JPH10461A - Drainage treatment method - Google Patents

Drainage treatment method

Info

Publication number
JPH10461A
JPH10461A JP15105396A JP15105396A JPH10461A JP H10461 A JPH10461 A JP H10461A JP 15105396 A JP15105396 A JP 15105396A JP 15105396 A JP15105396 A JP 15105396A JP H10461 A JPH10461 A JP H10461A
Authority
JP
Japan
Prior art keywords
water
hydrogen peroxide
drainage
cod
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15105396A
Other languages
Japanese (ja)
Inventor
Yoshiteru Misumi
好輝 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15105396A priority Critical patent/JPH10461A/en
Publication of JPH10461A publication Critical patent/JPH10461A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the quantity of injected acid for decarbonation and to enable the prevention of the propagation of bacteria in a system by a method in which COD-containing drainage, after being added with hydrogen peroxide, is oxidized by being irradiated with ultraviolet rays and treated with active carbon. SOLUTION: Hydrogen peroxide is injected into COD-containing drainage, the COD components are oxidation-decomposed by being irradiated with ultraviolet rays. The treated water, after being added with acid, is decoarbonated and then contacted with active carbon to remove residual hydrogen peroxide. Water without COD components, carbonic acid components generated by the decomposition of the COD components, and residual hydrogen peroxide is supplied to a primary water purifying apparatus, etc., as required to be treated further. As drainage applicable to the method, low-TOC drainage such as semiconductor washing drainage and high-TOC drainage such as fuel electrode condensate of a fuel cell are named.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排水処理方法に係
り、特に、半導体製造工程からの排水や燃料電池排水の
回収・再利用に好適な排水処理方法に関する。さらに詳
しくは、COD含有排水を紫外線(UV)酸化処理して
COD成分を分解除去する方法に関する。
The present invention relates to a wastewater treatment method, and more particularly to a wastewater treatment method suitable for collecting and reusing wastewater from a semiconductor manufacturing process and fuel cell wastewater. More specifically, the present invention relates to a method for decomposing and removing COD components by subjecting COD-containing wastewater to ultraviolet (UV) oxidation treatment.

【0002】[0002]

【従来の技術】半導体製造工程から排出される有機物含
有排水や燃料電池から排出されるメタノール等を含有す
る排水(燃料極凝縮水)等のCOD含有排水に過酸化水
素を添加した後UV酸化槽でUV照射してCOD成分を
炭酸ガスと水とに分解し、次いで活性炭塔に通水してこ
のUV酸化処理水中に残留する過剰分の過酸化水素を分
解除去する排水処理方法(図2)が公知である。
2. Description of the Related Art Hydrogen peroxide is added to COD-containing wastewater such as organic matter-containing wastewater discharged from a semiconductor manufacturing process and methanol-containing wastewater (fuel electrode condensed water) discharged from a fuel cell, and then a UV oxidation tank is added. Wastewater treatment method in which COD components are decomposed into carbon dioxide gas and water by UV irradiation, and then passed through an activated carbon tower to decompose and remove excess hydrogen peroxide remaining in the UV oxidized water (FIG. 2). Is known.

【0003】半導体製造工程からの排水処理において
は、このようにして得られる処理水は、通常の場合、回
収水として1次純水装置を経て更に2次純水製造装置で
処理され、超純水が製造される。
In the treatment of waste water from the semiconductor manufacturing process, the treated water thus obtained is usually treated as recovered water through a primary pure water apparatus and further treated in a secondary pure water producing apparatus, and Water is produced.

【0004】なお、UV酸化処理水のpHは、溶存して
いる全炭酸(UV酸化で生成した炭酸ガス及び炭酸ガス
から生成した炭酸水素イオン、炭酸イオン)のために
5.5程度となっている。そして、活性炭塔出口におい
ては、イオンバランスの変化でpHは6.7程度に上昇
する。
[0004] The pH of the UV oxidized water is about 5.5 due to the total dissolved carbonic acid (carbon dioxide gas generated by UV oxidation and hydrogen carbonate ions and carbonate ions generated from carbon dioxide gas). I have. At the outlet of the activated carbon tower, the pH rises to about 6.7 due to a change in ion balance.

【0005】[0005]

【発明が解決しようとする課題】上記従来の処理方法で
は、UV酸化により生成した炭酸ガス及び炭酸ガスから
生成した炭酸水素イオンや炭酸イオンがそのまま回収水
処理水槽に流入し、これらは、後段の1次純水装置のイ
オン交換装置のイオン負荷になるという問題があった。
In the above-mentioned conventional processing method, carbon dioxide gas generated by UV oxidation and hydrogen carbonate ions and carbonate ions generated from the carbon dioxide gas flow into the recovered water treatment water tank as they are, There is a problem that the ion load of the ion exchange device of the primary pure water device is caused.

【0006】なお、UV酸化槽内部では、液の混合のた
めに曝気が行われることもあり、この曝気で炭酸ガスの
一部が大気へ放出されるが、炭酸成分の大部分は除去さ
れることなく1次純水槽に流入する。
[0006] In the UV oxidation tank, aeration may be performed to mix the liquid. A part of the carbon dioxide gas is released to the atmosphere by this aeration, but most of the carbon dioxide component is removed. Flows into the primary pure water tank without any change.

【0007】1次純水製造装置のイオン交換装置の負荷
を軽減するために、活性炭塔の後段に脱炭酸塔を設けて
全炭酸分を低減することも考えられるが、この場合に
は、次のような問題が生じる。
[0007] In order to reduce the load on the ion exchange unit of the primary pure water production system, it is conceivable to provide a decarbonation tower after the activated carbon tower to reduce the total carbonic acid content. The following problems occur.

【0008】即ち、前述の如く、UV酸化処理水のpH
は比較的低いにもかかわらず、1次純水槽に流入する活
性炭塔の流出水のpHは中性付近に上昇しているため、
脱炭酸処理のためには酸を添加してpHを再び低下させ
る必要がある。従って、この酸の添加のためにイオン負
荷が増大するという問題が生じる。
That is, as described above, the pH of the UV oxidized water is
Although the pH is relatively low, the pH of the effluent of the activated carbon tower flowing into the primary pure water tank has increased to near neutral,
For decarboxylation, it is necessary to add an acid to lower the pH again. Therefore, there arises a problem that the ion load increases due to the addition of the acid.

【0009】また、脱炭酸塔内が殺菌されていないため
に、バクテリアが繁殖し易いという問題もあった。特
に、脱炭酸塔内は、ファンで多量の空気が導入されるた
め、バクテリアが繁殖し易い。
Further, there is another problem that bacteria are easily propagated because the inside of the decarbonation tower is not sterilized. In particular, since a large amount of air is introduced into the decarbonation tower by a fan, bacteria easily propagate.

【0010】本発明は上記従来の問題点を解決し、CO
D含有排水をUV酸化処理してCOD成分を分解除去す
るに当り、脱炭酸処理のための酸注入量を減少させるこ
とができると共に、系内のバクテリアの繁殖を防止でき
る排水処理方法を提供することを目的とする。
[0010] The present invention solves the above-mentioned conventional problems and provides CO 2
Provided is a wastewater treatment method capable of reducing the amount of acid injected for decarboxylation treatment and preventing the propagation of bacteria in the system when UV-treating D-containing wastewater to decompose and remove COD components. The purpose is to:

【0011】[0011]

【課題を解決するための手段】本発明の排水処理方法
は、COD含有排水に過酸化水素を添加した後、紫外線
照射による酸化処理を行い、次いで脱炭酸処理し、さら
に活性炭処理することを特徴とする。
The wastewater treatment method of the present invention is characterized in that hydrogen peroxide is added to COD-containing wastewater, then oxidation treatment is performed by ultraviolet irradiation, decarboxylation treatment, and activated carbon treatment. And

【0012】本発明においては、UV酸化処理水を、活
性炭処理する前に脱炭酸処理する。このようにUV酸化
後の比較的pHの低い水を脱炭酸処理するため、脱炭酸
のためのpH調整に必要な酸の注入量を減少させること
ができる。
In the present invention, the UV oxidized water is subjected to a decarboxylation treatment before the activated carbon treatment. As described above, since the water having a relatively low pH after the UV oxidation is subjected to the decarboxylation treatment, the injection amount of the acid necessary for the pH adjustment for the decarboxylation can be reduced.

【0013】また、この脱炭酸塔に流入するUV酸化処
理水には過酸化水素が残留しているため、脱炭酸塔内は
この過酸化水素により殺菌状態に保たれ、バクテリアの
繁殖が防止される。
[0013] Further, since hydrogen peroxide remains in the UV oxidized water flowing into the decarbonation tower, the inside of the decarbonation tower is kept in a sterilized state by the hydrogen peroxide, and the propagation of bacteria is prevented. You.

【0014】[0014]

【発明の実施の形態】図1は本発明の排水処理方法を示
す系統図である。
FIG. 1 is a system diagram showing a wastewater treatment method according to the present invention.

【0015】図示の如く、本発明の方法においては、C
OD含有排水に過酸化水素を注入した後、UV照射して
COD成分を酸化分解する。そして、UV酸化処理水に
酸を注入した後、脱炭酸処理する。次いで、脱炭酸処理
水を活性炭と接触させ、残留過酸化水素を除去する。
As shown, in the method of the present invention, C
After injecting hydrogen peroxide into the OD-containing wastewater, UV irradiation is performed to oxidatively decompose the COD component. Then, after injecting the acid into the UV oxidation treatment water, decarboxylation treatment is performed. Next, the decarbonated water is brought into contact with activated carbon to remove residual hydrogen peroxide.

【0016】UV酸化処理、脱炭酸処理及び活性炭処理
により、COD成分、CODの分解で生成した炭酸成分
及び残留過酸化水素が除去された水は、必要に応じて1
次純水装置等へ送給され、更に処理される。
The water from which the COD component, the carbonic acid component generated by the decomposition of COD, and the residual hydrogen peroxide have been removed by UV oxidation, decarboxylation, and activated carbon treatment, may be removed as necessary.
It is sent to the next pure water device and the like and further processed.

【0017】本発明方法が処理対象とする排水は、半導
体洗浄排水などの低TOC(例えばTOCが2.0pp
m以下)排水や燃料電池の燃料極凝縮水などの高TOC
(例えばTOC300ppm程度)排水が挙げられる。
Wastewater to be treated by the method of the present invention is low TOC such as semiconductor cleaning wastewater (for example, TOC is 2.0 pp.
m or less) High TOC such as waste water and fuel cell condensate
(For example, about 300 ppm of TOC) wastewater.

【0018】この排水に対する過酸化水素の添加量はT
OC1ppmに対し8.5ppm以上とくに10〜12
ppmとなるようにするのが好ましい。
The amount of hydrogen peroxide added to this wastewater is T
8.5 ppm or more to OC1 ppm, especially 10 to 12
It is preferably set to ppm.

【0019】過酸化水素添加後の排水に照射するUVの
照射光量は、除去するメタノール態のTOC1ppm当
り0.1wh以上とりわけ0.15〜0.3wh程度が
好ましい。
The amount of UV irradiation applied to the waste water after the addition of hydrogen peroxide is preferably 0.1 wh or more, and more preferably about 0.15 to 0.3 wh, per 1 ppm of the TOC in the methanol state to be removed.

【0020】脱炭酸手段としては、脱炭酸塔、脱気膜装
置などを用いることができる。
As the decarbonation means, a decarbonation tower, a degassing membrane device or the like can be used.

【0021】余剰の過酸化水素処理は、活性炭塔に通水
することにより行われるのが好ましい。
The excess hydrogen peroxide treatment is preferably performed by passing water through an activated carbon tower.

【0022】なお、UV酸化槽と脱炭酸塔との間に1次
純水原水槽を設けても良い。また、この場合、この1次
純水原水槽に市水、工水等を導入し、UV酸化処理水と
混合して処理するようにしても良い。
A primary pure water tank may be provided between the UV oxidation tank and the decarbonation tower. In this case, city water, industrial water, or the like may be introduced into the primary pure water tank and mixed with UV oxidized water for treatment.

【0023】このような本発明の排水処理方法によれ
ば、半導体洗浄排水、燃料電池の燃料極凝縮水等のCO
D含有排水の脱炭酸処理に要する酸添加量を減少させる
ことができると共に、後段の装置のイオン負荷やバクテ
リア負荷を大幅に低減することができる。
According to the wastewater treatment method of the present invention, CO washing water such as semiconductor washing waste water and fuel electrode condensed water of a fuel cell is used.
The amount of acid required for the decarboxylation treatment of the D-containing wastewater can be reduced, and the ionic load and bacterial load of the subsequent device can be significantly reduced.

【0024】[0024]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0025】実施例1 メタノールを810ppm含み、TOC310ppm、
pH4.0のリン酸型燃料電池の燃料極凝縮水を原水と
し、これを図1の手順に従って処理した。
Example 1 Methanol containing 810 ppm, TOC 310 ppm,
The fuel electrode condensed water of the phosphoric acid fuel cell having a pH of 4.0 was used as raw water, and was treated according to the procedure shown in FIG.

【0026】まず、この燃料極凝縮水に過酸化水素を、
添加後の燃料極凝縮水における過酸化水素濃度が340
0ppmとなるように添加した。
First, hydrogen peroxide is added to the fuel electrode condensed water.
The hydrogen peroxide concentration in the fuel electrode condensate after the addition is 340
It was added so as to be 0 ppm.

【0027】次いで、UV酸化槽に導入し、メタノール
態TOC1mg当り0.17whにてUVを照射した。
Then, the mixture was introduced into a UV oxidation tank and irradiated with UV at 0.17 wh per 1 mg of methanolic TOC.

【0028】次いで、この水のpHが5.5よりも高い
ときにはpHが5.5となるようにH2 SO4 を添加し
た後、脱炭酸塔に導入し、脱炭酸した。その後、この水
を活性炭塔に導入し、活性炭と接触させ、残留過酸化水
素を分解した。原水及び各部で採水した水の水質(経時
的な平均値)を表1に示す。なお、脱炭酸塔の入口側で
は、脱炭酸のためのpH調整のために、必要に応じてH
2 SO4 を注入して脱炭酸塔入口のpHを5.5以下と
するように構成しているが、本実施例では、H2 SO4
は添加された被処理水中におけるH2 SO4 濃度が1p
pm或いはそれ以下の濃度となるように注入することに
よりpHが5.5以下となったため、酸の消費量はきわ
めて微量であった。
Next, when the pH of the water was higher than 5.5, H 2 SO 4 was added so that the pH became 5.5, and the mixture was introduced into a decarbonation tower to be decarbonated. Thereafter, the water was introduced into an activated carbon tower, and brought into contact with activated carbon to decompose residual hydrogen peroxide. Table 1 shows the water quality (average over time) of raw water and water collected in each part. In addition, at the inlet side of the decarbonation tower, if necessary, H is adjusted for pH adjustment for decarbonation.
2 SO 4 is injected to adjust the pH at the inlet of the decarbonation tower to 5.5 or less. In this embodiment, H 2 SO 4 is used.
Indicates that the H 2 SO 4 concentration in the added water to be treated is 1 p.
Since the pH was reduced to 5.5 or less by injecting the solution to a concentration of pm or less, the consumption of the acid was extremely small.

【0029】[0029]

【表1】 [Table 1]

【0030】比較例1 実施例1と同じ燃料極凝縮水に図2の如く過酸化水素を
実施例1と同一割合にて添加した後、実施例1と同一の
UV酸化槽でUV酸化した。その後、活性炭塔に通水し
た後、H2 SO4 を注入して脱炭酸塔で脱炭酸処理し
た。各部で採水した水の水質を表2に示す。なお、活性
炭塔及び脱炭酸塔とも実施例1と同じものを用いた。
Comparative Example 1 As shown in FIG. 2, hydrogen peroxide was added to the same condensate of the fuel electrode as in Example 1 at the same ratio as in Example 1, and then UV-oxidized in the same UV oxidation tank as in Example 1. Thereafter, water was passed through the activated carbon tower, H 2 SO 4 was injected, and decarbonation was performed in the decarbonation tower. Table 2 shows the quality of the water sampled in each part. The same activated carbon tower and decarbonation tower as in Example 1 were used.

【0031】この比較例2においては、脱炭酸塔の入口
側で脱炭酸に好適なpH5.5以下に調整するために、
2 SO4 を18ppmとなるように注入する必要があ
った。
In Comparative Example 2, in order to adjust the pH to 5.5 or lower suitable for decarboxylation at the inlet side of the decarbonation tower,
It was necessary to inject H 2 SO 4 to 18 ppm.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例2 原水としてTOC1.2ppm、pH4.8の半導体洗
浄排水を用い、過酸化水素添加量を13ppm、UV照
射量をTOC1mg当り0.25whとした他は実施例
1と同一条件にて処理した。
Example 2 The same conditions as in Example 1 were used except that semiconductor cleaning wastewater having a TOC of 1.2 ppm and a pH of 4.8 was used as raw water, the amount of hydrogen peroxide added was 13 ppm, and the amount of UV irradiation was 0.25 wh per mg of TOC. Processed.

【0034】処理水水質、脱炭酸塔入口でのH2 SO4
添加量及び活性炭塔流出水中の菌数を表3に示す。
Treatment water quality, H 2 SO 4 at the inlet of the decarbonation tower
Table 3 shows the addition amount and the number of bacteria in the effluent of the activated carbon tower.

【0035】比較例2 実施例2と同じ原水に実施例2と同じく過酸化水素を1
3ppm添加してUV照射した後、図2の如くまず活性
炭塔に通水し、その後、H2 SO4 を添加してpH5.
5以下とし、次いで、脱炭酸塔に通水した。
Comparative Example 2 Hydrogen peroxide was added to the same raw water as in Example 2 in the same manner as in Example 2.
After UV irradiation with addition of 3 ppm, water was first passed through the activated carbon tower as shown in FIG. 2, and then H 2 SO 4 was added to adjust the pH to 5.0.
It was set to 5 or less, and then water was passed through a decarbonation tower.

【0036】処理水水質、脱炭酸塔入口でのH2 SO4
添加量及び活性炭塔流出水中の菌数を表3に示す。
Treatment water quality, H 2 SO 4 at the inlet of the decarbonation tower
Table 3 shows the addition amount and the number of bacteria in the effluent of the activated carbon tower.

【0037】[0037]

【表3】 [Table 3]

【0038】以上の結果から明らかなように、本発明の
方法によれば脱炭酸に必要な酸注入量を大幅に低減する
ことができ、また、系内のバクテリアの繁殖を防止する
ことができることから、後段の1次純水装置のイオン負
荷、菌負荷を低減することができる。
As is apparent from the above results, the method of the present invention can greatly reduce the amount of acid injection required for decarboxylation, and can prevent the growth of bacteria in the system. Therefore, it is possible to reduce the ion load and the bacterial load of the subsequent primary water purification device.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の排水処理方
法は、COD含有排水に過酸化水素を添加してUV酸化
処理後、脱炭酸処理し、次いで活性炭処理するようにし
たものであり、脱炭酸のために必要な酸添加量を著しく
減少できる。また、このため、本発明プロセスの後段に
設置される2次純水装置のイオン負荷が低減される。さ
らに、脱炭酸設備内が残留過酸化水素により殺菌状態に
保たれるため、該脱炭酸設備内におけるバクテリアの繁
殖が防止され、後段の2次純水装置に対する菌負荷も低
減される。
As described above in detail, the wastewater treatment method of the present invention is such that COD-containing wastewater is added with hydrogen peroxide, subjected to UV oxidation treatment, decarbonated, and then activated carbon treated. In addition, the amount of acid required for decarboxylation can be significantly reduced. In addition, for this reason, the ion load of the secondary pure water device installed at the latter stage of the process of the present invention is reduced. Furthermore, since the inside of the decarbonation facility is kept in a sterilized state by the residual hydrogen peroxide, the growth of bacteria in the decarbonation facility is prevented, and the bacterial load on the secondary water purification device at the subsequent stage is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排水処理方法を示す系統図である。FIG. 1 is a system diagram showing a wastewater treatment method of the present invention.

【図2】従来例を示す系統図である。FIG. 2 is a system diagram showing a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 COD含有排水に過酸化水素を添加した
後、紫外線照射による酸化処理を行い、次いで脱炭酸処
理し、さらに活性炭処理することを特徴とする排水処理
方法。
1. A wastewater treatment method comprising adding hydrogen peroxide to COD-containing wastewater, performing an oxidation treatment by irradiation with ultraviolet rays, performing a decarboxylation treatment, and further performing an activated carbon treatment.
JP15105396A 1996-06-12 1996-06-12 Drainage treatment method Pending JPH10461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15105396A JPH10461A (en) 1996-06-12 1996-06-12 Drainage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15105396A JPH10461A (en) 1996-06-12 1996-06-12 Drainage treatment method

Publications (1)

Publication Number Publication Date
JPH10461A true JPH10461A (en) 1998-01-06

Family

ID=15510276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15105396A Pending JPH10461A (en) 1996-06-12 1996-06-12 Drainage treatment method

Country Status (1)

Country Link
JP (1) JPH10461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272455A (en) * 1997-03-31 1998-10-13 Kurita Water Ind Ltd Process for making pure water

Similar Documents

Publication Publication Date Title
JP3426072B2 (en) Ultrapure water production equipment
JPH0663592A (en) Ultra-pure water producing apparatus
JP3227863B2 (en) Ultrapure water production method
JP2010099545A (en) Organic wastewater treatment method and apparatus
JP3506171B2 (en) Method and apparatus for removing TOC component
JP3389902B2 (en) Sludge treatment method and sludge treatment device
JPH07124593A (en) Highly advanced water purifying treatment method
JP3110034B2 (en) Method to remove organic matter and dissolved oxygen simultaneously
JPH10461A (en) Drainage treatment method
JP2652493B2 (en) COD removal method for leachate from landfill
JP2887284B2 (en) Ultrapure water production method
JPS5939386A (en) Removal of organic halogen compound in city water
JP2000350997A (en) Method and apparatus for treating sewage
JPH11333492A (en) Apparatus and method for methane fermentation
JP3916697B2 (en) Wastewater treatment method
JPH06285331A (en) Wet denitrification method for no containing gas of low concentration
JPH03151100A (en) Treatment of organic sewage
JPH08267077A (en) High degree treating method of waste water
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP2000350988A (en) Method and apparatus for treating excretion sewage
JP4862234B2 (en) Method for treating waste water containing hydrazine and chelating organic compound
KR100453465B1 (en) Membrane Coupled Activated Sludge Reactor incorporating Advanced Oxidation Process and Process using the Same
JP3963533B2 (en) Water treatment method
JP2000202485A (en) Treatment of organic sewage
JP2001170672A (en) Waste water treatment method