JPH07272733A - Manufacture of porous sintered body - Google Patents

Manufacture of porous sintered body

Info

Publication number
JPH07272733A
JPH07272733A JP6081104A JP8110494A JPH07272733A JP H07272733 A JPH07272733 A JP H07272733A JP 6081104 A JP6081104 A JP 6081104A JP 8110494 A JP8110494 A JP 8110494A JP H07272733 A JPH07272733 A JP H07272733A
Authority
JP
Japan
Prior art keywords
porous sintered
sintered body
temperature
molded body
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6081104A
Other languages
Japanese (ja)
Inventor
Satoshi Yamada
聡 山田
Takao Iimi
孝夫 飯味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6081104A priority Critical patent/JPH07272733A/en
Publication of JPH07272733A publication Critical patent/JPH07272733A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Fuel Cell (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To control distributing porosity of a porous sintered body to an object value by one time burning process, in the case of manufacturing the porous sintered body by burning a long scaled ceramics molded body. CONSTITUTION:A ceramics molded body 1, in a condition held in a perpendicular direction, is burned to manufacture a porous sintered body. By controlling the temperature in a lengthwise direction of the ceramics molded body l, porosity in a lengthwise direction of the porous sintered body is controlled. Preferably, an upper end part 1a of the ceramics molded body 1 is held, thus to suspend it in the perpendicular direction. Preferably, by setting a temperature in an upper side relatively higher than a temperature in a lower side of the ceramics molded body 1 at burning time, the difference of porosity in the lengthwise direction of the porous sintered body is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスの多孔質
焼結体の製造方法に関するものであり、例えば、セラミ
ックスフィルター、セラミックスヒーター、セラミック
ス窯道具、固体電解質型燃料電池の支持部材として有用
な、多孔質焼結体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous ceramics sintered body, which is useful, for example, as a supporting member for a ceramics filter, a ceramics heater, a ceramics kiln tool, and a solid oxide fuel cell. The present invention relates to a method for manufacturing a porous sintered body.

【0002】[0002]

【従来の技術】セラミックスフィルター、セラミックス
ヒーター、セラミックス窯道具、固体電解質型燃料電池
の支持部材等の細長い多孔質焼結体においては、長尺の
セラミックス成形体を焼成する工程が必要である。特
に、これらの各部材においては、真直度が必要である
が、長尺の成形体を横方向ないし水平方向に設置して焼
成すると、重力の作用によって、長尺の多孔質焼結体が
湾曲してしまう。このため、多孔質焼結体の真直度を保
持するため、セラミックス成形体の上端部を固定してつ
り下げ、鉛直方向に重力がかかった状態で焼成すること
が一般的である。
2. Description of the Related Art A slender porous sintered body such as a ceramic filter, a ceramic heater, a ceramic kiln tool, and a support member for a solid oxide fuel cell requires a process for firing a long ceramic molded body. In particular, straightness is required for each of these members, but when a long compact is installed laterally or horizontally and fired, the effect of gravity causes the long porous sintered compact to bend. Resulting in. Therefore, in order to maintain the straightness of the porous sintered body, it is general that the upper end portion of the ceramic molded body is fixed and hung down, and the ceramic molded body is fired in a state where gravity is applied in the vertical direction.

【0003】しかし、この方法では、セラミックス成形
体の上端部付近には、成形体の荷重が加わり、下端部付
近には、こうした荷重がほとんど加わらない。この結
果、焼成収縮の段階において、成形体の上端部と下端部
との間で焼成収縮の度合いに差が生じることがわかっ
た。即ち、成形体の上端部では成形体の荷重が加わるた
め、焼成収縮の度合いが相対的に小さく、成形体の下端
部では焼成収縮の度合いが相対的に大きくなり、成形体
の上端部と下端部との間で、気孔率に大きな差が生ずる
ことが判明した。
However, according to this method, the load of the molded body is applied near the upper end of the ceramic molded body, and such load is hardly applied near the lower end. As a result, it was found that there is a difference in the degree of firing shrinkage between the upper end portion and the lower end portion of the molded body during the firing shrinkage stage. That is, since the load of the compact is applied at the upper end of the compact, the degree of shrinkage due to firing is relatively small, and the degree of shrinkage at the lower end of the compact is relatively high. It was found that there is a large difference in porosity between the parts.

【0004】本出願者は、こうした問題を解決するため
に、特許出願公告平6─10114号公報において、ま
ず長尺の成形体をつり下げて一次焼成し、次いでこの成
形体の上下を反転させ(成形体を逆さまにし)、次いで
二次焼成することにより、長尺の多孔質焼結体の上下の
気孔率差を抑制する方法を開示した。この方法によれ
ば、特にこの一次焼成と二次焼成との温度等の条件を制
御すれば、上下の気孔率等の差を、相当に抑制すること
ができた。
In order to solve such a problem, the applicant of the present invention discloses in Japanese Patent Application Publication No. 6-10114 that a long molded body is first hung and primary fired, and then the molded body is turned upside down. A method for suppressing the difference in porosity between the upper and lower sides of a long porous sintered body by (inverting the molded body) and then performing secondary firing has been disclosed. According to this method, especially by controlling the conditions such as the temperature of the primary firing and the secondary firing, the difference between the upper and lower porosities and the like can be suppressed considerably.

【0005】[0005]

【発明が解決しようとする課題】しかし、本発明者がこ
の特許出願公告平6─10114号の方法を実施してみ
ると、次の問題が発生することが判明してきた。即ち、
最近は多孔質焼結体の長さが増大する傾向にある。特
に、固体電解質型燃料電池の空気極材料としては、現
在、ランタンマンガナイト焼結体が有望と見られている
(エネルギー総合工学、13、2、52〜68頁、19
90年)。こうしたランタンマンガナイト焼結体におい
ては、ほぼ化学量論的組成のものやAサイト(ランタン
部位)が一部欠損した組成のもの(マンガンリッチな組
成)が知られている。特に、AサイトにCa、Srをド
ープしたランタンマンガナイトからなる多孔質焼結体製
の支持部材が、空気極を兼ねた自己支持型の電極材料と
して、有望視されている。また、固体電解質型燃料電池
の支持部材として、ジルコニア製の支持部材が汎用され
ている。
However, when the present inventor tried the method of Japanese Patent Application Publication No. 6-10114, it became clear that the following problems would occur. That is,
Recently, the length of the porous sintered body tends to increase. In particular, a lanthanum manganite sintered body is currently regarded as promising as an air electrode material for a solid oxide fuel cell (Energy Engineering, 13, 2, 52-68, 19).
90 years). As such lanthanum manganite sintered bodies, those having a substantially stoichiometric composition and those having a partial loss of A site (lanthanum site) (manganese-rich composition) are known. In particular, a supporting member made of a porous sintered body made of lanthanum manganite in which A site is doped with Ca or Sr is regarded as promising as a self-supporting electrode material which also serves as an air electrode. Further, a support member made of zirconia is widely used as a support member for a solid oxide fuel cell.

【0006】こうした固体電解質型燃料電池の支持部材
と言う用途においては、支持部材の長さを大きくするこ
とが、発電効率の観点から要求されており、最近は2m
以上の長さのものが生産されている。しかし、こうした
長さの大きいセラミックス成形体を一次焼成のためにつ
り下げ、一次焼成した後、この多孔質焼結体を焼成炉か
ら取り外し、上下反転させ、再び所定の器具からつり下
げる工程は、極めて面倒かつ困難であり、人手がかか
る。また、一次焼成が終わった後には、まず一旦焼成炉
の温度を室温にまで低下させ、次いで上記した多孔質焼
結体の取り外し、反転、再設置の作業を終えた後、再び
焼成炉の温度を上昇させる必要がある。従って、熱効率
及び生産性の観点から見て、非常に無駄が多く、コスト
上昇の原因となっている。
In such a use as a support member for a solid oxide fuel cell, it is required to increase the length of the support member from the viewpoint of power generation efficiency, and recently, 2 m.
Those of the above length are produced. However, the step of suspending such a large-length ceramic molded body for primary firing, after primary firing, removing this porous sintered body from the firing furnace, turning it upside down, and hanging it again from a predetermined device is It is extremely troublesome, difficult, and labor intensive. After the primary firing is finished, first lower the temperature of the firing furnace to room temperature, then after removing the above-mentioned porous sintered body, reversing, and re-installing the work, reheat the firing furnace again. Need to rise. Therefore, from the viewpoint of thermal efficiency and productivity, it is very wasteful and causes a cost increase.

【0007】本発明の課題は、長尺のセラミックス成形
体を焼成するのに際して、1回の焼成工程で、多孔質焼
結体の気孔率の分布を、目的の値に制御できるようにす
ることである。
An object of the present invention is to enable the distribution of the porosity of the porous sintered body to be controlled to a desired value in one firing step when firing a long ceramic molded body. Is.

【0008】[0008]

【課題を解決するための手段】本発明に係る多孔質焼結
体の製造方法は、長尺のセラミックス成形体を鉛直方向
に保持した状態で焼成するのに際して、セラミックス成
形体の長さ方向の温度を制御することによって、多孔質
焼結体の長さ方向の気孔率を制御することを特徴とす
る。
According to the method for producing a porous sintered body of the present invention, when a long ceramic molded body is fired while being held in the vertical direction, It is characterized in that the porosity in the length direction of the porous sintered body is controlled by controlling the temperature.

【0009】[0009]

【作用】本発明者は、多孔質焼結体の上端部と下端部と
の間で気孔率に差が生ずる理由について検討した。この
際、成形体をつり下げた段階で、上端部に成形体の荷重
が加わるのであるが、焼成前の段階では、この荷重によ
る成形体の寸法変化は生じていなかった。従って、この
成形体が焼成収縮する段階で、大きな荷重が加わる部分
では焼成収縮量が小さくなり、小さな荷重しか加わらな
い部分では、焼成収縮量が相対的に大きくなっている。
The present inventor has examined the reason why there is a difference in porosity between the upper end and the lower end of the porous sintered body. At this time, the load of the molded body is applied to the upper end portion when the molded body is suspended, but the dimensional change of the molded body due to this load did not occur in the stage before firing. Therefore, at the stage where this molded product undergoes firing shrinkage, the amount of firing shrinkage is small in the portion where a large load is applied, and the amount of firing shrinkage is relatively large in the portion where only a small load is applied.

【0010】本発明者は、この知見に立ち、セラミック
ス成形体の長さ方向の温度を制御すれば、成形体の長さ
方向(鉛直方向)の各部分の焼成収縮の度合いを制御す
ることが可能であり、これにより、多孔質焼結体の長さ
方向の気孔率を制御することができることを見いだし、
本発明に到達した。
Based on this knowledge, the inventor of the present invention can control the degree of firing shrinkage of each part in the longitudinal direction (vertical direction) of the molded body by controlling the temperature in the longitudinal direction of the ceramic molded body. It is possible, and it is possible to control the porosity in the length direction of the porous sintered body by this,
The present invention has been reached.

【0011】具体的には、セラミックス成形体を焼成炉
内でつり下げる際に、焼成炉の鉛直方向に複数のヒータ
ーを設置し、各ヒーターの発熱量をそれぞれ互いに独立
に制御すれば、セラミックス成形体の長さ方向の各部分
の温度を、制御することができる。
Specifically, when suspending a ceramic molded body in a firing furnace, a plurality of heaters are installed in the vertical direction of the firing furnace, and the calorific value of each heater is controlled independently of each other. The temperature of each part of the body length can be controlled.

【0012】本発明の方法を実施するのに際しては、好
ましくは、セラミックス成形体の上端部を保持し、これ
によりセラミックス成形体を鉛直方向につり下げる。し
かし、必ずしも成形体の上端部を保持する必要はなく、
例えば、成形体の中央部分を保持することにより、ある
いは、成形体の下端部を保持することにより、成形体を
鉛直方向に保持することが可能である。
In carrying out the method of the present invention, preferably, the upper end of the ceramic molded body is held so that the ceramic molded body is suspended vertically. However, it is not always necessary to hold the upper end of the molded body,
For example, it is possible to hold the molded body in the vertical direction by holding the central portion of the molded body or by holding the lower end portion of the molded body.

【0013】このように、1回の焼成で、長尺の多孔質
焼結体の長さ方向の気孔率を制御できる結果、従来のよ
うに、セラミックス成形体を反転させて二次焼成したり
する必要がなく、1回の焼成工程で、所望の気孔率分布
を有する多孔質焼結体を得ることができる。従って、成
形体を反転させる面倒な作業が不必要であり、また焼成
炉の温度を室温まで下げて、再び昇温させるといった無
駄を防止できる。従って、製造コストを大きく低減する
ことができる。
As described above, the porosity in the length direction of the long porous sintered body can be controlled by one firing, and as a result, the ceramic molded body can be inverted and secondarily fired as in the conventional case. It is not necessary to do so, and a porous sintered body having a desired porosity distribution can be obtained in a single firing step. Therefore, the troublesome work of inverting the compact is unnecessary, and the waste of lowering the temperature of the firing furnace to room temperature and raising the temperature again can be prevented. Therefore, the manufacturing cost can be greatly reduced.

【0014】[0014]

【実施例】特に、多孔質焼結体として、前記したセラミ
ックスフィルターや、固体電解質型燃料電池の支持部材
を製造する際には、多孔質焼結体の長さ方向の全体にわ
たって、特に、気孔率を均一にする必要がある。即ち、
セラミックスフィルターの場合には、長さ方向の各部分
の気孔率及び微構造が異なっていると、フィルターとし
ての特性が劣化してしまう。
EXAMPLES In particular, when manufacturing the above-mentioned ceramic filter as a porous sintered body or a supporting member for a solid oxide fuel cell, pores, especially pores, are formed over the entire length of the porous sintered body. The rates need to be uniform. That is,
In the case of a ceramics filter, if the porosity and the microstructure of each part in the length direction are different, the characteristics as a filter deteriorate.

【0015】更に、前記した、固体電解質型燃料電池の
ジルコニア製の支持部材及び自己支持型の空気極支持部
材の場合には、この支持部材を通して、空気極膜と固体
電解質膜と空気とが接する三相界面へと空気を供給する
ため、支持部材の圧力損失を均一化し、三相界面の状態
を均一化することにより、発電性能を長さ方向で均一化
する必要がある。従って、固体電解質型燃料電池の支持
部材の用途においては、特に気孔率の均一化の要求が厳
しい。
Further, in the case of the above-mentioned supporting member made of zirconia and the self-supporting air electrode supporting member of the solid oxide fuel cell, the air electrode membrane, the solid electrolyte membrane and the air contact through this supporting member. Since air is supplied to the three-phase interface, it is necessary to make the pressure loss of the support member uniform and the state of the three-phase interface uniform to make the power generation performance uniform in the length direction. Therefore, in the application of the support member of the solid oxide fuel cell, the demand for uniform porosity is particularly severe.

【0016】このように、長尺の多孔質焼結体の気孔率
を、その長さ方向で均一化するという制御を行いたい場
合には、長さ方向の温度を、次のように制御する。即
ち、焼成時において、成形体の長さ方向を同じ温度で焼
成すると、前記したように、セラミックス成形体におい
て相対的に上側の部分では、相対的に大きな荷重が加わ
るので、焼成収縮量が小さくなり、気孔率が大きくな
る。この一方、下側の部分では、相対的に小さな荷重が
加わるので、焼成収縮量が相対的に大きくなり、気孔率
が小さくなる。
As described above, when it is desired to control the porosity of the long porous sintered body to be uniform in the length direction, the temperature in the length direction is controlled as follows. . That is, when firing is performed at the same temperature in the length direction of the molded body, as described above, a relatively large load is applied to the relatively upper portion of the ceramic molded body, so that the firing shrinkage amount is small. And the porosity increases. On the other hand, since a relatively small load is applied to the lower portion, the amount of shrinkage by firing becomes relatively large and the porosity becomes small.

【0017】従って、焼成時に、成形体の上側の温度を
下側の温度よりも相対的に高くすれば、上側の方が焼成
が促進される。この結果、上側の方が焼成収縮量が大き
くなってくるので、上側と下側との焼成収縮量の差が、
全体の焼成温度が一定の場合に比べて、小さくなる。
Therefore, when the temperature of the upper side of the molded body is made relatively higher than the temperature of the lower side during firing, the firing is accelerated in the upper side. As a result, the amount of firing shrinkage on the upper side becomes larger, so the difference in the amount of firing shrinkage on the upper side and the lower side is
Compared to the case where the overall firing temperature is constant, it becomes smaller.

【0018】この場合においては、焼成時におけるセラ
ミックス成形体の鉛直方向の温度差を、30°C以上、
50°C以下とするが好ましい。この差を30°C以上
とすることにより、前記した気孔率差が一層小さくな
る。また、この差が50°Cを越えると、今度はかえっ
て温度差による焼結の進行の効果の方が、荷重による影
響よりも上回り、上端部の方の気孔率が下端部の気孔率
よりも小さくなる傾向がある。
In this case, the temperature difference in the vertical direction of the ceramic molded body during firing is 30 ° C or more,
It is preferably 50 ° C or lower. By setting this difference to 30 ° C. or more, the above-mentioned difference in porosity is further reduced. When the difference exceeds 50 ° C, the effect of the progress of sintering due to the temperature difference is greater than the effect of the load, and the porosity of the upper end is lower than that of the lower end. Tends to be smaller.

【0019】固体電解質型燃料電池の支持部材が空気極
であるときには、その材料は、ペロブスカイト構造のマ
ンガナイト一般に対して適用できるが、特に、ランタン
マンガナイトが好ましい。このランタンマンガナイトに
おいては、カルシウム、ストロンチウム、アルミニウ
ム、コバルト、マグネシウム、ニッケル、クロム、銅、
鉄、チタン及び亜鉛からなる群より選ばれる一種以上の
置換金属原子を含有していてもよい。
When the supporting member of the solid oxide fuel cell is an air electrode, the material can be applied to manganite generally having a perovskite structure, but lanthanum manganite is particularly preferable. In this lanthanum manganite, calcium, strontium, aluminum, cobalt, magnesium, nickel, chromium, copper,
It may contain one or more substituted metal atoms selected from the group consisting of iron, titanium and zinc.

【0020】セラミックス成形体中を製造する際には、
好ましくは、原料粉末と、少なくとも増孔剤及びバイン
ダーを混合して成形する。増孔剤は、比較的に低温で消
失するものであり、アクリルパウダー、カーボンパウダ
ー、セルロース等が好ましい。バインダーとしては、ポ
リビニルアルコール、メチルセルロース、アクリル系バ
インダー等が好ましい。
When manufacturing the inside of the ceramic molded body,
Preferably, the raw material powder is mixed with at least a pore-forming agent and a binder to be molded. The pore-forming agent disappears at a relatively low temperature, and acrylic powder, carbon powder, cellulose and the like are preferable. As the binder, polyvinyl alcohol, methyl cellulose, acrylic binder and the like are preferable.

【0021】固体電解質型燃料電池の支持部材の場合に
は、成形体の焼成温度は、1300°C〜1600°C
とすることが好ましい。焼成温度を1300°C未満と
すると、焼結が完全に完了しない。1600°Cよりも
高くすると、焼結体の組織が緻密になりすぎる。
In the case of a support member for a solid oxide fuel cell, the firing temperature of the molded body is 1300 ° C to 1600 ° C.
It is preferable that If the firing temperature is less than 1300 ° C, sintering will not be completed completely. When it is higher than 1600 ° C, the structure of the sintered body becomes too dense.

【0022】固体電解質型燃料電池の自己支持型の支持
部材として使用される空気極基体は、単電池の母材とし
て用いられるものであり、空気極基体上に、固体電解質
膜、燃料電極膜、インターコネクター、セパレータなど
の各構成部分が積層される。この際、空気極基体の形状
は、両端が開口した円筒形状、一端が開口し、他端が閉
塞された有底円筒形状、平板形状などであってよい。こ
のうち、上記したいずれかの円筒形状のものが、熱応力
がかかりにくく、ガスシールが容易なので、特に好まし
い。
The air electrode substrate used as a self-supporting supporting member of a solid oxide fuel cell is used as a base material of a unit cell, and a solid electrolyte membrane, a fuel electrode film, Each component such as an interconnector and a separator is laminated. At this time, the shape of the air electrode substrate may be a cylindrical shape with both ends open, a bottomed cylindrical shape with one end open and the other end closed, or a flat plate shape. Of these, any of the above-mentioned cylindrical shapes is particularly preferable because thermal stress is less likely to be applied and gas sealing is easy.

【0023】多孔質焼結体の気孔率は、5〜40%とす
ることが好ましい。また、これを固体電解質型燃料電池
の支持部材として用いる場合には、更に気孔率を15〜
40%とすることが好ましく、25〜35%とすると一
層好ましい。この場合は、空気極の気孔率を15%以上
とすることで、ガス拡散抵抗を小さくし、気孔率を40
%以下とすることで、ある程度の強度も確保することが
できる。
The porosity of the porous sintered body is preferably 5-40%. When it is used as a support member for a solid oxide fuel cell, the porosity is further increased to 15 to
It is preferably 40%, and more preferably 25-35%. In this case, by setting the porosity of the air electrode to 15% or more, the gas diffusion resistance is reduced and the porosity is set to 40%.
By setting the content to be less than or equal to%, it is possible to secure some strength.

【0024】以下、更に具体的な実験結果について説明
する。(焼成炉内におけるヒーターの設定温度と測定温
度との関係)まず、焼成炉内を9個の領域ないしゾーン
に分割し、各領域に対応してそれぞれヒーターを設置
し、各ヒーターの温度を1540°C〜1600°Cの
範囲内で所定温度に設定した。一方、各領域内にそれぞ
れ熱電対を設置し、各ヒーターを発熱させ、各領域のヒ
ーターの設定温度と各領域内の熱電対の測定温度との差
を算出した。この結果、各領域のヒーターの設定温度と
各領域内の熱電対の測定温度との差は、0°C〜2°C
であった。従って、各領域におけるヒーターの設定温度
は、対応する各領域における実際の測定温度とほぼ同じ
であるとみなすことができた。
Hereinafter, more specific experimental results will be described. (Relationship between Set Temperature of Heater in Firing Furnace and Measured Temperature) First, the inside of the firing furnace is divided into 9 regions or zones, and heaters are installed corresponding to the respective regions, and the temperature of each heater is set to 1540. The temperature was set to a predetermined temperature within the range of ° C to 1600 ° C. On the other hand, a thermocouple was installed in each area, each heater was caused to generate heat, and the difference between the set temperature of the heater in each area and the measured temperature of the thermocouple in each area was calculated. As a result, the difference between the set temperature of the heater in each area and the measured temperature of the thermocouple in each area is 0 ° C to 2 ° C.
Met. Therefore, the set temperature of the heater in each area could be considered to be almost the same as the actual measured temperature in each corresponding area.

【0025】(セラミックス成形体の製造)出発原料と
して、La2 3 、CaCO3 及びMn3 4 の各原料
粉末を使用した。La0.80Ca0.20MnO3 の組成比率
となるように、所定量の出発原料粉末を秤量し、混合し
た。この混合粉末を、コールドアイソスタティックプレ
ス法により、1tf/cm2 の圧力で成形し、成形体を
作製した。この成形体を、大気中、1580℃で10時
間熱処理し、La0.80Ca0.20MnO3 の組成比率を有
するペロブスカイト型複合酸化物を合成した。
(Production of Ceramic Molding) Raw material powders of La 2 O 3 , CaCO 3 and Mn 3 O 4 were used as starting raw materials. A predetermined amount of starting raw material powder was weighed and mixed so that the composition ratio was La 0.80 Ca 0.20 MnO 3 . This mixed powder was molded by a cold isostatic press method at a pressure of 1 tf / cm 2 to prepare a molded body. This molded body was heat-treated in the air at 1580 ° C. for 10 hours to synthesize a perovskite complex oxide having a composition ratio of La 0.80 Ca 0.20 MnO 3 .

【0026】この合成体を、湿式トロンメルによって、
ジルコニア玉石を使用して粉砕し、平均粒径5.8μm
の合成粉末を作製した。次に、この合成粉末に、水と、
有機バインダーとしてのアクリル系バインダーを加え、
混合し、水分40%のスラリーを調製し、スプレードラ
イヤーで造粒した。その後、この造粒粉と増孔剤として
のアクリルパウダーを乾式混合し、これを押し出し成形
し、長さ2300mm、外径25mmの管状の成形体を
得た。
This composite was prepared by wet trommel.
Grinded using zirconia boulders, average particle size 5.8μm
The synthetic powder of was produced. Next, to this synthetic powder, water,
Add an acrylic binder as an organic binder,
The mixture was mixed to prepare a slurry having a water content of 40% and granulated with a spray dryer. Then, this granulated powder and acrylic powder as a pore-forming agent were dry-mixed and extrusion-molded to obtain a tubular molded body having a length of 2300 mm and an outer diameter of 25 mm.

【0027】(成形体1の保持方法)図1に模式的に示
すようにして、成形体1をつり下げた。具体的には、成
形体1の上端部1aに貫通孔を設け、この貫通孔に支持
棒3を挿通し、この支持棒3の両端を支持台2に架け渡
し、成形体1をつり下げた。そして、図1に示す測定位
置a、b、c、d及びeのそれぞれの温度を制御した。
(Holding Method for Molded Product 1) The molded product 1 was suspended as schematically shown in FIG. Specifically, a through hole is provided in the upper end portion 1a of the molded body 1, the support rod 3 is inserted into the through hole, both ends of the support rod 3 are bridged over the support base 2, and the molded body 1 is suspended. . Then, the respective temperatures at the measurement positions a, b, c, d and e shown in FIG. 1 were controlled.

【0028】ただし、測定位置aは、成形体1の上端面
から100mmの位置にあり、測定位置bは、成形体1
の上端面から500mmの位置にあり、測定位置cは、
成形体1の上端面から1000mmの位置にあり、測定
位置dは、成形体1の上端面から1500mmの位置に
あり、測定位置eは、成形体1の上端面から2200m
mの位置にある。
However, the measurement position a is 100 mm from the upper end surface of the molded body 1, and the measurement position b is the molded body 1
500 mm from the upper end surface of the
It is 1000 mm from the upper end surface of the molded body 1, the measurement position d is 1500 mm from the upper end surface of the molded body 1, and the measurement position e is 2200 m from the upper end surface of the molded body 1.
It is in the m position.

【0029】(比較例)特に、各領域ごとに温度制御を
行わずに、成形体を焼成した。即ち、各測定位置a、
b、c、d及びeにおける各焼成温度を、1595°C
に設定した。
(Comparative Example) In particular, the molded body was fired without controlling the temperature in each region. That is, each measurement position a,
Each firing temperature in b, c, d and e was set to 1,595 ° C.
Set to.

【0030】(実施例1〜3)各領域ごとに温度制御を
行い、成形体を焼成した。即ち、各測定位置a、b、
c、d及びeにおける各焼成温度を、表1に示すように
設定し、この状態で焼成を実施した。なお、焼成時間は
時間とした。
(Examples 1 to 3) The temperature was controlled in each region, and the molded body was fired. That is, each measurement position a, b,
The firing temperatures for c, d and e were set as shown in Table 1, and firing was performed in this state. The firing time was hours.

【0031】これらの各例によって製造した長尺の多孔
質焼結体について、それぞれ、各測定位置a、b、c、
d及びeについて、気孔率を、水置換法によって測定し
た。この結果を表1に示す。
With respect to the long porous sintered body produced by each of these examples, the respective measurement positions a, b, c,
For d and e, the porosity was measured by the water displacement method. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1からわかるように、比較例において
は、測定位置aからeへと向かって、気孔率が徐々に減
少している。これは、前記したように、焼成収縮の段階
で、焼成収縮の度合いが、成形体の各測定位置に加わる
荷重の影響を受けるためであると考えられる。この差
は、測定位置aとeとの間で、3.8%にも達してい
た。
As can be seen from Table 1, in the comparative example, the porosity gradually decreases from the measurement position a to e. This is considered to be because, as described above, the degree of firing shrinkage is affected by the load applied to each measurement position of the molded body during the firing shrinkage stage. This difference reached 3.8% between the measurement positions a and e.

【0034】また、図2は、比較例1において測定位置
aのセラミックス構造を示す走査型電子顕微鏡写真であ
り、図3は、比較例1において測定位置eのセラミック
ス構造を示す走査型電子顕微鏡写真である。測定位置a
におけるよりも、測定位置eの方が、焼結が進行してい
るのがわかる。
FIG. 2 is a scanning electron micrograph showing the ceramic structure at the measurement position a in Comparative Example 1, and FIG. 3 is a scanning electron micrograph showing the ceramic structure at the measurement position e in Comparative Example 1. Is. Measurement position a
It can be seen that the sintering progresses at the measurement position e rather than at.

【0035】実施例1においては、測定位置aとeとに
おける気孔率の差が0.9%にまで減少している。これ
は、測定位置bからeへと向かって、徐々に焼成温度を
減少させていった結果、焼成収縮の進行が抑制されたか
らであろう。また、上端部と下端部との温度差を、30
°C以上とすることにより、気孔率の差を1%以下にま
で顕著に抑制することが可能になった。
In Example 1, the difference in porosity between the measurement positions a and e is reduced to 0.9%. This is probably because the firing temperature was gradually decreased from the measurement position b to e, and as a result, the progress of firing shrinkage was suppressed. In addition, the temperature difference between the upper end and the lower end is 30
By setting the temperature to ° C or higher, the difference in porosity can be significantly suppressed to 1% or less.

【0036】実施例2においては、測定位置aとeとに
おける気孔率の差が0.5%にまで減少している。特
に、他の実験結果をも勘案すると、上端部と下端部との
温度差を35°C〜45°Cの範囲内に保持することに
より、上端部と下端部との気孔率の差を、0.5%以下
にまで顕著に抑制することができることがわかった。
In Example 2, the difference in porosity between the measurement positions a and e was reduced to 0.5%. In particular, considering other experimental results as well, by maintaining the temperature difference between the upper end portion and the lower end portion within the range of 35 ° C to 45 ° C, the difference in porosity between the upper end portion and the lower end portion is It was found that it can be significantly suppressed to 0.5% or less.

【0037】また、図4は、実施例2において測定位置
aのセラミックス構造を示す走査型電子顕微鏡写真であ
り、図5は、実施例2において測定位置eのセラミック
ス構造を示す走査型電子顕微鏡写真である。測定位置a
においても、測定位置eにおいても、焼結の進行の度合
いはほぼ同様であることがわかる。
FIG. 4 is a scanning electron micrograph showing the ceramic structure at the measurement position a in Example 2, and FIG. 5 is a scanning electron micrograph showing the ceramic structure at the measurement position e in Example 2. Is. Measurement position a
It is understood that the degree of progress of sintering is almost the same at the measurement position e as well.

【0038】実施例3においても、測定位置aとeとに
おける気孔率の差が2.0%にまで減少しており、比較
例に比べると顕著な向上が見られる。ただし、上端部と
下端部との温度差が50°Cを越えた結果、今度は下端
部の方よりも上端部の方が多く焼成収縮するようにな
り、上端部の方が気孔率が小さくなることがわかった。
従って、この温度差が50°Cを越えて大きくなると、
上端部と下端部との気孔率の差が大きくなっていくの
で、この観点からは、温度差を50°C以下に保持する
ことが、一層好ましいといえる。
In Example 3 as well, the difference in porosity between the measurement positions a and e was reduced to 2.0%, which is a significant improvement over the comparative example. However, as a result of the temperature difference between the upper end portion and the lower end portion exceeding 50 ° C, the upper end portion is more shrunk by firing than the lower end portion, and the upper end portion has a smaller porosity. I found out.
Therefore, if this temperature difference exceeds 50 ° C and becomes large,
Since the difference in porosity between the upper end portion and the lower end portion becomes larger, it can be said that it is more preferable to keep the temperature difference at 50 ° C. or less from this viewpoint.

【0039】また、本発明者は、今度は測定位置aの温
度を1540°Cとし、測定位置bの温度を1550°
Cとし、測定位置cの温度を1560°Cとし、測定位
置dの温度を1570°Cとし、測定位置eの温度を1
580°Cに設定した。この結果、上端部の気孔率を約
35%とし、下端部の気孔率を約25%とすることに成
功した。こうした大きな気孔率差は、従来の焼成方法に
おいては、特にガス炉を用いた場合、実現はきわめて困
難なものである。
Further, the present inventor now sets the temperature at the measuring position a to 1540 ° C. and the temperature at the measuring position b to 1550 ° C.
C, the temperature at the measurement position c is 1560 ° C, the temperature at the measurement position d is 1570 ° C, and the temperature at the measurement position e is 1
The temperature was set to 580 ° C. As a result, the porosity of the upper end was set to about 35%, and the porosity of the lower end was set to about 25%. Such a large porosity difference is extremely difficult to realize in the conventional firing method, especially when a gas furnace is used.

【0040】本発明者は、更に、La0.80Sr0.20Mn
3 の組成を有するペロブスカイト構造の複合酸化物か
らなる、長さ2300mm、外径25mmの管状の成形
体について、上記と同様の焼成実験を行い、上記と同様
の結果を得た。
The present inventor has further found that La 0.80 Sr 0.20 Mn
A firing test similar to the above was carried out on a tubular shaped body having a length of 2300 mm and an outer diameter of 25 mm and made of a complex oxide having a perovskite structure having a composition of O 3 , and the same result as the above was obtained.

【0041】[0041]

【発明の効果】以上述べたように、本発明によれば、長
尺のセラミックス成形体を焼成するのに際して、1回の
焼成工程で、多孔質焼結体の気孔率の分布を、目的の値
に制御することができる。
As described above, according to the present invention, when firing a long ceramic molded body, the porosity distribution of the porous sintered body can be controlled by one firing step. You can control the value.

【図面の簡単な説明】[Brief description of drawings]

【図1】セラミックス成形体1をつり下げて焼成してい
る状態を模式的に示す正面図である。
FIG. 1 is a front view schematically showing a state in which a ceramic molded body 1 is suspended and fired.

【図2】比較例1において測定位置aのセラミックス組
織を示す走査型電子顕微鏡写真である。
2 is a scanning electron micrograph showing a ceramic structure at a measurement position a in Comparative Example 1. FIG.

【図3】比較例1において測定位置eのセラミックス組
織を示す走査型電子顕微鏡写真である。
3 is a scanning electron micrograph showing a ceramic structure at a measurement position e in Comparative Example 1. FIG.

【図4】実施例2において測定位置aのセラミックス組
織を示す走査型電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph showing a ceramic structure at a measurement position a in Example 2.

【図5】実施例2において測定位置eのセラミックス組
織を示す走査型電子顕微鏡写真である。
5 is a scanning electron micrograph showing a ceramic structure at a measurement position e in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 長尺のセラミックス成形体 1a 上端部 2
支持台 a、b、c、d、e 温度の設定位置及び気孔率の測定
位置
1 Long ceramic molded body 1a Upper end 2
Supports a, b, c, d, e Temperature setting position and porosity measuring position

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】長尺のセラミックス成形体を鉛直方向に保
持した状態で焼成して多孔質焼結体を製造する方法であ
って、前記セラミックス成形体の長さ方向の温度を制御
することによって、前記多孔質焼結体の長さ方向の気孔
率を制御することを特徴とする、多孔質焼結体の製造方
法。
1. A method for producing a porous sintered body by firing a long ceramic compact while holding it in the vertical direction, by controlling the temperature of the ceramic compact in the longitudinal direction. A method for producing a porous sintered body, comprising controlling the porosity in the lengthwise direction of the porous sintered body.
【請求項2】前記セラミックス成形体の上端部を保持
し、これによりセラミックス成形体を鉛直方向につり下
げる、請求項1記載の多孔質焼結体の製造方法。
2. The method for producing a porous sintered body according to claim 1, wherein an upper end portion of the ceramic formed body is held and thereby the ceramic formed body is suspended in the vertical direction.
【請求項3】前記焼成時における前記セラミックス成形
体の上側の温度を、下側の温度よりも相対的に高くする
ことにより、前記多孔質焼結体の長さ方向の気孔率の差
を少なくすることを特徴とする、請求項1又は2記載の
多孔質焼結体の製造方法。
3. The difference in porosity in the length direction of the porous sintered body is reduced by making the temperature of the upper side of the ceramic molded body during the firing relatively higher than the temperature of the lower side. The method for producing a porous sintered body according to claim 1 or 2, characterized in that.
【請求項4】前記焼成時における前記セラミックス成形
体の鉛直方向の温度差を、30°C以上、50°C以下
とすることを特徴とする、請求項3記載の多孔質焼結体
の製造方法。
4. The production of a porous sintered body according to claim 3, wherein the temperature difference in the vertical direction of the ceramic molded body during the firing is 30 ° C. or more and 50 ° C. or less. Method.
【請求項5】前記多孔質焼結体が、固体電解質型燃料電
池の支持部材である、請求項3又は4記載の多孔質焼結
体の製造方法。
5. The method for producing a porous sintered body according to claim 3, wherein the porous sintered body is a support member for a solid oxide fuel cell.
JP6081104A 1994-03-29 1994-03-29 Manufacture of porous sintered body Withdrawn JPH07272733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081104A JPH07272733A (en) 1994-03-29 1994-03-29 Manufacture of porous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081104A JPH07272733A (en) 1994-03-29 1994-03-29 Manufacture of porous sintered body

Publications (1)

Publication Number Publication Date
JPH07272733A true JPH07272733A (en) 1995-10-20

Family

ID=13737083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081104A Withdrawn JPH07272733A (en) 1994-03-29 1994-03-29 Manufacture of porous sintered body

Country Status (1)

Country Link
JP (1) JPH07272733A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081955A (en) * 2009-10-05 2011-04-21 Tanaka Chemical Corp Fuel electrode material capable of forming fuel electrode of high porosity, and manufacturing method thereof
JP2014007167A (en) * 2008-10-28 2014-01-16 Alan Devoe Fuel cell device and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007167A (en) * 2008-10-28 2014-01-16 Alan Devoe Fuel cell device and system
JP2014029867A (en) * 2008-10-28 2014-02-13 Alan Devoe Fuel cell device and system
JP2014036021A (en) * 2008-10-28 2014-02-24 Alan Devoe Fuel cell device and system
JP2014044954A (en) * 2008-10-28 2014-03-13 Alan Devoe Fuel cell device and system
JP2011081955A (en) * 2009-10-05 2011-04-21 Tanaka Chemical Corp Fuel electrode material capable of forming fuel electrode of high porosity, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2981034B2 (en) Method for firing ceramic honeycomb structure
JPH05190180A (en) Air electrode body of solid electrolyte type fuel cell, manufacture of air electrode body and solid electrolyte type fuel cell
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
JP4311609B2 (en) Method for producing porous ceramic body
Murphy et al. Tape casting of lanthanum chromite
CN111056846B (en) Directional porous aluminum nitride honeycomb ceramic rapidly prepared by adopting freeze drying and combustion synthesis method and method thereof
JPH0697613B2 (en) Method for producing air electrode material for solid oxide fuel cell
JPH0669907B2 (en) Method for manufacturing electron conductive porous ceramic tube
JPH07272733A (en) Manufacture of porous sintered body
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JP2003040688A (en) Lightweight ceramic sintered compact
CN111116209A (en) Directional porous silicon nitride honeycomb ceramic and rapid preparation method thereof
JPH0246545B2 (en)
JPH05251094A (en) Manufacture of solid electrolytic cell
JPH07267749A (en) Porous sintered body and solid electrolyte type fuel cell using the same
Becher et al. Ceramics sintered directly from sol-gels
Ruiz‐Morales et al. Cost‐Effective Microstructural Engineering of Solid Oxide Fuel Cell Components for Planar and Tubular Designs
JP2001302337A (en) Ceramic-made heat treating member excellent in thermal shock resistance
JPH09241079A (en) Production of long size sintered body
JP2553295B2 (en) Method for manufacturing porous sintered body
JPH09132459A (en) Porous ceramic sintered compact
JP2553296B2 (en) Method for manufacturing porous sintered body
JP4468541B2 (en) Method for producing recrystallized SiC
JP2725732B2 (en) Zirconia porous body and method for producing the same
JP2854527B2 (en) Method for producing porous body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605