JPH1050335A - Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery - Google Patents

Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery

Info

Publication number
JPH1050335A
JPH1050335A JP8204912A JP20491296A JPH1050335A JP H1050335 A JPH1050335 A JP H1050335A JP 8204912 A JP8204912 A JP 8204912A JP 20491296 A JP20491296 A JP 20491296A JP H1050335 A JPH1050335 A JP H1050335A
Authority
JP
Japan
Prior art keywords
electrode support
support tube
support member
solid electrolyte
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8204912A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwazawa
力 岩澤
Mikiyuki Ono
幹幸 小野
Masataka Mochizuki
正孝 望月
Masakatsu Nagata
雅克 永田
Namiko Kaneda
波子 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP8204912A priority Critical patent/JPH1050335A/en
Publication of JPH1050335A publication Critical patent/JPH1050335A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode support tube with superior circularity and straightness and even void rate. SOLUTION: In this method, a non-sintered molder 10 is received on a support member 11 in its free state and is sintered, whereby the thermal expansion and contraction can be arbitrarily performed, a load distribution does not deviate, and void rate is uniform over full length while maintaining circularity and straightness. A powder 13 with the same composition as the electrode support tube is laid on an inner circumference of the support member 11, whereby chemical reaction occurs between the support member surface and the electrode support tube surface during high-temperature sintering, so that the molder 10 and the support member 11 are not in contact with each other, and electrochemical characteristics of the electrode support tube is prevented in advance from being damaged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円筒方式固体電解質
燃料電池の電極支持管製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell.

【0002】[0002]

【従来の技術】円筒方式固体電解質燃料電池で内側電極
自体が支持管となる構造のものは、一般に図Aに示す構
成であり、内側から順に多孔質ランタンマンガナイト系
(La(Sr)MnOn)の空気極1、イットリア安定
化ジルコニア(YSZ)製の固体電解質2、ニッケル又
はニッケル合金とYSZとのサーメット製の燃料電極3
の積層構造にして、外周面の一部にインタコネクタ4を
燃料極3から絶縁し、かつ内部の空気極1に接続する形
で配置している。
2. Description of the Related Art A cylindrical solid electrolyte fuel cell having a structure in which an inner electrode itself is a support tube generally has a structure shown in FIG. A, and a porous lanthanum manganite (La (Sr) MnOn) is sequentially arranged from the inside. Air electrode 1, solid electrolyte 2 made of yttria-stabilized zirconia (YSZ), cermet fuel electrode 3 made of nickel or nickel alloy and YSZ
The interconnector 4 is arranged on a part of the outer peripheral surface so as to be insulated from the fuel electrode 3 and to be connected to the internal air electrode 1.

【0003】このような構造の円筒方式固体電解質燃料
電池において、セルの支持管(基体管)ともなる内側の
空気極管(以下、電極支持管と称する)は、その外周に
固体電解質を成膜し、さらに外側に燃料極を成膜する必
要があり、多孔質の無数の孔が全体に均一に分布して気
孔率が均一であり、高い真直度と真円度を有しているこ
とが要求される。
In the cylindrical solid electrolyte fuel cell having such a structure, an inner air electrode tube (hereinafter, referred to as an electrode support tube) which also serves as a cell support tube (substrate tube) has a solid electrolyte film formed on its outer periphery. In addition, it is necessary to form a fuel electrode further on the outside, and it is necessary that a large number of porous pores are uniformly distributed throughout, the porosity is uniform, and the straightness and the roundness are high. Required.

【0004】固体電解質燃料電池においては、空気極を
外側に配して内側に順に固体電解質、燃料極を成膜する
構造のものもあるが、その場合にも外側の空気極を電極
支持管とし、内側に順次、固体電解質、燃料極を成膜す
る方法で燃料電池を製造するので、同じように電極支持
管には多孔質の無数の孔の気孔率が全体に均一であり、
かつ高い真直度と真円度を有していることが要求され
る。
Some solid electrolyte fuel cells have a structure in which an air electrode is disposed on the outside and a solid electrolyte and a fuel electrode are sequentially formed on the inside. In this case, the outside air electrode is used as an electrode support tube. Since the fuel cell is manufactured by a method in which a solid electrolyte and a fuel electrode are sequentially formed on the inner side, the porosity of the innumerable porous holes in the electrode support tube is also uniform in the same manner,
And it is required to have high straightness and roundness.

【0005】そこで従来、このような電極支持管を形成
するためには、電極材料となるランタンストロンチウム
マンガン系のペロブスカイト結晶構造の微粉末を水とバ
インダと共に混練して粘土状にし、これを押し出し成形
することによって円管状の電極支持管成形体を得、乾燥
させることによって水分を除去して固めて自己保形でき
る状態にし、これを焼成炉内に宙吊り状態で収容し、1
500℃程度まで昇温して焼成する方法をとっていた。
Therefore, conventionally, in order to form such an electrode support tube, a fine powder of a lanthanum strontium manganese-based perovskite crystal structure as an electrode material is kneaded with water and a binder to form a clay, which is extruded. Then, a cylindrical electrode support tube molded body is obtained by drying, and dried to remove water and solidify to obtain a self-shape-preserving state.
The method of raising the temperature to about 500 ° C. and firing is employed.

【0006】[0006]

【発明が解決しようとする課題】ところが、このような
従来の円筒方式固体電解質燃料電池の電極支持管製造方
法では、焼成炉内に電極支持管成形体を宙吊り状態で収
容して焼成するため、真直度、真円度という点では優れ
た電極支持管を形成することができていたが、次のよう
な問題点があった。
However, in such a conventional method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell, the electrode support tube molded body is suspended in a firing furnace and fired. Although an electrode support tube excellent in straightness and roundness could be formed, there were the following problems.

【0007】すなわち、宙吊り状態にする場合、成形体
の上部を治具で吊り下げ、下部はフリーの状態にして垂
直に支持し、焼成するので、治具で支持されている上部
に成形体自身の重力荷重がかかるために孔径が下部に比
べて広がり、出来上がった電極支持管全体で見れば、気
孔率(単位面積当たりの開口面積の比率)が上部で大き
く、下部で小さいという不均一な分布となる問題点があ
った。
That is, when the molded body is suspended in the air, the upper part of the molded body is suspended by a jig, and the lower part is free and vertically supported and fired. Due to the gravitational load applied, the hole diameter is wider than that of the lower part, and the porosity (ratio of the opening area per unit area) is large in the upper part and small in the lower part. There was a problem.

【0008】本発明はこのような従来の問題点に鑑みて
なされたもので、真直度、真円度を維持しつつ、かつ気
孔率も全体的に均一にできる円筒方式固体電解質燃料電
池の電極支持管製造方法を提供することを目的とする。
The present invention has been made in view of such conventional problems, and has been made in view of the above. An electrode of a cylindrical solid electrolyte fuel cell capable of maintaining straightness and roundness and having a uniform porosity as a whole is provided. An object of the present invention is to provide a method for manufacturing a support tube.

【0009】[0009]

【課題を解決するための手段】請求項1の発明の円筒方
式固体電解質燃料電池の電極支持管製造方法は、焼成炉
内に水平に固定された断面半円形、長尺で高耐熱材製の
支持部材の内周面に、目的とする電極支持管とほぼ同じ
組成物の粉末を敷き、焼成処理によって前記電極支持管
となる未焼成の成形体を自由状態で前記支持部材に受持
させ、前記焼成炉を昇温することによって前記成形体を
焼成して前記電極支持管を得るものである。
According to a first aspect of the present invention, there is provided a method for manufacturing an electrode support tube for a cylindrical solid electrolyte fuel cell, comprising a semi-circular, long, high heat-resistant material fixed horizontally in a firing furnace. On the inner peripheral surface of the support member, a powder of approximately the same composition as the target electrode support tube is laid, and the unfired molded body that becomes the electrode support tube by a firing process is held by the support member in a free state, By raising the temperature of the firing furnace, the molded body is fired to obtain the electrode support tube.

【0010】この請求項1の円筒方式固体電解質燃料電
池の電極支持管製造方法では、未焼成の成形体を支持部
材上に自由状態で受持させ、焼成するので熱膨張、収縮
が自由にできて荷重分布が偏らず、真円度、真直度を維
持しつつ気孔率も全長に渡って均一なものとすることが
できる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the first aspect, the unsintered compact is supported on the support member in a free state and is sintered, so that thermal expansion and contraction can be freely performed. As a result, the load distribution is not biased, and the porosity can be made uniform over the entire length while maintaining the roundness and straightness.

【0011】また支持部材内周に電極支持管と同じ組成
の粉末を敷くことによって成形体と支持部材とが直接接
触することがなく、高温焼成中に支持部材表面と電極支
持管表面との間で化学反応が起きて電極支持管の電気化
学特性を損なう問題も未然に防ぐことができる。
Further, by laying powder having the same composition as the electrode support tube on the inner periphery of the support member, the compact and the support member do not come into direct contact with each other. Thus, a problem that a chemical reaction occurs to impair the electrochemical characteristics of the electrode support tube can be prevented.

【0012】請求項2の発明の円筒方式固体電解質燃料
電池の電極支持管製造方法は、焼成炉内に所定の傾斜角
を持って固定された断面半円形、長尺で高耐熱材製の支
持部材の内周面に、目的とする電極支持管とほぼ同じ組
成物の粉末を敷き、焼成処理によって前記電極支持管と
なる未焼成の成形体を自由状態で前記支持部材に受持さ
せ、前記焼成炉を昇温することによって前記成形体を焼
成して前記電極支持管を得るものである。
According to a second aspect of the present invention, there is provided a method for manufacturing an electrode support tube for a cylindrical solid electrolyte fuel cell, comprising a support made of a high heat-resistant material having a semicircular cross section and fixed in a firing furnace at a predetermined inclination angle. On the inner peripheral surface of the member, a powder of a composition substantially the same as the intended electrode support tube is laid, and the unfired molded body that becomes the electrode support tube by a firing process is held by the support member in a free state, By heating the firing furnace, the molded body is fired to obtain the electrode support tube.

【0013】この請求項2の発明の円筒方式固体電解質
燃料電池の電極支持管製造方法では、未焼成の成形体を
所定の傾斜角度を持って固定された支持部材上に自由状
態で受持させ、焼成するので、長尺の成形体が熱膨張、
収縮する際に同材に働く摩擦抵抗を小さくすることがで
き、真円度、真直度を維持しつつ気孔率も全長に渡って
均一なものとすることができる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the second aspect of the present invention, the green body is held in a free state on a support member fixed at a predetermined inclination angle. Since it is fired, the long molded body expands thermally,
The frictional resistance acting on the material during contraction can be reduced, and the porosity can be made uniform over the entire length while maintaining the roundness and straightness.

【0014】請求項3の発明は、請求項1又は2の円筒
方式固体電解質燃料電池の電極支持管製造方法におい
て、前記成形体として、ペロブスカイト結晶構造を有す
るランタンマンガン系の微粉末と水とバインダとを混練
して粘土状にした原料を円管状に成形し、乾燥させて水
分を除去したものを用いるものである。
According to a third aspect of the present invention, there is provided the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the first or second aspect, wherein the compact comprises a lanthanum manganese-based fine powder having a perovskite crystal structure, water and a binder. The raw material kneaded into a clay is formed into a tubular shape, and dried to remove water to use.

【0015】この請求項3の発明の円筒方式固体電解質
燃料電池の電極支持管製造方法では、燃料電池電極とし
てランタンマンガン系酸化物セラミックス製の電気化学
特性に優れた電極支持管を得ることができる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the third aspect of the present invention, an electrode support tube made of a lanthanum manganese oxide ceramic having excellent electrochemical characteristics can be obtained as a fuel cell electrode. .

【0016】請求項4の発明は、請求項3の円筒方式固
体電解質燃料電池の電極支持管製造方法において、前記
支持部材に敷く粉末として、ランタンマンガン系酸化物
のセラミックス粉末を用いるものである。
According to a fourth aspect of the present invention, in the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the third aspect, a ceramic powder of a lanthanum manganese-based oxide is used as the powder to be spread on the support member.

【0017】この請求項4の発明の円筒方式固体電解質
燃料電池の電極支持管製造方法では、電極支持管となる
成形体と支持部材との間に電極支持管とほぼ同じ組成の
粉末が介在するために高温焼成中に支持部材表面との間
で化学反応が起きるのを確実に防止して良好な表面状態
に仕上げることができる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the present invention, a powder having substantially the same composition as that of the electrode support tube is interposed between the molded body serving as the electrode support tube and the support member. Therefore, it is possible to reliably prevent a chemical reaction from occurring with the surface of the supporting member during high-temperature firing, and to obtain a good surface state.

【0018】請求項5の発明は、請求項4の円筒方式固
体電解質燃料電池の電極支持管製造方法において、前記
支持部材に敷く粉末として、その粒径が前記成形体原料
の粉末の粒径より粗いものを用いるものである。
According to a fifth aspect of the present invention, in the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the fourth aspect, the particle size of the powder to be spread on the support member is smaller than the particle size of the powder of the green body raw material. A coarse one is used.

【0019】この請求項5の発明の円筒方式固体電解質
燃料電池の電極支持管製造方法では、支持部材に敷く粉
末の粒径を成形体原料の粉末の粒径よりも粗いものとす
ることにより、高温焼成中に支持部材に敷いてある粉末
が電極支持管の表面と反応するのを防止し、電極支持管
の電気化学特性をより良いものとすることができる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the present invention, the particle diameter of the powder spread on the support member is made larger than the particle diameter of the powder of the raw material of the compact. It is possible to prevent the powder laid on the support member from reacting with the surface of the electrode support tube during the high-temperature firing, and to improve the electrochemical characteristics of the electrode support tube.

【0020】請求項6の発明は、請求項1〜5のいずれ
かの円筒方式固体電解質燃料電池の電極支持管製造方法
において、前記支持部材として、安定化ジルコニア、マ
グネシア、アルミナ若しくはこれらの混合物の耐熱セラ
ミックス製のものを用いるものである。
According to a sixth aspect of the present invention, there is provided the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to any one of the first to fifth aspects, wherein the supporting member is made of stabilized zirconia, magnesia, alumina or a mixture thereof. Heat-resistant ceramics are used.

【0021】この請求項6の発明の円筒方式固体電解質
燃料電池の電極支持管製造方法では、支持部材を安定化
ジルコニア、マグネシア、アルミナ若しくはこれらの混
合物の耐熱セラミックス製のものとすることによって、
高温焼成中に表面状態が安定していて、成形体との間に
介在する粉末と相まって電極支持管の電気化学特性をよ
り良いものとすることができる。
In the method for manufacturing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the present invention, the support member is made of heat-resistant ceramics of stabilized zirconia, magnesia, alumina or a mixture thereof.
The surface state is stable during high-temperature firing, and the electrochemical characteristics of the electrode support tube can be further improved in combination with the powder interposed between the electrode support tube and the compact.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。ランタンストロンチウムマンガン系
La(Sr)MnOnのペロブスカイト結晶構造の酸化
物セラミックスの平均粒径3〜10μmの微粉末を水5
〜20%、有機バインダ3〜15%(いずれに重量%)
と混練し、粘土状にした材料を常温下で、所定の径、所
定の肉厚の円管状に押出し成形あるいはスリップキャス
トのような成形方法で成形して成形体を作る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. Fine powder of lanthanum strontium manganese La (Sr) MnOn having a perovskite crystal structure having an average particle size of 3 to 10 μm
~ 20%, organic binder 3 ~ 15% (in each case wt%)
Then, the clay-like material is kneaded with the material and molded at a normal temperature into a circular tube having a predetermined diameter and a predetermined thickness by extrusion molding or a molding method such as slip casting to produce a molded body.

【0023】この成形体の組成はこれに限らず、空気極
の組成として一般に提案されている種々のものを用いる
ことができ、例えば、上記のストロンチウムに代えて、
カルシウム、マグネシウム、バリウム、イットリウム、
セリウム、イットリウムなどを添加したランタンマンガ
ナイトを用いることができる。
The composition of the molded article is not limited to this, and various compositions generally proposed as the composition of the air electrode can be used. For example, instead of the above-mentioned strontium,
Calcium, magnesium, barium, yttrium,
Lanthanum manganite to which cerium, yttrium, or the like is added can be used.

【0024】上記成形で得られた円管状の柔軟な成形体
を乾燥炉に入れて60℃程度に昇温し、含有水分を乾燥
除去して自己保形できる乾燥成形体を得る。
The tubular flexible molded product obtained by the above-mentioned molding is put into a drying furnace, and the temperature is raised to about 60 ° C., and the moisture content is dried and removed to obtain a dry molded product capable of maintaining its shape.

【0025】そしてこの成形体10を図1に示すよう
に、焼成炉内に水平に固定されている断面半円形の支持
部材11上に置き、焼成炉を所定の約100〜150℃
/時間程度の昇温速度で約1300〜1600℃の焼成
温度まで昇温させ、所望時間維持して焼成する。その
後、100〜150℃/時間程度の降温速度で常温まで
降温させることによって製造目的であった図2に示すよ
うな電極支持管12を得る。
Then, as shown in FIG. 1, the molded body 10 is placed on a support member 11 having a semicircular cross section fixed horizontally in a firing furnace, and the firing furnace is heated to a predetermined temperature of about 100 to 150 ° C.
The temperature is raised to a firing temperature of about 1300 to 1600 ° C. at a heating rate of about / hour, and firing is performed for a desired time. Thereafter, the temperature is lowered to a normal temperature at a rate of about 100 to 150 ° C./hour to obtain the electrode support tube 12 as shown in FIG.

【0026】ここで、支持部材11の素材には焼成温度
である1300〜1600℃の高温度に対して耐性が高
く、また電極支持管の素材と反応しにくい特性を備えて
いる安定化ジルコニア、マグネシア、アルミナなどのセ
ラミックスを用いる。
Here, the material of the support member 11 has high resistance to a high temperature of 1300 to 1600 ° C., which is the firing temperature, and has a property of hardly reacting with the material of the electrode support tube. Ceramics such as magnesia and alumina are used.

【0027】また支持部材11の内周面には製造目的と
なる電極支持管とほぼ同じ組成のセラミックス粉末13
を敷くことによって、成形体10が焼成中に直接支持部
材11の表面に接触しないようにする。この粉末13は
その粒径が成形体10の原料の粉末の粒径よりも大きな
ものを用い、例えば平均粒径5〜15μm程度とする。
A ceramic powder 13 having substantially the same composition as the electrode support tube to be manufactured is provided on the inner peripheral surface of the support member 11.
To prevent the molded body 10 from directly contacting the surface of the support member 11 during firing. The powder 13 has a particle size larger than the particle size of the raw material powder of the molded body 10, and has an average particle size of, for example, about 5 to 15 μm.

【0028】このようにして得られた電極支持管12は
図2に示す形状であるが、水平に受持され、熱膨張/収
縮が規制されることのない自由な状態で焼成されるの
で、局所的に重力荷重が不均一に加えられることがな
く、全体に渡って気孔率をほぼ均一にすることができ、
また真円度、真直度も優れた電極支持管を得ることがで
きる。
Although the electrode support tube 12 thus obtained has the shape shown in FIG. 2, it is held horizontally and fired in a free state without any restriction on thermal expansion / contraction. The gravitational load is not applied locally unevenly, and the porosity can be made almost uniform over the whole,
Further, an electrode support tube having excellent roundness and straightness can be obtained.

【0029】次に、本発明の第2の実施の形態について
図3に基づいて説明する。この第2の実施の形態の特徴
は焼成炉内で支持部材11´を所定角度5〜20°だけ
傾けた状態で固定し、これに成形体10を受持させて焼
成することを特徴とする。したがってその他の構成は第
1の実施の形態と同様であり、製造条件、組成条件も共
通するので説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. The feature of the second embodiment is that the supporting member 11 'is fixed in a firing furnace in a state where the supporting member 11' is inclined at a predetermined angle of 5 to 20 °, and the molded body 10 is received by this and fired. . Therefore, the other configuration is the same as that of the first embodiment, and the manufacturing conditions and the composition conditions are common, so that the description is omitted.

【0030】この支持部材11´に傾斜を持たせた状態
で成形体10を受持して焼成する理由は次による。第1
の実施の形態のように支持部材11を水平状態にして成
形体10を受持させて焼成する場合、上述したように真
円度、真直度共に良く、また気孔率がほぼ全長に渡って
均一な電極支持管12を製造することができるが、それ
でも高温度で焼成するため、成形体10が1〜2mの長
尺ものになると熱膨張、収縮寸法が大きく、長さ方向の
中間部分では気孔率が両端部の気孔率よりも大きくなる
傾向がある。
The reason for holding and firing the compact 10 with the support member 11 'inclined is as follows. First
When the supporting member 11 is in a horizontal state and the molded body 10 is received and fired as in the embodiment described above, the roundness and straightness are both good as described above, and the porosity is uniform over almost the entire length. Although the electrode support tube 12 can be manufactured, since it is baked at a high temperature, the thermal expansion and contraction dimensions are large when the molded body 10 is 1 to 2 m long, and pores are formed in the middle part in the length direction. The porosity tends to be greater than the porosity at both ends.

【0031】しかしながら、成形体10が支持部材11
上を滑り落ちない範囲である程度の傾斜を持たせた状態
で焼成すると、成形体10の熱膨張時に同材に働く摩擦
抵抗を小さくすることができるために、気孔率の均一化
がさらに向上するのである。
However, the molded body 10 is
When firing is performed with a certain degree of inclination within a range that does not slide down, the frictional resistance acting on the material during thermal expansion of the molded body 10 can be reduced, so that the uniformity of the porosity is further improved. It is.

【0032】[0032]

【実施例】本発明の円筒方式固体電解質燃料電池の電極
支持管製造方法の具体的な実施例を説明する。
EXAMPLE A specific example of the method for producing an electrode support tube of a cylindrical solid electrolyte fuel cell according to the present invention will be described.

【0033】<実施例1>平均粒径5μmのランタンス
トロンチウムマンガナイト(La(Sr)MnO3 )の
微粉末に水20%、メチルセルロース10%(いずれも
重量%)添加して混練して粘土状の原料を作り、これを
常温で押出し成形により、肉厚2μm、20mmφ、長
さ1mの成形体を得た。そしてこの成形体を乾燥炉に入
れて60℃に保って乾燥させ、水分を除去して自己保形
できる成形体を得た。
Example 1 20% water and 10% methylcellulose (all by weight) were added to a fine powder of lanthanum strontium manganite (La (Sr) MnO 3 ) having an average particle diameter of 5 μm, and kneaded. This was extruded at room temperature to obtain a molded product having a thickness of 2 μm, a diameter of 20 mm, and a length of 1 m. Then, the molded body was placed in a drying furnace and dried at 60 ° C. to remove moisture, thereby obtaining a molded body capable of self-shaping.

【0034】一方、焼成炉内には長さ1.5m、内径2
5mmφで断面半円形のアルミナ製の支持部材を水平に
固定し、その支持部材の内周面全体に平均粒径10μm
のランタンストロンチウムマンガナイトの粉末を厚さ
0.1mm程度に一様に敷き詰めて押し固めておいた。
On the other hand, the firing furnace has a length of 1.5 m and an inner diameter of 2 mm.
A support member made of alumina having a semicircular cross section of 5 mmφ is fixed horizontally, and the average particle size is 10 μm over the entire inner peripheral surface of the support member.
Of lanthanum strontium manganite was uniformly spread and compacted to a thickness of about 0.1 mm.

【0035】そしてこの支持部材の上に成形体を載置
し、昇温速度100℃/時間で1500℃まで昇温し、
この温度で5時間焼成し、その後、降温速度100℃/
時間で常温まで降温して電極支持管となった成形体を取
出した。
Then, the compact is placed on the supporting member, and the temperature is raised to 1500 ° C. at a rate of 100 ° C./hour.
It is baked at this temperature for 5 hours, and then cooled at a rate of 100 ° C. /
The temperature was lowered to room temperature over a period of time to take out a molded body that became an electrode support tube.

【0036】得られた電極支持管について水銀圧入法に
よって気孔率を計測したが、長さ方向の中間部分で30
%、両端部で28%の気孔率であり、全長に渡りほぼ均
一な気孔率であった。また真円度、真直度は従来方法で
得たものと遜色のないものであった。
The porosity of the obtained electrode support tube was measured by a mercury intrusion method.
%, And a porosity of 28% at both ends, and a substantially uniform porosity over the entire length. Moreover, the roundness and straightness were comparable to those obtained by the conventional method.

【0037】<実施例2>焼成炉内には長さ1.5m、
内径25mmφで断面半円形のアルミナ製の支持部材を
20°の傾斜を持たせて固定し、その支持部材の内周面
全体に平均粒径10μmのランタンストロンチウムマン
ガナイトの粉末を厚さ0.1mm程度に一様に敷き詰めて
押し固めておいた。
<Embodiment 2> In the firing furnace, the length is 1.5 m,
An alumina support member having an inner diameter of 25 mmφ and a semicircular cross section is fixed with a slope of 20 °, and lanthanum strontium manganite powder having an average particle diameter of 10 μm is coated on the entire inner peripheral surface of the support member with a thickness of 0.1 mm. It was spread evenly to the extent and compacted.

【0038】そして実施例1と同じ方法で得た成形体に
ついて、実施例1と同じ条件で焼成を行った。得られた
電極支持管について水銀圧入法によって気孔率を計測し
たが、長さ方向の中間部分も両端部もほぼ28%の気孔
率であり、全長に渡り均一な気孔率であった。真円度、
真直度は従来方法で得たものと遜色のないものであっ
た。
The molded body obtained by the same method as in Example 1 was fired under the same conditions as in Example 1. The porosity of the obtained electrode support tube was measured by a mercury intrusion method. The porosity was approximately 28% at both the middle and both ends in the length direction, and the porosity was uniform over the entire length. Roundness,
Straightness was comparable to that obtained by the conventional method.

【0039】[0039]

【発明の効果】以上のように請求項1の発明によれば、
未焼成の成形体を支持部材上に自由状態で水平に受持さ
せ、焼成するので熱膨張、収縮が自由にできて荷重分布
が偏らず、真円度、真直度を維持しつつ気孔率も全長に
渡って均一な電極支持管を得ることができ、その上、支
持部材内周に電極支持管とほぼ同じ組成の粉末を敷くこ
とによって成形体と支持部材とが直接接触することがな
く、高温焼成中に支持部材表面と電極支持管表面との間
で化学反応が起きて電極支持管の電気化学特性を損なう
という問題も未然に防ぐことができる。
As described above, according to the first aspect of the present invention,
The unsintered compact is held horizontally on a support member in a free state, and is baked, so that thermal expansion and shrinkage are free, the load distribution is not biased, and porosity is maintained while maintaining roundness and straightness. It is possible to obtain a uniform electrode support tube over the entire length, and furthermore, by laying powder having substantially the same composition as the electrode support tube on the inner periphery of the support member, the molded body and the support member do not come into direct contact, The problem that a chemical reaction occurs between the surface of the support member and the surface of the electrode support tube during high-temperature sintering and thus impairs the electrochemical characteristics of the electrode support tube can be prevented beforehand.

【0040】請求項2の発明によれば、未焼成の成形体
を所定の傾斜角度を持って固定された支持部材上に自由
状態で受持させ、焼成するので、長尺の成形体が熱膨
張、収縮する際に同材に働く摩擦抵抗を小さくすること
ができ、真円度、真直度を維持しつつ気孔率も全長に渡
って均一な電極支持管を製造することができ、また請求
項1と同様に高温焼成中に支持部材表面と電極支持管表
面との間で化学反応が起きて電極支持管の電気化学特性
を損なうという問題も未然に防ぐことができる。
According to the second aspect of the present invention, the unsintered compact is held in a free state on the support member fixed at a predetermined inclination angle and is calcined. It is possible to reduce the frictional resistance acting on the material when expanding and contracting, and to manufacture an electrode support tube having a uniform porosity over the entire length while maintaining roundness and straightness. As in Item 1, the problem that a chemical reaction occurs between the surface of the support member and the surface of the electrode support tube during high-temperature firing, thereby impairing the electrochemical characteristics of the electrode support tube can be prevented beforehand.

【0041】請求項3の発明によれば、燃料電池電極と
してランタンマンガン系酸化物セラミックス製の電気化
学特性に優れた電極支持管を得ることができる。
According to the third aspect of the present invention, it is possible to obtain an electrode support tube made of a lanthanum-manganese-based oxide ceramic having excellent electrochemical characteristics as a fuel cell electrode.

【0042】請求項4の発明によれば、電極支持管とな
る成形体と支持部材との間に電極支持管とほぼ同じ組成
の粉末が介在するために高温焼成中に支持部材表面との
間で化学反応が起きるのを確実に防止して電気化学特性
に優れたもを得ることができる。
According to the fourth aspect of the present invention, since powder having substantially the same composition as that of the electrode support tube is interposed between the molded body serving as the electrode support tube and the support member, the powder is interposed between the compact and the support member surface during high-temperature firing. Thus, it is possible to reliably prevent the occurrence of a chemical reaction and obtain a product having excellent electrochemical characteristics.

【0043】請求項5の発明によれば、支持部材に敷く
粉末の粒径を成形体原料の粉末の粒径よりも粗いものと
することにより、高温焼成中に支持部材に敷いてある粉
末が電極支持管の表面と反応するのを防止し、電極支持
管の電気化学特性をより良いものとすることができる。
According to the fifth aspect of the present invention, by making the particle size of the powder spread on the support member larger than the particle size of the raw material powder, the powder spread on the support member during high-temperature firing is reduced. Reaction with the surface of the electrode support tube can be prevented, and the electrochemical characteristics of the electrode support tube can be improved.

【0044】請求項6の発明によれば、支持部材を安定
化ジルコニア、マグネシア、アルミナ若しくはこれらの
混合物の耐熱セラミックス製のものとすることによっ
て、高温焼成中に表面状態が安定していて、成形体との
間に介在する粉末と相まって電極支持管の電気化学特性
をより良いものとすることができる。
According to the sixth aspect of the present invention, since the supporting member is made of heat-resistant ceramics of stabilized zirconia, magnesia, alumina or a mixture thereof, the surface state is stable during high-temperature firing, and The electrochemical properties of the electrode support tube can be improved in combination with the powder interposed between the electrode support tube and the body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における成形体を支
持部材で支持させた状態を示す一部破断斜視図。
FIG. 1 is a partially broken perspective view showing a state in which a molded body according to a first embodiment of the present invention is supported by a support member.

【図2】上記の実施の形態によって製造した電極支持管
の斜視図。
FIG. 2 is a perspective view of an electrode support tube manufactured according to the embodiment.

【図3】本発明の第2の実施の形態における成形体を支
持部材で支持させた状態を示す一部破断斜視図。
FIG. 3 is a partially broken perspective view showing a state in which a molded body according to a second embodiment of the present invention is supported by a support member.

【図4】一般的な円筒方式固体電解質燃料電池の斜視
図。
FIG. 4 is a perspective view of a general cylindrical solid electrolyte fuel cell.

【符号の説明】[Explanation of symbols]

10 成形体 11,11´ 支持部材 12 電極支持管 13 粉末 DESCRIPTION OF SYMBOLS 10 Molded body 11, 11 'Support member 12 Electrode support tube 13 Powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 雅克 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 兼田 波子 東京都江東区木場1−5−1 株式会社フ ジクラ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masakatsu Nagata 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Namiko Kanda 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Co., Ltd. Inside

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 焼成炉内に水平に固定された断面半円
形、長尺で高耐熱材製の支持部材の内周面に、目的とす
る電極支持管とほぼ同じ組成物の粉末を敷き、 焼成処理によって前記電極支持管となる未焼成の成形体
を自由状態で前記支持部材に受持させ、 前記焼成炉を昇温することによって前記成形体を焼成し
て前記電極支持管を得ることを特徴とする円筒方式固体
電解質燃料電池の電極支持管製造方法。
1. A powder having a composition substantially the same as that of a target electrode support tube is laid on an inner peripheral surface of a support member made of a high-heat-resistant material having a semicircular cross section fixed horizontally in a firing furnace, An unfired molded body that becomes the electrode support tube by the baking treatment is held by the support member in a free state, and the molded body is fired by raising the temperature of the firing furnace to obtain the electrode support tube. A method for manufacturing an electrode support tube for a cylindrical solid electrolyte fuel cell.
【請求項2】 焼成炉内に所定の傾斜角を持って固定さ
れた断面半円形、長尺で高耐熱材製の支持部材の内周面
に、目的とする電極支持管とほぼ同じ組成物の粉末を敷
き、 焼成処理によって前記電極支持管となる未焼成の成形体
を自由状態で前記支持部材に受持させ、 前記焼成炉を昇温することによって前記成形体を焼成し
て前記電極支持管を得ることを特徴とする円筒方式固体
電解質燃料電池の電極支持管製造方法。
2. A substantially same composition as an intended electrode support tube is provided on an inner peripheral surface of a support member made of a long heat-resistant material having a semicircular cross section and fixed in a firing furnace at a predetermined inclination angle. , And the unfired molded body that becomes the electrode support tube by the firing treatment is held by the support member in a free state. The temperature of the firing furnace is increased to fire the molded body, and the electrode support is fired. A method for producing an electrode support tube for a cylindrical solid electrolyte fuel cell, comprising obtaining a tube.
【請求項3】 前記成形体として、ペロブスカイト結晶
構造を有するランタンマンガン系の微粉末と水とバイン
ダとを混練して粘土状にした原料を円管状に成形し、乾
燥させて水分を除去したものを用いることを特徴とする
請求項1又は2に記載の円筒方式固体電解質燃料電池の
電極支持管製造方法。
3. A green body obtained by kneading a lanthanum manganese-based fine powder having a perovskite crystal structure, water and a binder to form a clay-like material and drying the formed body, followed by drying to remove moisture. The method for producing an electrode support tube of a cylindrical solid electrolyte fuel cell according to claim 1 or 2, wherein:
【請求項4】 前記支持部材に敷く粉末として、ランタ
ンマンガン系酸化物のセラミックス粉末を用いることを
特徴とする請求項3に記載の円筒方式固体電解質燃料電
池の電極支持管製造方法。
4. The method according to claim 3, wherein a ceramic powder of a lanthanum manganese-based oxide is used as the powder to be spread on the support member.
【請求項5】 前記支持部材に敷く粉末として、その粒
径が前記成形体原料の粉末の粒径より粗いものを用いる
ことを特徴とする請求項4記載の円筒方式固体電解質燃
料電池の電極支持管製造方法。
5. The electrode support for a cylindrical solid electrolyte fuel cell according to claim 4, wherein the powder to be spread on the support member has a particle size larger than that of the raw material powder. Tube manufacturing method.
【請求項6】 前記支持部材として、安定化ジルコニ
ア、マグネシア、アルミナ若しくはこれらの混合物の耐
熱セラミックス製のものを用いることを特徴とする請求
項1〜5のいずれかに記載の円筒方式固体電解質燃料電
池の電極支持管製造方法。
6. The cylindrical solid electrolyte fuel according to claim 1, wherein the support member is made of a heat-resistant ceramic made of stabilized zirconia, magnesia, alumina or a mixture thereof. A method for manufacturing an electrode support tube for a battery.
JP8204912A 1996-08-02 1996-08-02 Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery Pending JPH1050335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8204912A JPH1050335A (en) 1996-08-02 1996-08-02 Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8204912A JPH1050335A (en) 1996-08-02 1996-08-02 Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery

Publications (1)

Publication Number Publication Date
JPH1050335A true JPH1050335A (en) 1998-02-20

Family

ID=16498445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8204912A Pending JPH1050335A (en) 1996-08-02 1996-08-02 Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery

Country Status (1)

Country Link
JP (1) JPH1050335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115629A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery, and electrical connection method for fuel battery
JP2017017015A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115629A (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Fuel battery, and electrical connection method for fuel battery
JP2017017015A (en) * 2015-07-06 2017-01-19 日本碍子株式会社 Fuel cell

Similar Documents

Publication Publication Date Title
JP3090726B2 (en) Self-supporting air electrode tube of solid oxide electrolyte electrochemical cell and method of manufacturing the same
EP0633619B1 (en) Air electrode bodies for solid oxide fuel cells, a process for the production thereof, and a production of solid oxide fuel cells
EP0194374B1 (en) High temperature electrochemical cells
US6287509B1 (en) Method for firing ceramic honeycomb bodies
JP2004059357A (en) Method of producing porous ceramic body
EP0395399B1 (en) Method of manufacturing conductive porous ceramic tube
ES2266067T3 (en) A METHOD TO PRODUCE A SILICON NITRIDE FILTER.
JP2003165767A (en) Spinel refractory and use of the same
JPH1050335A (en) Manufacture of electrode support tube for cylindrical type solid electrolyte fuel battery
JPWO2004083148A1 (en) Porous material, method for producing the same, and honeycomb structure
JP3350203B2 (en) Solid oxide fuel cell
JPH04187578A (en) Production of sintered compact of porous silicon carbide
JPH08185882A (en) Manufacture of solid electrolytic fuel cell
JPH0437646A (en) Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics
JPH10144323A (en) Air pole support tube manufacture for solid electrolytic fuel cell
US5227102A (en) Method of manufacturing conductive porous ceramic tube
JPH09132459A (en) Porous ceramic sintered compact
JPH0510918A (en) Oxygen-concentration detecting element and manufacture thereof
JP3696698B2 (en) Method for manufacturing electrode support tube of cylindrical solid electrolyte fuel cell
JPH0722056A (en) Manufacture of solid electrolyte fuel cell
JPH07272733A (en) Manufacture of porous sintered body
JPH09115542A (en) Manufacture of solid oxide fuel cell
JPH05225986A (en) Manufacture of solid electrolyte type fuel cell
US20230219853A1 (en) Functionally graded firing setters and process for manufacturing these setters
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same