JPH1050816A - Antistatic material and container formed of the material - Google Patents

Antistatic material and container formed of the material

Info

Publication number
JPH1050816A
JPH1050816A JP22320896A JP22320896A JPH1050816A JP H1050816 A JPH1050816 A JP H1050816A JP 22320896 A JP22320896 A JP 22320896A JP 22320896 A JP22320896 A JP 22320896A JP H1050816 A JPH1050816 A JP H1050816A
Authority
JP
Japan
Prior art keywords
antistatic
thermoplastic urethane
weight
storage container
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22320896A
Other languages
Japanese (ja)
Inventor
Hiroshi Kishida
博史 岸田
Kyosuke Takatsuki
恭介 高槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukoku Co Ltd
Fukoku KK
Original Assignee
Fukoku Co Ltd
Fukoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukoku Co Ltd, Fukoku KK filed Critical Fukoku Co Ltd
Priority to JP22320896A priority Critical patent/JPH1050816A/en
Publication of JPH1050816A publication Critical patent/JPH1050816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Packaging Frangible Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain stable volume resistivity in an antistatic region by constituting this material of olefine resin and antistatic thermoplastic urethane wherein a specified amount of metallic salt is dissolved in ion state to a fixed amount of thermoplastic urethane by using a specified amount of both thereof, respectively. SOLUTION: As metallic salt, 3.75wt.% of lithium perchlorate is mixed to 100wt.% of ether thermoplastic urethane and antistatic thermoplastic urethane 8 is prepared. This material is formed by mixing 40wt.% of the antistatic thermoplastic urethane 8 and 60wt.% of polypropylene 7 as olefine resin. Furthermore, 90 to 40wt.% of olefine resin 7 is desirable and 10 to 60wt.% of the antistatic thermoplastic urethane 8 is desirable. It is desirable to incorporate 0.2 to 10wt.% of metallic salt to 100wt.% of thermoplastic urethane. Since volume resistivity is in an antistatic region of 10<6> to 10<10> Ω.cm, electrification of static electricity of a container can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は低硬度から高硬度ま
で任意の硬さに成形することができる制電性材料および
この材料で成形した収納容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic material which can be formed into a desired hardness from a low hardness to a high hardness, and a storage container formed of the material.

【0002】[0002]

【従来の技術】半導体回路の集積度は年々上昇し、この
半導体回路の静電気破壊特性が低下する傾向にある。こ
のため静電気に対する対策の必要性がますます増加して
いる。例えば、半導体デバイス製作工程のデバイス搬送
に使われる半導体デバイスキャリアーや半導体の製品出
荷時に使用される半導体デバイスパッケージなどの収納
容器は、ポリプロピレン、ABSなどの樹脂で製作され
ている。しかし、これらの収納容器は、体積抵抗率が高
い樹脂で成形されるため、静電気を帯びやすい。上記収
納容器の体積抵抗率が106 〜1010Ω・cmの範囲、
すなわち、制電領域にあれば、この収納容器の静電気の
帯電を防ぐだけでなく、デバイスに帯電した静電気を除
電する事も可能である。よって、その体積抵抗率が制電
領域の収納容器が求められていた。そこで、上記ポリ
プロピレンに導電性カーボンブラックを混入して成形し
た収納容器、上記ポリプロピレンに導電性繊維を混入
した収納容器、上記ポリプロピレンに導電性金属粉を
混入した収納容器、上記ポリプロピレンに界面活性剤
を混入した収納容器が試みられている。
2. Description of the Related Art The degree of integration of semiconductor circuits is increasing year by year, and the electrostatic breakdown characteristics of the semiconductor circuits tend to decrease. For this reason, there is an increasing need for measures against static electricity. For example, a storage container such as a semiconductor device carrier used for transporting devices in a semiconductor device manufacturing process or a semiconductor device package used when shipping a semiconductor product is made of a resin such as polypropylene or ABS. However, since these storage containers are formed of a resin having a high volume resistivity, they are easily charged with static electricity. The volume resistivity of the storage container is in a range of 10 6 to 10 10 Ω · cm,
In other words, if it is in the static control area, it is possible not only to prevent the electrostatic charge of the storage container, but also to remove the static electricity charged in the device. Therefore, there has been a demand for a storage container having a volume resistivity in the antistatic region. Therefore, a storage container formed by mixing conductive carbon black into the polypropylene, a storage container obtained by mixing conductive fibers in the polypropylene, a storage container obtained by mixing conductive metal powder in the polypropylene, and a surfactant in the polypropylene. Mixed containers have been attempted.

【0003】しかしながら、ポリプロピレンに導電性
カーボンブラックを混入して成形した収納容器、ポリ
プロピレンに導電性繊維を混入して成形した収納容器、
ポリプロピレンに導電性金属粉を混入して成形した収
納容器は、体積抵抗率が106 〜1010Ω・cmを示す
ものが作れるが、製造ロット、測定部位で体積抵抗率の
ばらつきが大きく、制電領域以外の体積抵抗率のものが
多くできてしまう。そのため、このばらつきを抑止する
ために、導電性カーボンブラック、導電性繊維もしくは
導電性金属粉を多くいれて、体積抵抗率を103 Ω・c
m以下に調整されている。また、これら収納容器は、ポ
リプロピレンに導電性カーボンブラックや導電性繊維あ
るいは導電性金属粉を練り込んだ材料であるため、収納
容器の表面から飛散や剥離脱落することがあった。この
ため、半導体デバイスに導電性カーボンブラック、導電
性繊維あるいは導電性金属粉が異物として付着すること
があった。ポリプロピレンに界面活性剤を混入した収
納容器は、湿度が60〜80%程度では体積抵抗率が1
6 〜1010Ω・cmを示す。しかし、冬期などの低湿
度、例えば30%以下では、収納容器の表面にブリード
している界面活性剤が湿度依存性のため、体積抵抗率が
1011Ω・cmを超えてしまう。そこで、近時、熱可塑
性ウレタンに金属塩をイオン状態で溶解した制電性熱可
塑性ウレタンを用いて成形した収納容器が提案されてお
り、上記欠点を有しないものとして注目されていた。
However, a storage container formed by mixing conductive carbon black into polypropylene, a storage container formed by mixing conductive fibers into polypropylene,
A storage container formed by mixing conductive metal powder with polypropylene can be manufactured with a volume resistivity of 10 6 to 10 10 Ω · cm. The volume resistivity other than the electric region is increased. Therefore, in order to suppress this variation, a large amount of conductive carbon black, conductive fiber or conductive metal powder is added to reduce the volume resistivity to 10 3 Ω · c.
m or less. In addition, since these storage containers are made of a material obtained by kneading conductive carbon black, conductive fiber, or conductive metal powder into polypropylene, they may be scattered or separated from the surface of the storage container. For this reason, conductive carbon black, conductive fibers, or conductive metal powder may adhere to the semiconductor device as foreign matter. A storage container in which a surfactant is mixed with polypropylene has a volume resistivity of 1 at a humidity of about 60 to 80%.
0 6 to 10 10 Ω · cm. However, when the humidity is low in winter or the like, for example, 30% or less, the volume resistivity exceeds 10 11 Ω · cm because the surfactant bleeding on the surface of the storage container is humidity-dependent. Therefore, recently, a storage container formed by using an antistatic thermoplastic urethane obtained by dissolving a metal salt in a thermoplastic urethane in an ionic state has been proposed, and has been attracting attention as having no such disadvantages.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、熱可塑
性ウレタンに金属塩をイオン状態で溶解した制電性熱可
塑性ウレタンで成形しても収納容器としては、軟らかい
ので適しない。また、収納容器として使用できるよう
に、結晶性を高くして硬度を上げた熱可塑性ウレタンに
金属塩をイオン状態で溶解した制電性熱可塑性ウレタン
は、体積抵抗率が1010Ω・cmを超えるので、収納容
器の材料に適しないという問題点があった。
However, even if it is molded from an antistatic thermoplastic urethane in which a metal salt is dissolved in a thermoplastic urethane in an ionic state, it is not suitable as a storage container because it is soft. In addition, in order to be used as a storage container, antistatic thermoplastic urethane in which a metal salt is dissolved in an ionic state in thermoplastic urethane having increased crystallinity and hardness has a volume resistivity of 10 10 Ω · cm. Therefore, there is a problem that it is not suitable for the material of the storage container.

【0005】[0005]

【課題を解決するための手段】本発明に係る制電性材料
は、オレフィン系樹脂と、熱可塑性ウレタン100重量
%に対して金属塩が0.2〜10重量%イオン状態で溶
解した制電性熱可塑性ウレタンとで樹脂のマトリックス
を構成し、上記オレフィン系樹脂を90〜40重量%と
し、上記制電性熱可塑性ウレタンを10〜60重量%と
したものである。本発明に係る制電性材料は、オレフィ
ン系樹脂と、熱可塑性ウレタン100重量%に対して金
属塩が0.2〜10重量%イオン状態で溶解した制電性
熱可塑性ウレタンと相溶化材とで樹脂のマトリックスを
構成し、上記オレフィン系樹脂を90〜40重量%と
し、上記制電性熱可塑性ウレタンを10〜60重量%と
したものである。本発明に係る収納容器は、上記制電性
材料を成形して得られるものである。
According to the present invention, there is provided an antistatic material comprising an olefin resin and 0.2 to 10% by weight of a metal salt dissolved in 100% by weight of thermoplastic urethane. The resin matrix is composed of the non-conductive thermoplastic urethane, the olefin resin is 90 to 40% by weight, and the antistatic thermoplastic urethane is 10 to 60% by weight. The antistatic material according to the present invention comprises an olefin resin, an antistatic thermoplastic urethane in which a metal salt is dissolved in an ion state of 0.2 to 10% by weight with respect to 100% by weight of a thermoplastic urethane, and a compatibilizing material. Constitutes a resin matrix, the olefin resin is 90 to 40% by weight, and the antistatic thermoplastic urethane is 10 to 60% by weight. The storage container according to the present invention is obtained by molding the antistatic material.

【0006】[0006]

【作用】本発明は、高硬度のものでも体積抵抗率が制電
領域106 〜1010Ω・cmにあるので、収納容器の静
電気の帯電を防ぐだけでなく、デバイスに帯電した静電
気を除電することができる。また、熱可塑性ウレタン1
00重量%に対して金属塩を10重量%以下入れてイオ
ン状態で溶解したので、金属塩が収納容器の表面からブ
ルームせず、半導体デバイスに異物が付着しない。ま
た、制電性材料は金属塩がイオンになって溶けているの
で、制電領域で安定した体積抵抗率が得られる。さら
に、樹脂のマトリックスが相溶化剤を含んでいるので、
制電性熱可塑性ウレタンの筋の分散が均一になり、相溶
化剤を添加しない場合よりも、引張物性や制電領域内で
の体積抵抗率のばらつきが少なくなり、破断物性の伸
び、引張強さが大きく向上する。
According to the present invention, since the volume resistivity is in the antistatic region of 10 6 Ω · cm to 10 10 Ω · cm even in the case of high hardness, not only the static electricity in the storage container is prevented, but also the static electricity in the device is eliminated. can do. In addition, thermoplastic urethane 1
Since 10% by weight or less of the metal salt is added to 00% by weight and dissolved in an ionic state, the metal salt does not bloom from the surface of the storage container and no foreign matter adheres to the semiconductor device. In addition, since the metal salt of the antistatic material is dissolved as ions, a stable volume resistivity can be obtained in the antistatic region. In addition, since the resin matrix contains a compatibilizer,
The distribution of antistatic thermoplastic urethane streaks becomes uniform, the dispersion of tensile properties and volume resistivity in the antistatic region is reduced, and the elongation of fracture properties and tensile strength are lower than when no compatibilizer is added. Is greatly improved.

【0007】[0007]

【発明の実施の形態】本発明の制電性材料の一実施例に
ついて説明する。まず、エーテル系熱可塑性ウレタン1
00重量%に対して、金属塩として過塩素酸リチウム
3.75重量%配合し、制電性熱可塑性ウレタンを作成
する。そして、この制電性熱可塑性ウレタン40重量%
と、オレフィン系樹脂としてポリプロピレン60重量%
とを混合して作成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the antistatic material of the present invention will be described. First, ether-based thermoplastic urethane 1
3.75% by weight of lithium perchlorate as a metal salt is added to 00% by weight to prepare an antistatic thermoplastic urethane. And this antistatic thermoplastic urethane 40% by weight
And 60% by weight of polypropylene as an olefin resin
To create a mixture.

【0008】なお、基材となるオレフィン系樹脂は、ポ
リプロピレン以外にポリエチレン等を使用してもよいこ
とは勿論である。また、熱可塑性ウレタンは、エーテル
系熱可塑性ウレタン以外にエステル系熱可塑性ウレタン
等を使用してもよいことは勿論である。この熱可塑性ウ
レタンは、体積抵抗率を低くするため、硬度(ASTM
デュロメーターD型を使用)60°以下が有効である
が,硬度を特に上げる場合はこの限りではない。また、
金属塩は、過塩素酸リチウム以外に、熱可塑性ウレタン
に対して溶解度の高いもの、すなわち、アルカリ金属
塩、及び、アルカリ土類金属塩の内、チオシアン酸カリ
等を使用してもよいことは勿論である。
The olefin resin used as the base material may of course be polyethylene or the like in addition to polypropylene. Further, as the thermoplastic urethane, of course, an ester-based thermoplastic urethane or the like may be used in addition to the ether-based thermoplastic urethane. This thermoplastic urethane has a hardness (ASTM) in order to lower the volume resistivity.
The use of a durometer D type) is effective at 60 ° or less, but this is not a limitation when the hardness is particularly increased. Also,
Metal salts other than lithium perchlorate, those having high solubility in thermoplastic urethane, that is, alkali metal salts, and among the alkaline earth metal salts, potassium thiocyanate may be used. Of course.

【0009】また、オレフィン系樹脂は、90〜40重
量%が好ましく、制電性熱可塑性ウレタンは、10〜6
0重量%が好ましい。なお、オレフィン系樹脂が90重
量%を超え、制電性熱可塑性ウレタンが10重量%未満
のものは、体積抵抗率が1010Ω・cmを超えるので、
収納容器としてふさわしくない。また、オレフィン系樹
脂が40重量%未満で、制電性熱可塑性ウレタン60重
量%を超えたものは、加工性が悪くなる。特に、この材
料を使用した射出成形品は、表面に筋ができたり、凹凸
ができたりして外観が悪い。また、表面に凹凸ができる
ことにより、寸法安定性が悪い。
The olefin resin is preferably 90 to 40% by weight, and the antistatic thermoplastic urethane is preferably 10 to 6% by weight.
0% by weight is preferred. When the olefin-based resin exceeds 90% by weight and the antistatic thermoplastic urethane is less than 10% by weight, the volume resistivity exceeds 10 10 Ω · cm.
Not suitable as a storage container. If the olefin-based resin is less than 40% by weight and the antistatic thermoplastic urethane exceeds 60% by weight, the processability is deteriorated. In particular, injection-molded articles using this material have poor appearance due to streaks or irregularities on the surface. Also, dimensional stability is poor due to the formation of irregularities on the surface.

【0010】金属塩は、熱可塑性ウレタン100重量%
に対して0.2〜10重量%入れるのが好ましい。この
金属塩は、熱可塑性ウレタンにイオンとして溶けるもの
である。したがって、熱可塑性ウレタンに金属塩を溶か
した制電性熱可塑性ウレタンを使用するので、制電性材
料の体積抵抗率が制電領域で安定する。なお、金属塩の
量が0.2重量%未満の場合には、制電性熱可塑性ウレ
タンの体積抵抗率が大きくなるので、この制電性熱可塑
性ウレタンを60重量%以上混入して、制電性材料の体
積抵抗率を1010Ω・cm以下にする必要性がある。し
かし、制電性熱可塑性ウレタンを60重量%混入した制
電性材料は、加工性が悪い。特に、この制電性材料を用
いた射出成形品は、表面に筋ができたり、凹凸ができた
りして外観が悪い。また、表面に凹凸ができることによ
り、寸法安定性が悪い。また、金属塩の量が10重量%
を超える場合には、湿度が高くなると、金属塩が収納容
器の表面にブルームする。したがって、このブルームし
たものが半導体デバイスに異物として付着し、半導体の
不良の原因になる。
The metal salt is 100% by weight of thermoplastic urethane.
Is preferably added in an amount of 0.2 to 10% by weight. This metal salt is soluble in thermoplastic urethane as an ion. Therefore, since the antistatic thermoplastic urethane in which the metal salt is dissolved in the thermoplastic urethane is used, the volume resistivity of the antistatic material is stabilized in the antistatic region. If the amount of the metal salt is less than 0.2% by weight, the volume resistivity of the antistatic thermoplastic urethane increases, so that 60% by weight or more of this antistatic thermoplastic urethane is mixed. It is necessary to reduce the volume resistivity of the conductive material to 10 10 Ω · cm or less. However, an antistatic material containing 60% by weight of an antistatic thermoplastic urethane has poor workability. In particular, an injection molded article using this antistatic material has a poor appearance due to streaks or irregularities on the surface. Also, dimensional stability is poor due to the formation of irregularities on the surface. The amount of the metal salt is 10% by weight.
When the humidity exceeds the above range, the metal salt blooms on the surface of the storage container when the humidity increases. Therefore, the bloomed matter adheres to the semiconductor device as a foreign substance, which causes a semiconductor defect.

【0011】次に、上記制電性材料を用いて成形した本
発明の収納容器の一実施例の製造工程について説明す
る。まず、硬度(ASTMデュロメーター使用)が42
°のエーテル系熱可塑性ウレタン100重量%に対して
金属塩として過塩素酸リチウムを3.75重量%配合
し、図示せぬ2軸押出機によって制電性熱可塑性ウレタ
ンを作る。そして、オレフィン系樹脂としてポリプロピ
レン60重量%、上記制電性熱可塑性ウレタン40重量
%の配合で図示せぬ2軸の押出機によって練り、押し出
し後、図示せぬペレタイザーでカットしてペレットを製
作する。そして、この製作したペレットを金型に射出成
形機で射出して半導体用デバイスキャリアーを製作す
る。
Next, the manufacturing process of one embodiment of the storage container of the present invention formed by using the antistatic material will be described. First, the hardness (using ASTM durometer) is 42
3.75% by weight of lithium perchlorate as a metal salt is blended with 100% by weight of an ether-based thermoplastic urethane of 100 ° C., and an antistatic thermoplastic urethane is produced by a twin screw extruder (not shown). Then, a mixture of 60% by weight of polypropylene as an olefin resin and 40% by weight of the above-described antistatic thermoplastic urethane is kneaded by a biaxial extruder (not shown), extruded, and cut by a pelletizer (not shown) to produce pellets. . Then, the manufactured pellet is injected into a mold by an injection molding machine to manufacture a semiconductor device carrier.

【0012】次に、上記半導体デバイスキャリアーの物
性を下記に述べる。まず、JIS K 6911に準拠
し、温度20℃、湿度65%の恒温恒湿槽内に92時間
放置した後、体積抵抗率を測定した。この測定結果は、
6×109Ω・cmであった。そして、ASTMデュロ
メータD型を使用して硬度を測定したところ、66°で
あった。したがって、66°の高硬度のものでも、体積
抵抗率が制電領域である。なお、収納容器として上記半
導体用デバイスキャリアー以外に、光デスク用キャリア
ー、電子部品予備過熱用トレーなどを上記の制電性材料
で成形してもよいことは勿論である。
Next, the physical properties of the semiconductor device carrier will be described below. First, in accordance with JIS K 6911, after standing in a constant temperature and humidity chamber at a temperature of 20 ° C. and a humidity of 65% for 92 hours, the volume resistivity was measured. The result of this measurement is
It was 6 × 10 9 Ω · cm. When the hardness was measured using an ASTM durometer type D, it was 66 °. Therefore, even with a high hardness of 66 °, the volume resistivity is in the antistatic region. In addition, as a storage container, in addition to the device carrier for a semiconductor, a carrier for an optical desk, a tray for preheating of electronic parts, and the like may be formed of the above-described antistatic material.

【0013】通常、樹脂1を90重量%と、この樹脂1
と性質が異なる樹脂2を10重量%とを溶融状態で混合
した場合、図2に示すように、樹脂1の中に樹脂2が分
散するという海と島とに例えられる構造になると考えら
れている。したがって、ポリプロピレンを樹脂1、制電
性熱可塑性ウレタン樹脂を樹脂2に置き換えて考える
と、電極3,4を取り付けても電気が流れないことにな
る。しかし、ポリプロピレンと制電性熱可塑性ウレタン
とを混合した場合、電極5、6の間に電気が流れる。こ
のことは、図1に示すように、ポリプロピレン7の中に
制電性熱可塑性ウレタン8が筋状に存在するためと考え
られる。
Usually, 90% by weight of resin 1 is
When 10% by weight of a resin 2 having a different property from that of the resin 2 is mixed in a molten state, as shown in FIG. I have. Therefore, if polypropylene is replaced by resin 1 and antistatic thermoplastic urethane resin is replaced by resin 2, electricity will not flow even if electrodes 3 and 4 are attached. However, when polypropylene and antistatic thermoplastic urethane are mixed, electricity flows between the electrodes 5 and 6. This is presumably because, as shown in FIG. 1, the antistatic thermoplastic urethane 8 is present in the polypropylene 7 in a streak shape.

【0014】本発明の制電性材料の他の実施例について
説明する。まず、エーテル系熱可塑性ウレタン100重
量%に対して、金属塩として過塩素酸リチウム3.75
重量%配合し、制電性熱可塑性ウレタンを作成する。そ
して、この制電性熱可塑性ウレタン40重量%と、オレ
フィン系樹脂としてポリプロピレン55重量%と、相溶
化剤としてマレイン酸変性したポリプロピレン5重量%
を混合して作成する。なお、樹脂のマトリックスとして
用いられるエーテル系熱可塑性ウレタンとポリプロピレ
ンとの相溶化剤として、マレイン酸変性したポリプロピ
レンを使用したが、制電性材料の基材として使用するオ
レフィン系樹脂をマレイン酸変性したものであればよ
い。また、上記相溶化剤を含んだ制電性材料は、射出成
形温度がある程度高すぎても相溶化剤によってオレフィ
ン系樹脂と制電性熱可塑性ウレタンの相溶性が保たれる
ため、制電性熱可塑性ウレタンの筋の分散が均一であ
る。一方、相溶化剤を含まない制電性材料は、射出成形
温度が高すぎるとオレフィン系樹脂と制電性熱可塑性ウ
レタンが分離し、成形時の流れによっては、制電性熱可
塑性ウレタンの筋の分散が不均一になる。したがって、
相溶化剤を含んだ制電性材料は、相溶化剤を含まない制
電性材料より、引張物性や制電領域内での体積抵抗率の
ばらつきが少なくなり、破断物性の伸び、引張強さが大
きく向上する。
Another embodiment of the antistatic material of the present invention will be described. First, 3.75% of lithium perchlorate was used as a metal salt with respect to 100% by weight of ether-based thermoplastic urethane.
% By weight to form an antistatic thermoplastic urethane. Then, 40% by weight of this antistatic thermoplastic urethane, 55% by weight of polypropylene as an olefin resin, and 5% by weight of maleic acid-modified polypropylene as a compatibilizer
To create a mixture. In addition, maleic acid-modified polypropylene was used as a compatibilizer for the ether-based thermoplastic urethane and polypropylene used as the resin matrix, but the olefin-based resin used as the base material of the antistatic material was modified with maleic acid. Anything should do. In addition, the antistatic material containing the above compatibilizing agent can maintain the compatibility between the olefin resin and the antistatic thermoplastic urethane by the compatibilizing agent even when the injection molding temperature is too high to some extent. The distribution of thermoplastic urethane streaks is uniform. On the other hand, in the case of an antistatic material containing no compatibilizer, if the injection molding temperature is too high, the olefin resin and the antistatic thermoplastic urethane separate, and depending on the flow during molding, the streaks of the antistatic thermoplastic urethane may be reduced. Becomes uneven. Therefore,
The antistatic material containing the compatibilizer has less variation in tensile properties and volume resistivity in the antistatic region than the antistatic material without the compatibilizer, and the elongation at break, tensile strength Is greatly improved.

【0015】さらに、相溶化剤の適量について説明する
と、制電性ウレタンに対してマレイン酸変性したポリプ
ロピレンの割合が5重量%までは、破断物性の伸び、引
張強さが急激に上昇するが、5重量%以降はなだらかに
上昇して20重量%でピークになり、それ以降は変わら
ない。このように、制電性ウレタンに対してマレイン酸
変性してポリプロピレンを5重量%以上することが望ま
しい。しかし、マレイン酸変性したポリプロピレンに限
らず、マレイン酸変性したオレフィン系樹脂は、高価で
ある。したがって、制電性材料のコストを考えると、制
電性ウレタンに対してマレイン酸変性したポリプロピレ
ンを5重量%以上20重量%以下が望ましい。
Further, the appropriate amount of the compatibilizer will be described. If the ratio of maleic acid-modified polypropylene to antistatic urethane is up to 5% by weight, the elongation at break and the tensile strength sharply increase. After 5% by weight, it gradually rises and peaks at 20% by weight, and does not change thereafter. As described above, it is desirable that the antistatic urethane be modified with maleic acid to make the polypropylene 5% by weight or more. However, not only the maleic acid-modified polypropylene but also the maleic acid-modified olefin resin is expensive. Therefore, considering the cost of the antistatic material, it is desirable that maleic acid-modified polypropylene is used in an amount of 5% by weight or more and 20% by weight or less with respect to the antistatic urethane.

【0016】[0016]

【発明の効果】以上、本発明に係る制電性材料およびこ
の材料で成形して収納容器によれば、高硬度のものでも
体積抵抗率が制電領域106 〜1010Ω・cmにあるの
で、収納容器の静電気の帯電を防ぐだけでなく、デバイ
スに帯電した静電気を除電することができる。また、熱
可塑性ウレタン100重量%に対して金属塩を10重量
%以下入れてイオン状態で溶解したので、金属塩が収納
容器の表面からブルームせず、半導体デバイスに異物が
付着しない。また、制電性材料は金属塩がイオンになっ
て溶けているので、制電領域で安定した体積抵抗率が得
られる。さらに、相溶化材を含んでいるので、制電性熱
可塑性ウレタンの筋の分散が均一になり、相溶化剤を含
まない制電性材料よりも、引張物性や制電領域内での体
積抵抗率のばらつきが少なくなり、破断物性の伸び、引
張強さが大きく向上する。
As described above, according to the antistatic material according to the present invention and the container formed by molding this material, the volume resistivity is in the antistatic region of 10 6 Ω · cm to 10 10 Ω · cm even with a high hardness. Therefore, not only can the storage container be prevented from being charged with static electricity, but also the static electricity charged in the device can be eliminated. In addition, since 10% by weight or less of the metal salt is added to 100% by weight of the thermoplastic urethane and dissolved in an ionic state, the metal salt does not bloom from the surface of the storage container and no foreign matter adheres to the semiconductor device. In addition, since the metal salt of the antistatic material is dissolved as ions, a stable volume resistivity can be obtained in the antistatic region. In addition, the inclusion of the compatibilizing agent makes the distribution of the antistatic thermoplastic urethane streaks uniform, and the tensile properties and volume resistance in the antistatic region are higher than those of the antistatic material without the compatibilizer. The variation in the modulus is reduced, and the elongation and the tensile strength of the fracture properties are greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る制電性材料の予想される構造の部
分拡大図である。
FIG. 1 is a partially enlarged view of an anticipated structure of an antistatic material according to the present invention.

【図2】異なる性質の樹脂を混合した樹脂材料の部分拡
大図である。
FIG. 2 is a partially enlarged view of a resin material obtained by mixing resins having different properties.

【符号の説明】[Explanation of symbols]

5,6 電極 7 ポリプロピレン 8 制電性熱可塑性ウレタン 5, 6 Electrode 7 Polypropylene 8 Antistatic thermoplastic urethane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オレフィン系樹脂と、熱可塑性ウレタン
100重量%に対して金属塩が0.2〜10重量%イオ
ン状態で溶解した制電性熱可塑性ウレタンとで樹脂のマ
トリックスを構成し、上記オレフィン系樹脂を90〜4
0重量%とし、上記制電性熱可塑性ウレタンを10〜6
0重量%としたことを特徴とする制電性材料。
1. A resin matrix comprising an olefin resin and an antistatic thermoplastic urethane in which 0.2 to 10% by weight of a metal salt is dissolved in 100% by weight of a thermoplastic urethane in an ionic state, 90-4 olefin resin
0% by weight, and the antistatic thermoplastic urethane is 10 to 6%.
An antistatic material characterized by being 0% by weight.
【請求項2】 上記樹脂のマトリックスは、相溶化剤を
含んでいることを特徴とする請求項1記載の制電性材
料。
2. The antistatic material according to claim 1, wherein the resin matrix contains a compatibilizer.
【請求項3】 請求項1または請求項2記載の制電性材
料を成形して得られることを特徴とする収納容器。
3. A storage container obtained by molding the antistatic material according to claim 1 or 2.
JP22320896A 1996-08-05 1996-08-05 Antistatic material and container formed of the material Pending JPH1050816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22320896A JPH1050816A (en) 1996-08-05 1996-08-05 Antistatic material and container formed of the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22320896A JPH1050816A (en) 1996-08-05 1996-08-05 Antistatic material and container formed of the material

Publications (1)

Publication Number Publication Date
JPH1050816A true JPH1050816A (en) 1998-02-20

Family

ID=16794494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22320896A Pending JPH1050816A (en) 1996-08-05 1996-08-05 Antistatic material and container formed of the material

Country Status (1)

Country Link
JP (1) JPH1050816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309097A (en) * 2000-07-06 2002-10-23 Riken Technos Corp Antistatic resin composition
WO2005030861A1 (en) * 2003-09-26 2005-04-07 Noveon Ip Holdings Corp. A transparent thermoplastic blend of a cycloolefin copolymer and a thermoplastic polyurethane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309097A (en) * 2000-07-06 2002-10-23 Riken Technos Corp Antistatic resin composition
WO2005030861A1 (en) * 2003-09-26 2005-04-07 Noveon Ip Holdings Corp. A transparent thermoplastic blend of a cycloolefin copolymer and a thermoplastic polyurethane

Similar Documents

Publication Publication Date Title
EP1012853B1 (en) Electrically conductive compositions and methods for producing same
EP0718350B1 (en) Thermoplastic compositions with modified electrical conductivity
KR101830957B1 (en) Method for manufacturing conductive resin composition
US20040113129A1 (en) Static dissipative thermoplastic polymer composition
EP0337487A1 (en) Electroconductive polymer composition
JP2002536799A (en) Conductive composition and method for producing the same
JP4020382B2 (en) Conductive polypropylene resin foam sheet and container
JPH1050816A (en) Antistatic material and container formed of the material
JPS5880332A (en) Expandable polyolefin resin composition
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
JP2021011563A (en) Resin composition and molded article
JPH0277442A (en) Electrically conductive thermoplastic resin composition
JP3755161B2 (en) Conductive resin composition and method for producing the same
JP3264789B2 (en) Conductive resin composition
JP3475715B2 (en) Polyester resin composition
JPWO2019181828A1 (en) Conductive resin composition and method for producing the same
KR100865594B1 (en) Antistatic tray for electron parts
JPH056587B2 (en)
JPH01104658A (en) Electrically conductive thermoplastic resin composition
JPH09263690A (en) Electroconductive plastic composition and molding
JP3022987B2 (en) Hollow molded body made of polyacetal resin
JP3313458B2 (en) Conductive polyolefin masterbatch
JP4421025B2 (en) Conductive resin composition
JP2002155213A (en) Thermoplastic resin composition for instrument having built-in electric/electronic controller and its molding
JP3167297B2 (en) Conductive polyacetal resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710