に復水脱塩塔13及び樹脂洗浄塔26のそれぞれから排出された廃液は、低伝導度廃液供給管45により低伝導度廃液処理系に供給される。   When the ion exchange resin washing time in the condensate demineralization tower 13 and the resin washing tower 26 elapses, the total organic carbon concentration measured by the total organic carbon measuring device 42 decreases. When the measured total organic carbon concentration becomes equal to or lower than the above-described setting standard (about 80 ppb), the control device 70A opens the valve 44 and closes the valve 46. Waste liquid discharged from each of the condensate demineralization tower 13 and the resin washing tower 26 at the time of washing the ion exchange resin is supplied to a low-conductivity waste liquid treatment system through a low-conductivity waste liquid supply pipe 45.

本実施例は、実施例1で生じる各効果を得ることができる。また、制御装置70Aが全有機炭素測定装置42で計測された全有機炭素濃度に基づいて弁44,46の開閉制御を行うので、実施例1で用いた伝導度計が不要になる。   In the present embodiment, each effect produced in the first embodiment can be obtained. Further, since the control device 70A controls the opening and closing of the valves 44 and 46 based on the total organic carbon concentration measured by the total organic carbon measuring device 42, the conductivity meter used in the first embodiment is not necessary.

本発明の他の実施例である実施例3の復水脱塩装置を、図5を用いて説明する。   The condensate demineralizer of Example 3 which is another Example of this invention is demonstrated using FIG.

本実施例の復水脱塩装置4Bは、実施例2の復水脱塩装置4Aにおいて全有機炭素測定装置42が全有機炭素濃度異常信号61を出力する構成を有する。復水脱塩装置4Bの他の構成は復水脱塩装置4Aと同じである。   The condensate demineralizer 4B of the present embodiment has a configuration in which the total organic carbon measuring device 42 outputs the total organic carbon concentration abnormality signal 61 in the condensate demineralizer 4A of the second embodiment. Other configurations of the condensate demineralizer 4B are the same as the condensate demineralizer 4A.

復水脱塩装置4Bにおいて、樹脂移送管21を用いた復水脱塩塔13から樹脂洗浄塔26への陽イオン交換樹脂及び陰イオン交換樹脂を移送させる際に、移送水供給管18から供給される移送水を用いており、樹脂移送管22を用いた樹脂洗浄塔26から復水脱塩塔13への陽イオン交換樹脂及び陰イオン交換樹脂を移送させる際にも、移送水供給管29から供給される移送水を用いている。移送水を用いてのイオン交換樹脂の移送時にも、移送水として復水貯蔵タンク51からの補給水を使用している。このときにも、移送廃液が発生する。   When the cation exchange resin and the anion exchange resin are transferred from the condensate demineralization tower 13 using the resin transfer pipe 21 to the resin washing tower 26 in the condensate demineralization apparatus 4B, the supply from the transfer water supply pipe 18 is performed. When the cation exchange resin and the anion exchange resin are transferred from the resin washing tower 26 using the resin transfer pipe 22 to the condensate demineralization tower 13, the transfer water supply pipe 29 is also used. Transfer water supplied from is used. The replenishment water from the condensate storage tank 51 is also used as the transfer water when transferring the ion exchange resin using the transfer water. Also at this time, a transfer waste liquid is generated.

移送廃液に含まれる陽イオン交換樹脂からの全有機炭素の溶出量は、陽イオン交換樹脂等の洗浄時に発生する全有機炭素の溶出量に比べて少ない。しかしながら、イオン交換樹脂の移送中に陽イオン交換樹脂がストレーナ37を通過して洗浄水排出管25に流出した場合には、高濃度の全有機炭素が洗浄水排出管25に排出される。このため、設定濃度を超えた高濃度の全有機炭素が全有機炭素測定装置42にて計測されたとき、全有機炭素測定装置42が全有機炭素濃度異常信号61を出力する。この全有機炭素濃度異常信号61の出力により、警報が発せられる。   The elution amount of total organic carbon from the cation exchange resin contained in the transfer waste liquid is smaller than the elution amount of total organic carbon generated during cleaning of the cation exchange resin or the like. However, when the cation exchange resin passes through the strainer 37 and flows out into the washing water discharge pipe 25 during the transfer of the ion exchange resin, high-concentration total organic carbon is discharged into the washing water discharge pipe 25. For this reason, when the total organic carbon having a high concentration exceeding the set concentration is measured by the total organic carbon measuring device 42, the total organic carbon measuring device 42 outputs the total organic carbon concentration abnormality signal 61. An alarm is generated by the output of the total organic carbon concentration abnormality signal 61.

本実施例は実施例2で生じる各効果を得ることができる。さらに、本実施例は、全有機炭素濃度異常信号61の出力によって、早期に異常検出が可能となる。   In the present embodiment, each effect produced in the second embodiment can be obtained. Furthermore, in this embodiment, the abnormality can be detected at an early stage by the output of the total organic carbon concentration abnormality signal 61.

実施例1,2及び3の復水脱塩装置は、BWRプラント以外に、加圧水型原子力プラント(PWRプラント)等の原子力プラント及び火力プラント等の復水器を有するプラントに適用することができる。   The condensate demineralizers of Examples 1, 2, and 3 can be applied to plants having a condenser such as a nuclear power plant such as a pressurized water nuclear power plant (PWR plant) and a thermal power plant in addition to the BWR plant.

本発明は、BWRプラント及びPWRプラント等の原子力プラント、及び火力プラントに適用することができる。   The present invention can be applied to nuclear power plants such as BWR plants and PWR plants, and thermal power plants.

1…復水器、3…復水ろ過装置、4,4A,4B…復水脱塩装置、9…原子炉、10…タービン、11,15,17,19,20,24,28,30,31,35,44,46,63,67…弁、12…給水配管、13…復水脱塩塔、16,27…空気供給管、18,29…移送水供給管、21,32…樹脂移送管、22,22A,22B…洗浄水供給管、25,36…洗浄水排出管、26…樹脂洗浄塔、33,38…樹脂移送装置、42…全有機炭素測定装置、45…低伝導度廃液供給管、47…高伝導度廃液供給管、51…復水貯蔵タンク、62…温水洗浄供給配管、64,68…蒸気流量調節弁、65A,65B…加熱装置、69A,69B…洗浄温水供給管、71,72…温水供給装置、73,75…蒸気供給管。   DESCRIPTION OF SYMBOLS 1 ... Condenser, 3 ... Condensate filtration apparatus, 4, 4A, 4B ... Condensate demineralizer, 9 ... Reactor, 10 ... Turbine, 11, 15, 17, 19, 20, 24, 28, 30, 31, 35, 44, 46, 63, 67 ... valve, 12 ... water supply pipe, 13 ... condensate demineralizer, 16, 27 ... air supply pipe, 18, 29 ... transfer water supply pipe, 21, 32 ... resin transfer Pipe, 22, 22A, 22B ... Wash water supply pipe, 25, 36 ... Wash water discharge pipe, 26 ... Resin washing tower, 33, 38 ... Resin transfer device, 42 ... Total organic carbon measuring device, 45 ... Low conductivity waste liquid Supply pipe, 47 ... High conductivity waste liquid supply pipe, 51 ... Condensate storage tank, 62 ... Hot water washing supply pipe, 64, 68 ... Steam flow rate control valve, 65A, 65B ... Heating device, 69A, 69B ... Washing hot water supply pipe 71, 72 ... warm water supply devices, 73, 75 ... steam supply pipes.

Claims (5)

陽イオン交換樹脂および陰イオン交換樹脂を内部に有する復水脱塩塔と、前記復水脱塩塔に接続され、前記復水脱塩塔に洗浄水である温水を供給する第1温水供給装置と、前記復水脱塩塔に接続された洗浄水排出管に設けられた全有機炭素測定装置とを備え、
前記復水脱塩塔に樹脂移送管により接続された樹脂洗浄塔と、前記樹脂洗浄塔に洗浄水である温水を供給する第2温水供給装置とを備え、
前記洗浄水排出管が前記樹脂洗浄塔に連絡されており、
前記洗浄水排出管に接続されて第5弁が設けられた低伝導度廃液配管と、前記洗浄水排出管に接続されて第6弁が設けられた高伝導度廃液配管と、前記全有機炭素測定装置で計測された、前記樹脂洗浄塔及び前記復水脱塩塔から前記洗浄水排出管に排出された廃液の全有機炭素濃度が第2設定濃度よりも大きいとき、前記第5弁を閉じて前記第6弁を開き、前記全有機炭素測定装置で計測された前記廃液の全有機炭素濃度が前記第2設定濃度以下になったとき、前記第5弁を開いて前記第6弁を閉じる制御装置とを備えたことを特徴とする復水脱塩装置。
A condensate demineralization tower having a cation exchange resin and an anion exchange resin inside, and a first hot water supply device connected to the condensate demineralization tower and supplying hot water as washing water to the condensate demineralization tower And a total organic carbon measuring device provided in a washing water discharge pipe connected to the condensate demineralization tower,
A resin washing tower connected to the condensate demineralization tower by a resin transfer pipe; and a second hot water supply device for supplying warm water as washing water to the resin washing tower,
The washing water discharge pipe communicates with the resin washing tower;
A low conductivity waste liquid pipe connected to the wash water discharge pipe and provided with a fifth valve; a high conductivity waste liquid pipe connected to the wash water discharge pipe and provided with a sixth valve; and the total organic carbon When the total organic carbon concentration of the waste liquid discharged from the resin washing tower and the condensate demineralization tower to the washing water discharge pipe measured by the measuring device is larger than the second set concentration, the fifth valve is closed. The sixth valve is opened, and when the total organic carbon concentration of the waste liquid measured by the total organic carbon measuring device is equal to or lower than the second set concentration, the fifth valve is opened and the sixth valve is closed. A condensate demineralizer comprising a control device.
陽イオン交換樹脂および陰イオン交換樹脂を内部に有する復水脱塩塔と、前記復水脱塩塔に接続され、前記復水脱塩塔に洗浄水である温水を供給する第1温水供給装置と、前記復水脱塩塔に接続された洗浄水排出管に設けられた全有機炭素測定装置とを備え、
前記復水脱塩塔に樹脂移送管により接続された樹脂洗浄塔と、前記樹脂洗浄塔に洗浄水である温水を供給する第2温水供給装置とを備え、
前記洗浄水排出管が前記樹脂洗浄塔に連絡されており、
第1温水供給装置が第1弁を介して前記復水脱塩塔に接続され、第2弁が前記洗浄水排出管に設けられ、第2温水供給装置が第3弁を介して前記樹脂洗浄塔に接続され、前記樹脂洗浄塔が第4弁を介して前記第2弁よりも下流で前記洗浄水排出管に接続されており、
前記全有機炭素測定装置で計測された、前記樹脂洗浄塔から前記洗浄水排出管に排出された廃液の全有機炭素濃度が第1設定濃度以下になったとき、前記第3弁及び前記第4弁を閉じ、前記全有機炭素測定装置で計測された、前記復水脱塩塔から前記洗浄水排出管に排出された廃液の全有機炭素濃度が前記第1設定濃度以下になったとき、前記第1弁及び前記第2弁を閉じる制御装置を備え、
前記洗浄水排出管に接続されて第5弁が設けられた低伝導度廃液配管と、前記洗浄水排出管に接続されて第6弁が設けられた高伝導度廃液配管と、前記全有機炭素測定装置で計測された前記洗浄水排出管内の前記廃液の全有機炭素濃度が前記第1設定濃度と異なる第2設定濃度よりも大きいとき、前記第5弁を閉じて前記第6弁を開き、前記全有機炭素測定装置で計測された前記廃液の全有機炭素濃度が前記第2設定濃度以下になったとき、前記第5弁を開いて前記第6弁を閉じる前記制御装置とを備えたことを特徴とする復水脱塩装置。
A condensate demineralization tower having a cation exchange resin and an anion exchange resin inside, and a first hot water supply device connected to the condensate demineralization tower and supplying hot water as washing water to the condensate demineralization tower And a total organic carbon measuring device provided in a washing water discharge pipe connected to the condensate demineralization tower,
A resin washing tower connected to the condensate demineralization tower by a resin transfer pipe; and a second hot water supply device for supplying warm water as washing water to the resin washing tower,
The washing water discharge pipe communicates with the resin washing tower;
A first hot water supply device is connected to the condensate demineralization tower via a first valve, a second valve is provided in the wash water discharge pipe, and a second hot water supply device is connected to the resin wash via a third valve. Connected to the tower, the resin washing tower is connected to the washing water discharge pipe downstream of the second valve via the fourth valve,
When the total organic carbon concentration of the waste liquid discharged from the resin cleaning tower to the cleaning water discharge pipe measured by the total organic carbon measuring device is equal to or lower than the first set concentration, the third valve and the fourth valve When the valve is closed and the total organic carbon concentration of the waste liquid discharged from the condensate demineralization tower to the washing water discharge pipe, measured by the total organic carbon measurement device, is equal to or lower than the first set concentration, A control device for closing the first valve and the second valve;
A low conductivity waste liquid pipe connected to the wash water discharge pipe and provided with a fifth valve; a high conductivity waste liquid pipe connected to the wash water discharge pipe and provided with a sixth valve; and the total organic carbon When the total organic carbon concentration of the waste liquid in the washing water discharge pipe measured by the measuring device is larger than a second set concentration different from the first set concentration, the fifth valve is closed and the sixth valve is opened, said total organic carbon concentration of the waste liquid that is measured by total organic carbon measuring device when it becomes less than the second set concentration, and a open the fifth valve closes the sixth valve and the control device Condensate demineralizer characterized by
前記第1温水供給装置が、温水を生成する第1加熱装置、前記第1加熱装置に接続された第1蒸気供給管、及び前記第1蒸気供給管に設けられた第1蒸気流量調節弁を有しており、
前記第1加熱装置から前記復水脱塩塔に供給する前記温水の温度を計測する第1温度計と、前記第1温度計で計測した前記温水の温度に基づいて前記第1蒸気流調節弁の開度を調節し、前記第1加熱装置から前記復水脱塩塔に供給する前記温水の温度を50℃〜60℃に制御する制御装置とを備えた請求項1または2に記載の復水脱塩装置。
The first hot water supply device includes a first heating device that generates hot water, a first steam supply pipe connected to the first heating device, and a first steam flow rate control valve provided in the first steam supply pipe. Have
A first thermometer for measuring a temperature of the hot water supplied from the first heating device to the condensate demineralizer; and a first steam flow control valve based on the temperature of the hot water measured by the first thermometer. adjusting the opening degree, the condensate from the first heating apparatus according to claim 1 or 2 and a control unit for controlling the hot water temperature supplied to the condensate demineralizer to 50 ° C. to 60 ° C. Water desalination equipment.
前記第2温水供給装置が、温水を生成する第2加熱装置、前記第2加熱装置に接続された第2蒸気供給管、及び前記第2蒸気供給管に設けられた第2蒸気流量調節弁を有しており、
前記第2加熱装置から前記樹脂洗浄塔に供給する前記温水の温度を計測する第2温度計と、前記第2温度計で計測した前記温水の温度に基づいて前記第2蒸気流調節弁の開度を調節し、前記第2加熱装置から前記樹脂洗浄塔に供給する前記温水の温度を50℃〜60℃に制御する前記制御装置とを備えた請求項1または2に記載の復水脱塩装置。
The second hot water supply device includes a second heating device that generates hot water, a second steam supply pipe connected to the second heating device, and a second steam flow rate control valve provided in the second steam supply pipe. Have
A second thermometer for measuring a temperature of the hot water supplied from the second heating device to the resin washing tower, and an opening of the second steam flow control valve based on the temperature of the hot water measured by the second thermometer. The condensate demineralization according to claim 1 or 2 , further comprising: a control device that adjusts the temperature and controls the temperature of the hot water supplied from the second heating device to the resin washing tower to 50 ° C to 60 ° C. apparatus.
第1温水供給装置が第1弁を介して前記復水脱塩塔に接続され、第2弁が前記洗浄水排出管に設けられ、第2温水供給装置が第3弁を介して前記樹脂洗浄塔に接続され、前記樹脂洗浄塔が第4弁を介して前記第2弁よりも下流で前記洗浄水排出管に接続されており、 前記全有機炭素測定装置で計測された、前記樹脂洗浄塔から前記洗浄水排出管に排出された廃液の全有機炭素濃度が第1設定濃度以下になったとき、前記第3弁及び前記第4弁を閉じ、前記全有機炭素測定装置で計測された、前記復水脱塩塔から前記洗浄水排出管に排出された廃液の全有機炭素濃度が前記第1設定濃度以下になったとき、前記第1弁及び前記第2弁を閉じる制御装置を備えた請求項に記載の復水脱塩装置。 A first hot water supply device is connected to the condensate demineralization tower via a first valve, a second valve is provided in the wash water discharge pipe, and a second hot water supply device is connected to the resin wash via a third valve. The resin washing tower connected to a tower, the resin washing tower being connected to the washing water discharge pipe downstream of the second valve via a fourth valve, and measured by the total organic carbon measuring device When the total organic carbon concentration of the waste liquid discharged to the washing water discharge pipe from the first set concentration or less, the third valve and the fourth valve were closed and measured by the total organic carbon measuring device, A controller that closes the first valve and the second valve when the total organic carbon concentration of the waste liquid discharged from the condensate demineralization tower to the washing water discharge pipe is equal to or lower than the first set concentration; The condensate demineralizer according to claim 1 .
JP2010033263A 2010-02-18 2010-02-18 Condensate demineralizer Active JP5562675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033263A JP5562675B2 (en) 2010-02-18 2010-02-18 Condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033263A JP5562675B2 (en) 2010-02-18 2010-02-18 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JP2011169723A JP2011169723A (en) 2011-09-01
JP5562675B2 true JP5562675B2 (en) 2014-07-30

Family

ID=44684008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033263A Active JP5562675B2 (en) 2010-02-18 2010-02-18 Condensate demineralizer

Country Status (1)

Country Link
JP (1) JP5562675B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892827B2 (en) * 1990-11-30 1999-05-17 株式会社東芝 Nuclear power plant desalination equipment
JP3090730B2 (en) * 1991-09-13 2000-09-25 株式会社東芝 Condensate desalination tower monitoring equipment
JPH05126983A (en) * 1991-11-08 1993-05-25 Toshiba Corp Condensation demineralizer
JP3226604B2 (en) * 1992-06-15 2001-11-05 株式会社東芝 Condensate desalination equipment
JPH07155757A (en) * 1993-12-06 1995-06-20 Hitachi Ltd Mixed bed desalting device
JPH08313692A (en) * 1995-05-23 1996-11-29 Toshiba Corp Recovery method and device for ion exchange resin in demineralizing device
JP3597644B2 (en) * 1996-08-12 2004-12-08 株式会社東芝 Water quality maintenance equipment for nuclear power plants
JP2001004784A (en) * 1999-06-16 2001-01-12 Hitachi Ltd Condensate purification system
JP2003088765A (en) * 2001-09-19 2003-03-25 Nippon Rensui Co Ltd Countercurrent regeneration type ion exchange apparatus and method for cleaning packed layer of ion exchange resin in the apparatus

Also Published As

Publication number Publication date
JP2011169723A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
KR101363381B1 (en) Method and system for controlling water quality in power generation plant
EP2312588B1 (en) Method of operating a nuclear plant
CN207608421U (en) A kind of indirect air cooling pH in Circulating Water regulating device
JP5562675B2 (en) Condensate demineralizer
JP4220091B2 (en) Nuclear power plant and operation method thereof
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP6373614B2 (en) Water supply system cleanup apparatus and method
JP5969355B2 (en) Nuclear fuel cooling method and nuclear fuel cooling device
CN112344314A (en) Sodium-cooled fast reactor steam generator and chemical cleaning system for steam-water side of heat transfer pipe of superheater
CN213538110U (en) Chemical cleaning system for two loops of high-temperature gas cooled reactor nuclear power unit
JP2019219270A (en) Condensate desalination system
TWI793049B (en) Method for starting up hot ultrapure water production system, starting up program, and hot ultrapure water production system
JP6234303B2 (en) Water supply system cleanup apparatus and method
CN219341845U (en) Condensate fine treatment regeneration wastewater recycling system of thermal power plant
Burrill et al. Control of reactor inlet header temperature (RIHT) rise in CANDU
JP7039781B2 (en) Water supply system cleanup equipment and methods
JP5513846B2 (en) Nuclear power plant and method for operating the same
JP2002071874A (en) Boiling water type nuclear power generation plant, and method for measuring polymer impurity of degraded ion exchange resin
JP4352249B2 (en) Boiling water nuclear power plant
Pattnaik et al. Based on the Amount of Water Covering the Monitoring Point Defects Optimizing Improvement Act
CN117655010A (en) Decontamination device for primary circuit complex pipeline of nuclear power facility
JPH0425798A (en) Condensate purification system
JPH01182798A (en) Boiling water type nuclear power plant
JP2006029940A (en) Hydrogen injection method for boiling water type nuclear power plant
Sturla et al. Control of feedwater composition of BWR power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150