JPH10502486A - Micromechanical structural elements and fabrication methods - Google Patents

Micromechanical structural elements and fabrication methods

Info

Publication number
JPH10502486A
JPH10502486A JP8503622A JP50362296A JPH10502486A JP H10502486 A JPH10502486 A JP H10502486A JP 8503622 A JP8503622 A JP 8503622A JP 50362296 A JP50362296 A JP 50362296A JP H10502486 A JPH10502486 A JP H10502486A
Authority
JP
Japan
Prior art keywords
layer
substrate
movable section
structural
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8503622A
Other languages
Japanese (ja)
Other versions
JP3830511B2 (en
Inventor
コツロフスキー フランク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPH10502486A publication Critical patent/JPH10502486A/en
Application granted granted Critical
Publication of JP3830511B2 publication Critical patent/JP3830511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/001Structures having a reduced contact area, e.g. with bumps or with a textured surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/24405Polymer or resin [e.g., natural or synthetic rubber, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)
  • Push-Button Switches (AREA)
  • Weting (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

(57)【要約】 基板(1)の上方に可動区分(2)を有している構造要素であって,有利にはフルオロカーボンから成るスペーサ(3)が該基板の表面上に存在しており,該スペーサは可動区分が支持体上に付着することを阻止する。 Abstract: A structural element having a movable section (2) above a substrate (1), wherein a spacer (3), preferably made of fluorocarbon, is present on the surface of the substrate. , The spacer prevents the movable section from adhering to the support.

Description

【発明の詳細な説明】 マイクロメカニック構造要素及び製作法 マイクロメカニック構造要素,例えばセンサ又はアクチュエータ,の可動素子 は,マイクロメカニック構造要素を使用する場合にも,また製作する場合にも, 支持体に付着したままになるという問題がある。このいわゆる「スティッキング 」は製作の際には,エッチング中及びエッチング後に,使用される液体を乾燥さ せる間の強い毛管作用によって生ずる。構造要素を使用する際には,可動部分が 基板に向かって過度に強くふれる場合に,この可動部分と基板表面との間に非常 に密な接触が生じ,可動部分が基板表面からもはや離れなくなる。 D.小林ほかによる文献“Photoresist-Assisted Release of Movable Micros tructures”(可動なマイクロ構造体のフォトレジストで補助された解放)[Jpn .J.Appl.Phys.32,L1642−L1644(1993年)]には,フォトレジストか ら成る付加的な層を使用して,マイクロメカニック構造要素のための可動部分を 固定し,ウェットケミカル式のエッチングプロセスを行っても,可動部分が支持 体に付着したままにならないようにする方法が記載されている。フォトレジスト は次いで酸素プラズマ内で灰化させて,取り除か れる。 本発明の課題は,表面構造体の可動区分の基板への付着が防止されているマイ クロメカニック構造要素並びにこのマイクロメカニック構造要素の製作方法を提 供することである。 この課題は,請求項1の特徴を有する構造要素並びに請求項3の特徴を有する 製作方法によって解決された。本発明の実施の形態は従属項に記載したとおりで ある。 本発明による構造要素においては,基板とマイクロメカニック構造体との間で ,基板の表面に,別個に取り付けられた材料から成る小さなスペーサが設けられ ている。このスペーサによって,基板の表面が平らでなくなり,可動区分,つま り構造要素の可動素子が単にわずかな箇所でこれらのスペーサと接触するように なり,したがって支持体上への付着が阻止されている。 これらのスペーサは有利には次のようにして製作される。すなわち,犠牲層及 び可動部分を製作するための構造層を基板上にたい積させた後に,構造層を製作 すべき可動区分に合わせて構造化し,犠牲層を,少なくともスペーサのための範 囲において少なくとも部分的に取り除くのである。有利には,犠牲層の残部は, スペーサの製作段階が実施される間,可動部分のための支持部として構造層と基 板との間に残る。次いで, スペーサのための材料から成る層がたい積せしめられ,その一部は構造層の可動 区分の範囲と基板との間に達する。このようにして,既にウェットケミカル式に 取り除かれている犠牲層の部分は少なくとも部分的に埋められる。まだ残ってい る犠牲層部分を後から取り除かなければならない場合には,スペーサのためにた い積せしめられる材料は,後からの犠牲層部分のエッチングプロセスに耐えるも のが選ばれる。スペーサのための層のたい積の条件が,可動区分のための構造層 部分の下側の層厚が構造層のマスク作用に基づいて,露出している箇所における 層厚よりもわずかであるように,選ばれている場合には,マイクロメカニック構 造体,特に可動区分は,過剰の層部分を取り除いた後に,単に点状に支持体と接 触するに過ぎない。マイクロメカニック要素が既に完全に犠牲層を除去されてい て,構造層の当該の区分が自由に可動である場合には,スペーサのためにたい積 される層は犠牲層のエッチング剤に耐える必要はない。有利にはスペーサのため の層は,例えばプラズマ反応器内で電界の作用でたい積させることができるフル オロカーボンが使用される。 以下においては図1〜図4に基づいて,本発明を詳細に説明する。 図1〜図3は本発明による構造要素の種々の製作段階における中間製品の横断 面を示す。 図4は本発明による構造要素の代替製作段階における中間製品を示す。 図1において,半導体板,半導体層構造体などである基板1の上方に,可動区 分2,つまりマイクロメカニック構造要素の可動部分がこの基板1から間隔をお いて示されている。図面を簡単にするために,この区分2の懸架機構及び図平面 よりも奥に配置されている構造要素部分は取り除いてある。この構造体は例えば 前述のようにして製作され,基板1上に犠牲層が,次いでその上に可動部分のた めの材料から成る構造層が取り付けられる。構造層は当該の構造要素に合わせて 構造化される。次いで犠牲層が取り除かれる。次いで,ほぼ,図1に示した複線 矢印5の方向にスペーサのための材料が層として取り付けられる。この場合たい 積は完全に異方性には行われず,拡散性に行われ,したがって,取り付けられた 層6の一部は,図2に示すように,可動区分2の下側にも取り付けられている。 プラズマ反応器内でたい積を行う場合には,例えば図1において単線矢印で示し た基体1に向いた電界によって,たい積を補助することができる。 たい積した層6は例えばフルオロカーボンであるのがよい。図2に示したよう に,この層はわずかに拡散性のたい積によって,第1の平らでない層部分の形で 基板1上に,かつ第2の層部分の形で可動区分2上に沈着する。たい積条件が次 のように,すなわち可動区 分2の下側の層厚が,可動区分2のマスク作用によって,自由に接近可能な箇所 における層厚よりも薄くなるように,選ばれている場合には,可動区分は単にわ ずかな箇所で(点状に)支持体と接触することになる。図2に示した状態のとき に,たい積段階を終了させることが可能である。なぜなら既にこの場合,マイク ロメカニック構造体の可動区分の支持体への付着が回避されているからである。 可動区分の表面上の第2の層部分が障害となる場合には,この層6に強く異方性 のエッチングを実施すると,図3に示した小さなスペーサ3だけが残される。 図3は本発明による構造要素の1実施例の横断面を示す。可動区分2が運動す る場合,スペーサ3は可動区分が基板と接触することを阻止する。スペーサは極 めて小さくて,スペーサと可動区分との間の可能な接触面はわずかであり,構造 要素の運転中に可動区分がスペーサに付着したままになることはない。スペーサ によって,可動区分と基板との間の接触も防止される。 図4はスペーサを製作した後の本発明による構造要素の中間製品の横断面を示 す。この実施例では,犠牲層残部4が構造層と基板との間に残されている。これ らの犠牲層残部4は構造層の可動区分2のための部分を,スペーサ3が製作され るまで,支えている。犠牲層残部4は,犠牲層の取り除きのために使用されたウ ェットケミカルのエッチング溶液を乾燥させる際に,構造層が基板の表面に付着 したままになることを阻止する。更に,スペーサの製作中の構造化された区分の 運動が阻止される。これらの犠牲層残部4は,小さなスペーサの製作のため及び 構造層上にたい積された層6の部分の取り除きのための異方性エッチングが行わ れる前に,又は行われた後に,取り除くことができる。犠牲層残部の代わりに, 例えば最初に述べた小林氏の文献に記載されているようにして,フォトレジスト ,PMMA又はポリマー,有利には例えばポリスチロールから成る仮のスペーサ を使用することができる。有利には本発明による構造要素はケイ素を使用して製 作される。DETAILED DESCRIPTION OF THE INVENTION Micromechanical Structural Elements and Methods of Fabrication The movable elements of a micromechanical structural element, such as a sensor or actuator, are supported on a support when using and manufacturing the micromechanical structural element. There is a problem that it remains attached. This so-called "sticking" occurs during fabrication due to strong capillary action during and after etching, during drying of the liquid used. When using a structural element, if the moving part touches the substrate too hard, very close contact will occur between the moving part and the substrate surface and the moving part will no longer leave the substrate surface . D. Kobayashi et al., “Photoresist-Assisted Release of Movable Microstructures” (Photoresist-assisted release of movable microstructures) [Jpn. J. Appl. Phys. 32 , L1642-L1644 (1993)], using an additional layer of photoresist to secure the moving parts for the micromechanical structural elements and to perform a wet chemical etching process. A method is described for preventing moving parts from remaining attached to a support. The photoresist is then ashed in an oxygen plasma and removed. SUMMARY OF THE INVENTION It is an object of the present invention to provide a micromechanical structural element in which the movable sections of the surface structure are prevented from adhering to the substrate and a method for producing the micromechanical structural element. This object has been achieved by a structural element having the features of claim 1 and a manufacturing method having the features of claim 3. Embodiments of the present invention are as described in the dependent claims. In the structural element according to the invention, between the substrate and the micromechanical structure, a small spacer made of a separately mounted material is provided on the surface of the substrate. These spacers make the surface of the substrate non-planar, so that the movable sections, i.e. the movable elements of the structural element, come into contact with these spacers only in a few places, thus preventing their adhesion on the support. These spacers are advantageously manufactured as follows. That is, after the sacrificial layer and the structural layer for producing the movable part are deposited on the substrate, the structural layer is structured for the movable section to be produced, and the sacrificial layer is at least partially in the area for the spacer. Remove it. Advantageously, the remainder of the sacrificial layer remains between the structural layer and the substrate as a support for the movable part during the step of fabricating the spacer. Then, a layer of material for the spacers is deposited, part of which extends between the area of the movable section of the structural layer and the substrate. In this way, the portion of the sacrificial layer that has already been removed in a wet chemical manner is at least partially filled. If the remaining sacrificial layer must be removed later, the material deposited for the spacer is chosen to withstand the subsequent sacrificial layer etching process. The condition of the layer deposition for the spacers is such that the layer thickness under the structural layer part for the movable section is less than the layer thickness at the exposed points, based on the masking action of the structural layer. If selected, the micromechanical structure, in particular the movable section, only contacts the support in a point-like manner after removing the excess layer parts. If the micromechanical element has already been completely removed of the sacrificial layer and the relevant section of the structural layer is free to move, the layer deposited for the spacer does not have to withstand the sacrificial layer etchant . The layer for the spacer is preferably a fluorocarbon which can be deposited, for example, by the action of an electric field in a plasma reactor. Hereinafter, the present invention will be described in detail with reference to FIGS. 1 to 3 show cross sections of an intermediate product at various stages of the production of a structural element according to the invention. FIG. 4 shows an intermediate product in an alternative manufacturing stage of a structural element according to the invention. In FIG. 1, above a substrate 1, which is a semiconductor plate, a semiconductor layer structure, etc., a movable section 2, ie a movable part of a micromechanical structural element, is shown spaced from this substrate 1. For the sake of simplicity of the drawing, the suspension mechanism of this section 2 and the structural elements which are located further away from the plane of the drawing have been removed. This structure is produced, for example, as described above, on which a sacrificial layer is mounted on a substrate 1 and then a structural layer made of the material for the movable parts. The structural layer is structured according to the structural element concerned. Then the sacrificial layer is removed. The material for the spacer is then applied as a layer, substantially in the direction of the double-headed arrow 5 shown in FIG. In this case, the deposition does not take place completely anisotropic, but takes place in a diffusive manner, so that a part of the applied layer 6 is also mounted below the movable section 2 as shown in FIG. I have. When the deposition is performed in the plasma reactor, the deposition can be assisted by, for example, an electric field directed to the substrate 1 indicated by a single arrow in FIG. The deposited layer 6 may be, for example, a fluorocarbon. As shown in FIG. 2, this layer is deposited on the substrate 1 in the form of a first uneven layer part and on the movable section 2 in the form of a second layer part by a slightly diffusive deposit. . When the deposition conditions are selected as follows, ie the thickness of the layer below the movable section 2 is smaller than the layer thickness at a location that is freely accessible by the masking action of the movable section 2 In other words, the movable section will only come into contact with the support at a few points (point-like). In the state shown in FIG. 2, it is possible to end the deposition phase. This is because, in this case, the adhesion of the movable section of the micromechanical structure to the support is already avoided. If the second layer part on the surface of the movable section is obstructive, a strong anisotropic etching of this layer 6 leaves only the small spacers 3 shown in FIG. FIG. 3 shows a cross section of one embodiment of a structural element according to the invention. When the movable section 2 moves, the spacer 3 prevents the movable section from contacting the substrate. The spacer is very small, the possible contact surfaces between the spacer and the movable section are small and the movable section does not remain attached to the spacer during operation of the structural element. The spacer also prevents contact between the movable section and the substrate. FIG. 4 shows a cross section of an intermediate product of a structural element according to the invention after the spacer has been produced. In this embodiment, the remaining sacrificial layer 4 is left between the structural layer and the substrate. These rests of the sacrificial layer 4 support the part of the structural layer for the movable section 2 until the spacer 3 is manufactured. The remaining sacrificial layer 4 prevents the structural layer from remaining on the surface of the substrate when the wet chemical etching solution used to remove the sacrificial layer is dried. Furthermore, movement of the structured section during fabrication of the spacer is prevented. These sacrificial layer remnants 4 may be removed before or after anisotropic etching has been performed for the fabrication of small spacers and for removing portions of layer 6 deposited on the structural layer. it can. Instead of a sacrificial layer, temporary spacers made of photoresist, PMMA or a polymer, preferably for example polystyrene, can be used, for example, as described in Kobayashi, cited above. Advantageously, the structural element according to the invention is made using silicon.

Claims (1)

【特許請求の範囲】 1.基板(1)の上方に間隔をおいて配置されているマイクロメカニック構造の 可動区分(2)を有しているマイクロメカニック構造要素であって,スペーサ( 3)が,可動区分と基板の該可動区分に面した表面との間で,基板の該表面上に ,存在しており,これらのスペーサの寸法は,可動区分の基板又はスペーサへの 付着が阻止されるように,定められている,マイクロメカニック構造要素。 2.スペーサがフルオロカーボンから成っている,請求項1記載の構造要素。 3.請求項1又は2記載の構造要素の製作法であって, ア 基板上に犠牲層及び構造層を取り付け, イ 構造層を製作すべき可動区分に合わせて構造化し, ウ 犠牲層を可動区分と基板との間で少なくとも部分的に取り除き, エ 可動区分と基板との間でスペーサの材料から成る層部分をたい積させ, オ 該層部分をエッチングして,スペーサを製作する, 段階より成る,製作法。 4.段階エにおいて,構造層の可動区分のための部分のマスク作用を利用して, スペーサの材料から成る層を平らでない層厚でたい積させる,請求項3記載の方 法。 5.段階エにおいて,たい積を,プラズマ反応器内で,基板に向いた電界(E) の作用のもとで,フルオロカーボンの拡散性たい積として実施する,請求項2の 構造要素を製作するための,請求項3又は請求項4記載の方法。 6.段階ウにおいて,犠牲層を,構造層の可動区分のための部分と基板との間に 残って,段階エ及び段階オが行われる間に可動区分が基板に付着することを阻止 する残部(4)を除外して,取り除き,段階オの後に別の段階カにおいて,該犠 牲層残部を取り除く,請求項3から請求項5までのいずれか1項記載の方法。[Claims] 1. Of a micromechanical structure spaced above the substrate (1) A micromechanical structural element having a movable section (2), comprising a spacer ( 3) on the surface of the substrate between the movable section and the surface of the substrate facing the movable section. Exist, and the dimensions of these spacers are A micromechanical structural element that is defined to prevent adhesion. 2. 2. The structural element according to claim 1, wherein the spacer comprises a fluorocarbon. 3. A method of manufacturing a structural element according to claim 1 or 2, A. A sacrificial layer and a structural layer are attached on the substrate, B) Structure the structural layer according to the movable section to be manufactured, C) removing the sacrificial layer at least partially between the movable section and the substrate; D. Depositing a layer portion made of a spacer material between the movable section and the substrate, (E) etching the layer to produce a spacer; A production method consisting of stages. 4. In step d, utilizing the masking action of the part for the movable section of the structural layer, 4. The method according to claim 3, wherein the layer of spacer material is deposited with an uneven layer thickness. Law. 5. In step d, the deposition is carried out in a plasma reactor by an electric field (E) facing the substrate. 3. The method according to claim 2, which is carried out under the action of A method according to claim 3 or claim 4 for producing a structural element. 6. In step c, the sacrificial layer is placed between the substrate for the movable section of the structural layer and the substrate. Remains to prevent movable sections from adhering to the substrate during steps d and e Except for the remaining part (4), remove and remove the sacrificial 6. The method according to claim 3, wherein the remaining layer is removed.
JP50362296A 1994-07-04 1995-07-03 Micromechanical structural element and manufacturing method Expired - Fee Related JP3830511B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4423396.5 1994-07-04
DE4423396A DE4423396C2 (en) 1994-07-04 1994-07-04 Method for producing a micromechanical surface structure
PCT/DE1995/000855 WO1996001483A1 (en) 1994-07-04 1995-07-03 Micromechanical component and process for producing the same

Publications (2)

Publication Number Publication Date
JPH10502486A true JPH10502486A (en) 1998-03-03
JP3830511B2 JP3830511B2 (en) 2006-10-04

Family

ID=6522211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50362296A Expired - Fee Related JP3830511B2 (en) 1994-07-04 1995-07-03 Micromechanical structural element and manufacturing method

Country Status (5)

Country Link
US (1) US5885468A (en)
EP (1) EP0769196B1 (en)
JP (1) JP3830511B2 (en)
DE (1) DE4423396C2 (en)
WO (1) WO1996001483A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939171A (en) * 1995-01-24 1999-08-17 Siemens Aktiengesellschaft Micromechanical component
SE9500849D0 (en) * 1995-03-10 1995-03-10 Pharmacia Ab Methods for the manufacture of micromachined structures and micromachined structures manufactured using such methods
DE19536250A1 (en) 1995-09-28 1997-04-03 Siemens Ag Microelectronic, integrated sensor and method for producing the sensor
DE19536228B4 (en) * 1995-09-28 2005-06-30 Infineon Technologies Ag Microelectronic integrated sensor and method of manufacturing the sensor
JPH09143093A (en) 1995-11-17 1997-06-03 Hoechst Japan Ltd Cartilage/bone-inductive restoring material
DE19600399C1 (en) * 1996-01-08 1997-08-21 Siemens Ag Manufacturing process for a micromechanical component with a movable structure
US6074890A (en) * 1998-01-08 2000-06-13 Rockwell Science Center, Llc Method of fabricating suspended single crystal silicon micro electro mechanical system (MEMS) devices
US6448621B1 (en) * 1999-06-04 2002-09-10 Mrinal Thakur Sensor apparatus using an electrochemical cell
US6586810B2 (en) 1999-06-04 2003-07-01 Mrinal Thakur Sensor apparatus using an electrochemical cell
JP2001102597A (en) * 1999-09-30 2001-04-13 Fuji Electric Co Ltd Semiconductor structure and method for fabrication thereof
US6538798B2 (en) * 2000-12-11 2003-03-25 Axsun Technologies, Inc. Process for fabricating stiction control bumps on optical membrane via conformal coating of etch holes
US7034984B2 (en) * 2002-06-19 2006-04-25 Miradia Inc. Fabrication of a high fill ratio reflective spatial light modulator with hidden hinge
US6992810B2 (en) * 2002-06-19 2006-01-31 Miradia Inc. High fill ratio reflective spatial light modulator with hidden hinge
US7206110B2 (en) * 2002-06-19 2007-04-17 Miradia Inc. Memory cell dual protection
US20030234994A1 (en) * 2002-06-19 2003-12-25 Pan Shaoher X. Reflective spatial light modulator
US20040069742A1 (en) * 2002-06-19 2004-04-15 Pan Shaoher X. Fabrication of a reflective spatial light modulator
SE0203266L (en) 2002-11-05 2003-11-11 Imego Ab Method of manufacturing a mobile structure for a light-forming unit
JP2004354564A (en) * 2003-05-28 2004-12-16 Alps Electric Co Ltd Optical shutter
US7026695B2 (en) * 2003-11-19 2006-04-11 Miradia Inc. Method and apparatus to reduce parasitic forces in electro-mechanical systems
US7449284B2 (en) * 2004-05-11 2008-11-11 Miradia Inc. Method and structure for fabricating mechanical mirror structures using backside alignment techniques
US20050255666A1 (en) * 2004-05-11 2005-11-17 Miradia Inc. Method and structure for aligning mechanical based device to integrated circuits
US7284432B2 (en) * 2005-03-29 2007-10-23 Agency For Science, Technology & Research Acceleration sensitive switch
US7042619B1 (en) 2004-06-18 2006-05-09 Miradia Inc. Mirror structure with single crystal silicon cross-member
US7068417B2 (en) * 2004-07-28 2006-06-27 Miradia Inc. Method and apparatus for a reflective spatial light modulator with a flexible pedestal
US7199918B2 (en) * 2005-01-07 2007-04-03 Miradia Inc. Electrical contact method and structure for deflection devices formed in an array configuration
US7298539B2 (en) 2005-06-01 2007-11-20 Miradia Inc. Co-planar surface and torsion device mirror structure and method of manufacture for optical displays
US7202989B2 (en) 2005-06-01 2007-04-10 Miradia Inc. Method and device for fabricating a release structure to facilitate bonding of mirror devices onto a substrate
US7184195B2 (en) 2005-06-15 2007-02-27 Miradia Inc. Method and structure reducing parasitic influences of deflection devices in an integrated spatial light modulator
US7190508B2 (en) * 2005-06-15 2007-03-13 Miradia Inc. Method and structure of patterning landing pad structures for spatial light modulators
US7502158B2 (en) 2005-10-13 2009-03-10 Miradia Inc. Method and structure for high fill factor spatial light modulator with integrated spacer layer
US7382513B2 (en) * 2005-10-13 2008-06-03 Miradia Inc. Spatial light modulator with multi-layer landing structures
DE102007046498B4 (en) * 2007-09-18 2011-08-25 Austriamicrosystems Ag Method for producing a microelectromechanical component
US9069005B2 (en) * 2011-06-17 2015-06-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Capacitance detector for accelerometer and gyroscope and accelerometer and gyroscope with capacitance detector

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144871B2 (en) * 1971-09-25 1976-12-01
US4849070A (en) * 1988-09-14 1989-07-18 The United States Of America As Represented By The Secretary Of The Army Process for fabricating three-dimensional, free-standing microstructures
US5326726A (en) * 1990-08-17 1994-07-05 Analog Devices, Inc. Method for fabricating monolithic chip containing integrated circuitry and suspended microstructure
JPH04286165A (en) * 1991-03-15 1992-10-12 Ricoh Co Ltd Minute machine and manufacture thereof
US5260596A (en) * 1991-04-08 1993-11-09 Motorola, Inc. Monolithic circuit with integrated bulk structure resonator
JP2804196B2 (en) * 1991-10-18 1998-09-24 株式会社日立製作所 Microsensor and control system using the same
US5258097A (en) * 1992-11-12 1993-11-02 Ford Motor Company Dry-release method for sacrificial layer microstructure fabrication
DE4332843C2 (en) * 1993-09-27 1997-04-24 Siemens Ag Method for producing a micromechanical device and micromechanical device
US5447600A (en) * 1994-03-21 1995-09-05 Texas Instruments Polymeric coatings for micromechanical devices
US5510156A (en) * 1994-08-23 1996-04-23 Analog Devices, Inc. Micromechanical structure with textured surface and method for making same
US5640039A (en) * 1994-12-01 1997-06-17 Analog Devices, Inc. Conductive plane beneath suspended microstructure

Also Published As

Publication number Publication date
US5885468A (en) 1999-03-23
JP3830511B2 (en) 2006-10-04
DE4423396C2 (en) 2001-10-25
EP0769196A1 (en) 1997-04-23
WO1996001483A1 (en) 1996-01-18
EP0769196B1 (en) 1998-09-23
DE4423396A1 (en) 1996-01-11

Similar Documents

Publication Publication Date Title
JPH10502486A (en) Micromechanical structural elements and fabrication methods
US6787968B2 (en) Freestanding polymer MEMS structures with anti stiction
JP4056559B2 (en) Process for making micromachined structures and micromachined structures manufactured using such methods
JP5563544B2 (en) Method for forming a recess in a surface
US20120107562A1 (en) Methods for graphene-assisted fabrication of micro-and nanoscale structures and devices featuring the same
US20060196843A1 (en) Process for fabricating monolithic membrane substrate structures with well-controlled air gaps
US20020055253A1 (en) Method for producing a micromechanical structure and a micromechanical structure
JPH07505743A (en) How to make microstructures
WO2004013039A2 (en) Low temperature plasma si or sige for mems applications
US7785913B2 (en) System and method for forming moveable features on a composite substrate
US8993907B2 (en) Silicide micromechanical device and methods to fabricate same
US20090077807A1 (en) Self-Releasing Spring Structures And Methods
Mohammad et al. Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask patterned by electron beam lithography
de Boer et al. The black silicon method V: A study of the fabricating of movable structures for micro electromechanical systems
JP4938365B2 (en) Carbon mold and manufacturing method thereof
WO2023241252A1 (en) Display panel, display device, three-dimensional microstructure device and preparation method therefor
US7176047B2 (en) Method for manufacturing MEMS structures
JPH11294948A (en) Manufacture of minute device
Forsén et al. Fabrication of cantilever based mass sensors integrated with CMOS using direct write laser lithography on resist
JP5382937B2 (en) Etching method with improved control of feature critical dimension at the bottom of thick film
JP4994096B2 (en) Semiconductor device manufacturing method and semiconductor device using the same
Furukawa et al. Nickel surface micromachining
Youn et al. Microstructuring of 45-µm-Deep Dual Damascene Openings in SU-8/Si by UV-Assisted Thermal Imprinting with Opaque Mold
JP3143035B2 (en) Transfer mask manufacturing method
CN114477072A (en) Method for manufacturing fine structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040623

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050330

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060123

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees