JPH1038538A - Object shape measurement device - Google Patents

Object shape measurement device

Info

Publication number
JPH1038538A
JPH1038538A JP8197444A JP19744496A JPH1038538A JP H1038538 A JPH1038538 A JP H1038538A JP 8197444 A JP8197444 A JP 8197444A JP 19744496 A JP19744496 A JP 19744496A JP H1038538 A JPH1038538 A JP H1038538A
Authority
JP
Japan
Prior art keywords
measuring
measurement
measured
head
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8197444A
Other languages
Japanese (ja)
Other versions
JP3715377B2 (en
Inventor
Sadayuki Matsumiya
貞行 松宮
Taizo Nakamura
泰三 中村
Shunsaku Tachibana
俊作 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP19744496A priority Critical patent/JP3715377B2/en
Publication of JPH1038538A publication Critical patent/JPH1038538A/en
Application granted granted Critical
Publication of JP3715377B2 publication Critical patent/JP3715377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure surface shape viewed in a plurality of directions in a short time and to improve the conformity of the coordinate between measurement data related to the plurality of directions by measuring in a plurality of directions at a time providing a shape measuring device with a plurality of optical measurement heads. SOLUTION: An upper part measurement head 60 and a lower part measurement head 62 whose, as an optical measurement head, measurement direction is downward vertical and upward vertical, respectively are assigned, facing each other, at device's upper part and device's lower part respectively. The front side surface and the rear side surface of an object to be measured 58 placed on an XY stage 54 positioned between them are, with the object 58 not inverted inside-out, shape-measured with the measurement heads 60 and 62 at the same time. Change of measurement area is done by moving the object 58 with the XY stage 54.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被測定物の画像か
ら被測定物の形状及び寸法などを測定する物体形状測定
装置に関し、複数方向からの測定や複数項目の測定にお
ける整合性の改善及び測定時間短縮に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an object shape measuring apparatus for measuring the shape and dimensions of an object to be measured from an image of the object to be measured. Related to shortening measurement time.

【0002】[0002]

【従来の技術】従来より用いられている光学式測定ヘッ
ドを有した物体形状測定装置には、被測定物の画像を処
理して被測定物の表面形状を測定するものがあった。こ
の装置は、照明光を被測定物の表側又は裏側から照射
し、その物体の反射光像又は透過光像を測定ヘッドに搭
載したCCDカメラで撮影する。このCCDカメラの出
力画像を画像処理して物体表面の段差等に起因するパタ
ーンやその寸法を測定する。
2. Description of the Related Art There has been a conventionally used object shape measuring apparatus having an optical measuring head for processing an image of an object to be measured and measuring the surface shape of the object to be measured. This device irradiates illumination light from the front side or the back side of an object to be measured, and captures a reflected light image or a transmitted light image of the object with a CCD camera mounted on a measuring head. The output image of the CCD camera is subjected to image processing to measure a pattern and its dimensions caused by a step on the surface of the object.

【0003】図8は、従来の物体形状測定装置の側面図
である。この装置は、支持台2の上にXYステージ4を
備えている。これら支持台2、XYステージ4は中央部
に開口を有する。装置下部に配置された照明器6からの
光は支持台2、XYステージ4の開口を通過し、装置上
部に配置された光学式の測定ヘッド8に到達する。一
方、測定ヘッド8も照明手段を有している。
FIG. 8 is a side view of a conventional object shape measuring device. The apparatus has an XY stage 4 on a support 2. The support 2 and the XY stage 4 have openings in the center. Light from the illuminator 6 arranged at the lower part of the apparatus passes through the support base 2 and the opening of the XY stage 4, and reaches the optical measuring head 8 arranged at the upper part of the apparatus. On the other hand, the measuring head 8 also has illumination means.

【0004】被測定物10はXYステージ4の開口部上
に載置される。照明器6は例えば、被測定物10の厚み
が薄い場合やスルーホールの形状を測定する場合に使用
され、CCDカメラはそれによる透過画像を撮像する。
一方、測定ヘッド8の照明手段を用いた場合には、被測
定物10表面の段差により生じる陰影や反射率の違いに
より生じるパターンがCCDカメラにより撮像される。
XYステージ4は水平面方向に移動させることができ、
これにより、被測定物10の広範な領域を測定すること
ができる。被測定物10は例えば、プリント基板や樹脂
成型品などである。
The device under test 10 is placed on the opening of the XY stage 4. The illuminator 6 is used, for example, when the thickness of the measured object 10 is small or when measuring the shape of a through hole, and the CCD camera captures a transmission image by the CCD camera.
On the other hand, when the illuminating means of the measuring head 8 is used, a CCD camera captures an image of a shadow caused by a step on the surface of the object 10 or a pattern caused by a difference in reflectance.
The XY stage 4 can be moved in the horizontal plane direction,
Thereby, a wide area of the DUT 10 can be measured. The device under test 10 is, for example, a printed circuit board or a resin molded product.

【0005】[0005]

【発明が解決しようとする課題】従来の測定ヘッドは、
XYステージ4の垂直上方に配置され、一方向からの測
定のみ、すなわちXYステージ4に載置された被測定物
10の上面のみの測定を行っていた。そのため、両面プ
リント基板など被測定物の上面と底面との両面を測定す
る場合、被測定物を裏返して表裏を別々に測定しなけれ
ばならなかった。また、上記装置の光学式測定ヘッドで
も段差の高さを測定することはできるが、より精度良く
高さ測定を行うためには、レーザ変位計など他方式の測
定ヘッドを備えた形状測定装置を用いて別途測定を行わ
なければならなかった。このように、従来の物体形状測
定装置では、複数の面や複数の測定項目を別々に測定す
るため、測定に要する時間が長くなるという問題や、別
々の測定による各測定データの対応関係を精度良く定め
ることができないという問題があった。例えば、同一の
装置を用いて表側と裏側との測定を行う場合であって
も、被測定物10を裏返すとそのXYステージ4上での
位置がずれ、表側表面形状と裏側表面形状との間の相対
的位置関係が正確には把握されないといった問題があっ
た。
A conventional measuring head is:
It is arranged vertically above the XY stage 4 and measures only one direction, that is, measures only the upper surface of the DUT 10 placed on the XY stage 4. Therefore, when measuring both the upper surface and the lower surface of an object to be measured such as a double-sided printed circuit board, the object to be measured has to be turned upside down and both sides must be measured separately. Also, the height of the step can be measured with the optical measuring head of the above-mentioned apparatus, but in order to measure the height with higher accuracy, a shape measuring apparatus equipped with another type of measuring head such as a laser displacement meter is required. Measurement had to be performed separately. As described above, in the conventional object shape measuring apparatus, since a plurality of surfaces and a plurality of measurement items are separately measured, a problem that a time required for the measurement is lengthened, and a correspondence relationship of each measurement data by the separate measurement is accurately determined. There was a problem that it could not be well defined. For example, even when the measurement is performed on the front side and the back side using the same apparatus, when the DUT 10 is turned over, its position on the XY stage 4 shifts, and the distance between the front side surface shape and the back side surface shape is changed. However, there is a problem that the relative positional relationship between the two cannot be accurately grasped.

【0006】本発明は上記問題点を解消するためになさ
れたもので、複数方向からの測定や複数項目の測定にお
ける測定データ間の整合性が向上し、また測定時間が短
縮される物体形状測定装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to improve the consistency between measurement data in measurement from a plurality of directions and measurement of a plurality of items, and to reduce the measurement time of an object shape. It is intended to provide a device.

【0007】[0007]

【課題を解決するための手段】本発明に係る物体形状測
定装置においては、光学式測定ヘッドが複数設けられ、
被測定物の形状を複数の測定方向から同時に測定するこ
とを特徴とする。また本発明の好適な態様においては、
前記複数の光学式測定ヘッドに含まれる第1、第2の光
学式測定ヘッドはそれらの前記測定方向が互いに逆向き
であることを特徴とする。
In the object shape measuring apparatus according to the present invention, a plurality of optical measuring heads are provided,
It is characterized in that the shape of the object to be measured is measured simultaneously from a plurality of measurement directions. In a preferred embodiment of the present invention,
The first and second optical measurement heads included in the plurality of optical measurement heads are characterized in that their measurement directions are opposite to each other.

【0008】本発明によれば、被測定物の複数の測定方
向、例えば表側と裏側から見た形状が短時間に測定され
る。また、その際、被測定物を例えば裏返すといった被
測定面を光学式測定ヘッドに向けて配置し直す動作が不
要となるので、装置に対する被測定物の位置合わせによ
るずれが各測定方向間で変動せず、各測定方向の測定デ
ータの相対的位置関係が精度良く定まる、すなわち、測
定データ間の整合性が向上する。
According to the present invention, a plurality of measurement directions of an object to be measured, for example, a shape viewed from a front side and a back side are measured in a short time. In this case, since it is not necessary to perform an operation of re-arranging the object to be measured, for example, turning the object to be turned upside down toward the optical measuring head, a deviation due to the alignment of the object to be measured with respect to the apparatus varies between the measurement directions. Instead, the relative positional relationship of the measurement data in each measurement direction is determined with high accuracy, that is, the consistency between the measurement data is improved.

【0009】本発明の好適な態様においては、さらに、
前記第1と第2の各光学式測定ヘッドをそれらの前記測
定方向に垂直な面方向に互いに独立に移動させるヘッド
移動手段と、前記第1と第2の各光学式測定ヘッドを互
いに独立に移動させて前記被測定物の両側を走査し測定
するモードと前記第1と第2の両光学式測定ヘッドをそ
れらの前記垂直な面方向における測定位置を一致させな
がら移動させて前記被測定物の両側を走査し測定するモ
ードとのいずれかのモードに応じて前記ヘッド移動手段
を制御する移動制御手段と、を有することを特徴とす
る。
In a preferred embodiment of the present invention,
Head moving means for moving the first and second optical measuring heads independently of each other in a plane direction perpendicular to the measuring direction, and independently of the first and second optical measuring heads Moving the mode by scanning and measuring both sides of the object to be measured and the first and second optical measurement heads while matching their measurement positions in the vertical plane direction, And a movement control means for controlling the head movement means in accordance with one of the modes of scanning and measuring both sides of the head.

【0010】本装置によれば、被測定物は例えばホルダ
ーに固定されて移動せず、その被測定物の正反両面を測
定するように配置された第1、第2の光学式測定ヘッド
がそれぞれ移動できる。よって、これら両測定ヘッドを
制御して、正反両面間での連携をとらずに測定する動作
モードと、正反両面間で前記面方向における測定位置を
一致させながら、すなわち連携をとりながら測定する動
作モードとが提供される。これらの動作モードのうち前
者によれば、正反両面で測定対象領域の前記面方向の位
置が異なる場合における測定を並列に実行することがで
き、測定時間が短縮される。また後者によれば、両面の
測定データ間に前記整合性を有した測定が行われる。
According to this apparatus, the object to be measured is fixed to the holder, for example, and does not move, and the first and second optical measuring heads arranged to measure the front and rear surfaces of the object to be measured are provided. You can move each. Therefore, by controlling both of these measuring heads, the operation mode in which measurement is performed without cooperation between the front and rear surfaces, and the measurement position in the surface direction between the front and rear surfaces are matched, that is, measurement is performed while cooperating. Operating modes are provided. According to the former of these operation modes, the measurement in the case where the position of the measurement target area in the plane direction is different between the normal and reverse sides can be performed in parallel, and the measurement time is reduced. According to the latter, the measurement having the consistency between the measurement data on both surfaces is performed.

【0011】本発明の好適な態様は、前記垂直な面方向
での前記第1の光学式測定ヘッドと前記第2の光学式測
定ヘッドとの相対位置を検出するヘッド相対位置検知手
段をさらに有することを特徴とする。また前記第1と第
2の光学式測定ヘッドが、それぞれフォーカスする光を
照射する照明器と前記光が前記被測定物の表面にフォー
カスしたことを検出するセンサとを含む態様において、
前記ヘッド相対位置検出手段は、前記第1の前記光学式
測定ヘッドの前記照射器に設けられた、目合わせパター
ンを投影する手段と、前記第2の前記光学式測定ヘッド
の前記センサにて前記目合わせパターンの光学像を検知
する手段とを備え、前記光学像の位置から前記第1の光
学式測定ヘッドと前記第2の光学式測定ヘッドとの相対
位置を求め出力することを特徴とする。
In a preferred aspect of the present invention, there is further provided a head relative position detecting means for detecting a relative position between the first optical measuring head and the second optical measuring head in the vertical plane direction. It is characterized by the following. In the aspect, the first and second optical measurement heads each include an illuminator that irradiates light to be focused and a sensor that detects that the light is focused on the surface of the object to be measured.
The head relative position detecting means is provided in the irradiator of the first optical measuring head, a means for projecting a registration pattern, and the sensor of the second optical measuring head, Means for detecting an optical image of a registration pattern, wherein a relative position between the first optical measuring head and the second optical measuring head is obtained and output from the position of the optical image. .

【0012】本装置によれば、第1、第2の光学式測定
ヘッドが互いに独立に移動可能であるために生じる両測
定ヘッド間の相対位置関係の変動が、ヘッド相対位置検
知手段によって検出され、検出された相対位置に基づい
て正反両面の測定データ間の前記面方向の位置の補正を
行うことができ、測定データ間の前記整合性が向上す
る。
According to the present apparatus, a change in the relative positional relationship between the first and second optical measuring heads caused by the fact that the first and second optical measuring heads can move independently of each other is detected by the head relative position detecting means. Based on the detected relative position, it is possible to correct the position in the plane direction between the measurement data on the front and rear sides, and the consistency between the measurement data is improved.

【0013】本発明の好適な態様は、前記第1と第2の
各光学式測定ヘッドのそれぞれの前記測定方向に垂直な
面方向に前記被測定物を移動させる被測定物移動手段を
有し、前記第1と第2の各光学式測定ヘッドは互いに正
対して固定され、前記被測定物を前記被測定物移動手段
により前記垂直な面方向に移動させることにより前記被
測定物の両側を走査し測定することを特徴とする。
In a preferred aspect of the present invention, there is provided an object moving means for moving the object in a plane direction perpendicular to the measuring direction of each of the first and second optical measuring heads. The first and second optical measuring heads are fixed to face each other, and the object to be measured is moved in the vertical plane direction by the object to be measured moving means, so that both sides of the object to be measured are moved. It is characterized by scanning and measuring.

【0014】本装置によれば、被測定物の正反両面を測
定するように配置された第1、第2の光学式測定ヘッド
は、前記面方向に関しては固定であり、被測定物の走査
は、被測定物を例えばXYステージのような被測定物移
動手段によって移動させることにより行う。よって、両
測定ヘッドの前記面方向に関する相対位置関係は変化し
ないので、常に両面の測定データ間の前記整合性が確保
される。
According to this apparatus, the first and second optical measuring heads arranged to measure both the front and rear surfaces of the object to be measured are fixed with respect to the plane direction, and the scanning of the object to be measured is performed. Is performed by moving the object to be measured by an object to be measured moving means such as an XY stage. Therefore, since the relative positional relationship between the two measurement heads in the plane direction does not change, the consistency between the measurement data on both sides is always ensured.

【0015】本発明の好適な態様によれば、前記第1の
光学式測定ヘッドが被測定物を落射照明する照射器を含
み、この照射器が前記第2の光学式測定ヘッドによる測
定において透過照明として用いられることを特徴とす
る。本装置によれば、測定に利用できる照明の種類が増
える。複数種類の照明、例えば、落射照明、透過照明、
斜方照明を備えることにより、例えば形状の境界が明瞭
な画像を形成する照明を選択して、形状測定の精度を向
上させることができる。
According to a preferred aspect of the present invention, the first optical measuring head includes an irradiator that illuminates the object to be measured by epi-illumination, and the irradiator transmits light when measured by the second optical measuring head. It is characterized by being used as lighting. According to the present apparatus, the types of illumination that can be used for measurement increase. Multiple types of illumination, such as epi-illumination, transmitted illumination,
By providing the oblique illumination, for example, it is possible to select illumination that forms an image having a clear boundary between shapes, thereby improving the accuracy of shape measurement.

【0016】本発明に係る物体形状測定装置は、光学式
測定ヘッドと同一の前記測定方向から被測定物の表面情
報を測定する他方式の測定ヘッドを有し、これら光学式
測定ヘッドと他方式の測定ヘッドとを相補的に用いて前
記被測定物の表面を測定することを特徴とする。
An object shape measuring apparatus according to the present invention has another type of measuring head for measuring surface information of an object to be measured from the same measuring direction as the optical measuring head. The surface of the object to be measured is measured by using the measuring head in a complementary manner.

【0017】本発明によれば、光学式測定ヘッドでは測
定できない、又は精度が得られない測定項目に関して、
その測定項目を得意とする他方式の測定ヘッドを用い
て、光学式測定ヘッドと同一の測定方向から同時に測定
を行う。これにより、複数測定項目が短時間に測定され
る。また、その際、被測定物を例えば他方式の測定ヘッ
ドを備えた他の測定装置に移し変える動作が不要となる
ので、装置に対する被測定物の位置合わせによるずれが
各測定項目間で生じず、各測定項目の測定データの相対
的位置関係が精度良く定まる、すなわち、測定データ間
の整合性が向上する。
According to the present invention, with respect to a measurement item which cannot be measured with the optical measuring head or whose accuracy cannot be obtained,
The measurement is performed simultaneously from the same measurement direction as that of the optical measurement head by using another type of measurement head that is good at the measurement item. Thereby, a plurality of measurement items are measured in a short time. Further, at this time, since the operation of transferring the object to be measured to another measuring apparatus equipped with, for example, another type of measuring head is not required, the displacement due to the alignment of the object to be measured with respect to the apparatus does not occur between the respective measurement items. The relative positional relationship of the measurement data of each measurement item is determined with high accuracy, that is, the consistency between the measurement data is improved.

【0018】[0018]

【発明の実施の形態】次に、本発明の好適な実施形態に
ついて図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of the present invention will be described with reference to the drawings.

【0019】[実施形態1]図1は、両面プリント基板
の形状測定に用いる本発明を実施した物体形状測定装置
の機械本体部の側面図である。この装置は、被測定物を
測定し画像等の測定データを出力する図1に示した機械
本体部の他、例えば小型コンピュータ等で構成され画像
処理などの測定データの処理や測定条件の指示などを行
うデータ処理部(図示せず)と機械本体部の動作を制御
する回路であるコントローラ部(図示せず)とを含んで
構成される。
[Embodiment 1] FIG. 1 is a side view of a machine main body of an object shape measuring apparatus according to the present invention used for measuring the shape of a double-sided printed circuit board. The apparatus is configured by, for example, a small computer or the like, which measures the object to be measured and outputs measurement data such as an image, as shown in FIG. And a controller (not shown), which is a circuit for controlling the operation of the machine body.

【0020】機械本体部は、支持台52の上にXYステ
ージ54を備えている。これら支持台52、XYステー
ジ54は中央部に開口56を有する。このXYステージ
54の開口56上に被測定物である両面プリント基板5
8が載置される。
The machine body has an XY stage 54 on a support 52. The support 52 and the XY stage 54 have an opening 56 at the center. On the opening 56 of the XY stage 54, a double-sided printed circuit board 5
8 is placed.

【0021】本装置は、上部測定ヘッド60と下部測定
ヘッド62との2つの光学式測定ヘッドを有している。
上部測定ヘッド60は支柱64からのアーム66によっ
て上下可能に、装置上部に配置され、一方、下部測定ヘ
ッド62は装置下部に上下可能に配置される。上部測定
ヘッド60の測定方向は垂直下向きであり、測定口60
Aから両面プリント基板58の表側面に形成された配線
パターン等の形状を撮像する。下部測定ヘッド62の測
定方向は上部測定ヘッド60の測定方向とは逆向きの垂
直上向きである。下部測定ヘッド62は支持台52、X
Yステージ54の開口56を介し測定口62Aから両面
プリント基板58の裏側面の配線パターン等を撮像す
る。
The present apparatus has two optical measuring heads, an upper measuring head 60 and a lower measuring head 62.
The upper measuring head 60 is vertically movable by an arm 66 from a column 64, while the lower measuring head 62 is vertically movable below the device. The measuring direction of the upper measuring head 60 is vertically downward, and the measuring port 60
From A, the shape of a wiring pattern or the like formed on the front side of the double-sided printed board 58 is imaged. The measurement direction of the lower measurement head 62 is vertically upward, opposite to the measurement direction of the upper measurement head 60. The lower measuring head 62 is mounted on the support table 52, X
An image of the wiring pattern and the like on the back surface of the double-sided printed circuit board 58 is taken from the measurement port 62A through the opening 56 of the Y stage 54.

【0022】両測定ヘッド60、62は正対するように
配置され、両測定ヘッドのそれぞれの測定位置の水平座
標は一致している。すなわち、下部測定ヘッド62は、
上部測定ヘッド60が測定している位置の丁度裏側を同
時に測定する。現実には両測定ヘッドの各測定位置の水
平座標間には微妙な差異が存在することも考えられる
が、そのような差異は、表裏それぞれの同一の水平位置
に目合わせパターンを有するような基準測定物を測定す
ることによって把握される。この把握された差異は、測
定ヘッドから出力された画像を処理する段階で補正され
る。よって、本装置では、2つの測定ヘッドにより両面
プリント基板の表側面と裏側面との形状が同時に測定さ
れ、しかもそれらの水平座標が整合しているので、両面
の形状の相互関係を正確に測定することができる。
The measuring heads 60 and 62 are arranged so as to face each other, and the horizontal coordinates of the respective measuring positions of the measuring heads coincide with each other. That is, the lower measurement head 62
At the same time, the position just behind the position where the upper measuring head 60 is measuring is simultaneously measured. In reality, it is conceivable that there is a slight difference between the horizontal coordinates of each measurement position of both measurement heads.However, such a difference is based on a standard that has a matching pattern at the same horizontal position on each side. It is grasped by measuring an object. This recognized difference is corrected at the stage of processing the image output from the measuring head. Therefore, in this device, the shape of the front side and the back side of the double-sided printed circuit board are measured simultaneously by the two measurement heads, and since their horizontal coordinates are aligned, the mutual relationship between the shapes of both sides is accurately measured. can do.

【0023】両測定ヘッド60、62はそれぞれ、例え
ばCCDカメラなどの撮像手段と被測定物を照らす照明
手段とを含んだ測定光学系を備えている。照明手段とし
て例えば、測定口60A、62Aの外周に配置され斜方
照明を行えるリング照明光源や、CCDカメラのレンズ
系から射出される垂直落射照明光源が設けられる。これ
ら光源には、例えばハロゲンランプなどが用いられる。
両測定ヘッドは水平方向に関しては固定されているが、
垂直方向には可動に構成されてこれにより被測定物表面
へのフォーカスを行うことができる。
Each of the measuring heads 60 and 62 has a measuring optical system including an image pickup means such as a CCD camera and an illumination means for illuminating the object to be measured. As the illumination means, for example, a ring illumination light source which is disposed on the outer periphery of the measurement ports 60A and 62A and can perform oblique illumination, and a vertical incident illumination light source emitted from a lens system of a CCD camera are provided. As these light sources, for example, halogen lamps and the like are used.
Both measuring heads are fixed in the horizontal direction,
It is configured to be movable in the vertical direction so that focusing on the surface of the object to be measured can be performed.

【0024】次に本装置の動作を説明する。各測定ヘッ
ド60、62の照明手段が両面プリント基板58の表面
を照明し、その反射光像を各CCDカメラにて撮像す
る。基板の撮像目標位置は、データ処理部からコントロ
ーラ部に指示される。コントローラ部はXYステージ5
4の駆動系を制御して、XYステージ54を水平方向
(すなわちX方向、又はY方向)に移動させ、両面プリ
ント基板58の所望の箇所をCCDカメラの撮像範囲に
持っていく。なお、本装置はコントローラ部にジョイス
ティックボックスを接続可能であり、データ処理部に代
えて、測定者のジョイスティック操作によりXYステー
ジ54を動かすこともできる。
Next, the operation of the present apparatus will be described. The illuminating means of each of the measuring heads 60 and 62 illuminates the surface of the double-sided printed circuit board 58, and the reflected light image is taken by each CCD camera. The imaging target position of the substrate is instructed from the data processing unit to the controller unit. Controller part is XY stage 5
By controlling the drive system of No. 4, the XY stage 54 is moved in the horizontal direction (ie, the X direction or the Y direction), and a desired portion of the double-sided printed circuit board 58 is brought into the imaging range of the CCD camera. In the present apparatus, a joystick box can be connected to the controller unit, and the XY stage 54 can be moved by the joystick operation of the measurer instead of the data processing unit.

【0025】CCDカメラは、基板表面の段差により生
じる陰影や材質に応じた反射率の違いにより生じるパタ
ーンを含んだ画像を出力する。データ処理部は、まずこ
の画像における明暗のコントラストからCCDカメラの
フォーカスが基板表面に合っているかどうかを検出し、
合っていない場合には測定光学系を垂直に変動させて基
板表面にフォーカスさせる。次にデータ処理部はフォー
カスした画像を処理して段差のエッジなどの形状を抽出
する。形状の寸法は、撮像倍率に基づいて求められる。
また、測定光学系の垂直方向の変動量から段差の高さ
を、例えばミクロンオーダーで測定することができる。
The CCD camera outputs an image including a shadow caused by a step on the substrate surface and a pattern caused by a difference in reflectance depending on the material. The data processing unit first detects whether or not the focus of the CCD camera is on the substrate surface from the contrast of light and dark in this image,
If they do not match, the measuring optical system is moved vertically to focus on the substrate surface. Next, the data processing unit processes the focused image to extract a shape such as a step edge. The dimensions of the shape are determined based on the imaging magnification.
Further, the height of the step can be measured, for example, on the order of microns from the amount of vertical fluctuation of the measuring optical system.

【0026】また、本装置では、一方の測定ヘッドの照
明手段を他方の測定ヘッドに対する透過照明光源として
用いることができる。透過照明で測定すれば、例えば、
プリント基板のスルーホールの透過光像は反射光像より
コントラストが良好であるので、より精度の良いスルー
ホール形状、位置等の測定が可能となる。
In this apparatus, the illumination means of one measuring head can be used as a transmitted illumination light source for the other measuring head. If measured with transmitted illumination, for example,
Since the transmitted light image of the through hole of the printed circuit board has better contrast than the reflected light image, more accurate measurement of the shape, position, and the like of the through hole can be performed.

【0027】上述したように、本装置では、両面プリン
ト基板の両面の形状を同時に測定することができる。本
装置では、被測定物を裏返すという動作が不要であるこ
とを考慮すると、片面ずつ測定する従来装置に比べて測
定時間が半分以下となる。また、被測定物を裏返すと、
その前後での被測定物のXYステージ54内での位置の
ずれが、本装置自体の精度に比べて非常に大きくなる、
つまり水平方向の位置関係がミクロンオーダーにおいて
は不明となるのに対し、本装置では被測定物を裏返すこ
となく両面を同時に測定するので、これら測定された両
面の形状の水平方向での相対的位置関係が明確であり、
表側と裏側とで整合した表面形状測定が実現される。
As described above, the present apparatus can simultaneously measure the shape of both sides of a double-sided printed circuit board. In consideration of the fact that the operation of turning over the object to be measured is not required in the present apparatus, the measurement time is reduced to half or less compared to the conventional apparatus that measures one surface at a time. Also, if you turn the DUT over,
The displacement of the object to be measured before and after that in the XY stage 54 becomes extremely large compared to the accuracy of the present apparatus itself.
In other words, while the positional relationship in the horizontal direction is unknown in the order of microns, this device measures both surfaces simultaneously without turning over the object to be measured, so the relative positions in the horizontal direction of these measured shapes of both surfaces are measured. The relationship is clear,
Surface profile measurement matched between the front side and the back side is realized.

【0028】なお、本装置では、上部、下部の測定ヘッ
ドを共に光学式測定ヘッドとしたが、例えば一方を、レ
ーザ変位計など他方式の測定ヘッドとしてもよい。
In this apparatus, both the upper and lower measuring heads are optical measuring heads. However, for example, one of them may be a measuring head of another type such as a laser displacement meter.

【0029】[実施形態2]図2は、本発明を実施した
物体形状測定装置の機械本体部の側面図である。図にお
いて実施形態1と同様の構成要素には同一の符号を付し
て説明を省略する。この装置は、実施形態1と同様、機
械本体部の他、データ処理部(図示せず)とコントロー
ラ部(図示せず)とを含んで構成される。本装置が実施
形態1の装置と異なる点は、側面測定ヘッド70を備え
ている点である。側面測定ヘッド70は測定口70Aか
ら水平の測定方向を撮像する。この側面測定ヘッド70
を備えたことにより、被測定物72の上面、底面に加え
て一方向から見た側面も同時に測定でき、多方向の測定
が迅速に行われる。なお、測定ヘッドをさらに設けて、
より多方向の測定を同時に行う装置も可能である。
[Embodiment 2] FIG. 2 is a side view of a machine main body of an object shape measuring apparatus embodying the present invention. In the figure, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. As in the first embodiment, this device includes a data processing unit (not shown) and a controller unit (not shown) in addition to the machine main unit. The present device differs from the device of the first embodiment in that a side measurement head 70 is provided. The side face measuring head 70 images a horizontal measuring direction from the measuring port 70A. This side measurement head 70
Is provided, the side surface viewed from one direction can be simultaneously measured in addition to the top surface and the bottom surface of the measured object 72, and measurement in multiple directions can be performed quickly. In addition, a measuring head is further provided,
An apparatus that simultaneously performs measurements in more directions is also possible.

【0030】[実施形態3]図3は、本発明を実施した
物体形状測定装置の機械本体部の側面図である。この装
置は、実施形態1と同様、機械本体部の他、データ処理
部(図示せず)とコントローラ部(図示せず)とを含ん
で構成される。
[Embodiment 3] FIG. 3 is a side view of a machine main body of an object shape measuring apparatus embodying the present invention. As in the first embodiment, this device includes a data processing unit (not shown) and a controller unit (not shown) in addition to the machine main unit.

【0031】機械本体部は下部筺体90上に設置された
支持台92を有し、この支持台92は中央に開口94を
有し、この開口94上に被測定物96が載置される。本
装置は、上部測定ヘッド98と下部測定ヘッド100と
の2つの光学式測定ヘッドを有している。これら各光学
式測定ヘッドはその内部構成を実施形態1の両測定ヘッ
ド60、62と同じくするが、それぞれ水平面方向に互
いに独立に移動可能に配置されている点で上記実施形態
と異なる。図4は、上部測定ヘッド98の移動手段の一
例を示す模式的な斜視図である。2つの支柱102は下
部筺体90の両端に設けられたボールねじ104を介し
て摺動可能に取り付けられ、ボールねじ104をモータ
によって回転させることによってX軸方向に移動させら
れる。両支柱102の間にはY軸方向のボールねじ10
6が渡される。上部測定ヘッド98はボールねじ106
を介して図示しない摺動面に対して摺動可能に取り付け
られ、モータによってボールねじ106を回転させるこ
とによって、Y軸方向に移動させられる。このような移
動手段により上部測定ヘッド98は水平面方向に自在に
移動可能である。一方、下部測定ヘッド100は下部筺
体90に設けられたXYステージ110上に配置され、
これによりX方向、Y方向に自在に移動可能である。な
お、移動手段は他の機構を用いたものであってもよい。
The main body of the machine has a support base 92 installed on a lower housing 90. The support base 92 has an opening 94 at the center, and an object 96 to be measured is placed on the opening 94. The apparatus has two optical measuring heads, an upper measuring head 98 and a lower measuring head 100. Each of these optical measuring heads has the same internal configuration as the two measuring heads 60 and 62 of the first embodiment, but differs from the above-described embodiment in that they are arranged so as to be movable independently of each other in the horizontal plane direction. FIG. 4 is a schematic perspective view showing an example of a moving unit of the upper measuring head 98. The two columns 102 are slidably mounted via ball screws 104 provided at both ends of the lower housing 90, and are moved in the X-axis direction by rotating the ball screws 104 by a motor. A ball screw 10 in the Y-axis direction is provided between the two supports 102.
6 is passed. The upper measuring head 98 is a ball screw 106
Is mounted so as to be slidable on a sliding surface (not shown) via a motor, and is moved in the Y-axis direction by rotating the ball screw 106 with a motor. By such a moving means, the upper measuring head 98 can freely move in the horizontal plane direction. On the other hand, the lower measuring head 100 is arranged on an XY stage 110 provided in the lower housing 90,
Thereby, it can move freely in the X direction and the Y direction. The moving means may use another mechanism.

【0032】上部測定ヘッド98、下部測定ヘッド10
0は上記実施形態同様、それぞれ垂直下向き、垂直上向
きの測定方向を有するが、両測定ヘッド98、100は
互いに独立に移動可能であるので、必ずしもそれぞれの
測定口98A、100Aは正対するとは限らない。な
お、下部測定ヘッド100は開口94を介して被測定物
96を測定する。両測定ヘッドの移動手段を制御するた
め、コントロール部とデータ処理部とが移動制御手段を
提供する。各測定ヘッドの移動目標位置情報はデータ処
理部からコントロール部に渡され、コントロール部が各
測定ヘッドの移動手段を制御する。
Upper measuring head 98, lower measuring head 10
0 has the vertical downward and vertical upward measurement directions, respectively, as in the above embodiment, but since both measurement heads 98 and 100 can move independently of each other, the respective measurement ports 98A and 100A are not necessarily directly opposite. Absent. The lower measuring head 100 measures the object 96 via the opening 94. The control unit and the data processing unit provide movement control means for controlling the movement means of both measurement heads. The movement target position information of each measurement head is passed from the data processing unit to the control unit, and the control unit controls the movement means of each measurement head.

【0033】移動制御手段は動作モードとして、両測定
ヘッドを互いに独立に移動させる非連動モードと、両測
定ヘッドの測定位置の水平面内での位置を一致させなが
ら移動させる連動モードとを有する。連動モードによれ
ば、上記実施形態の装置と同様、被測定物の表側と裏側
とで水平面方向の整合性を保ちつつ測定が行われる。一
方、非連動モードを用いれば、測定を行いたい領域の水
平面方向の位置が被測定物の表側と裏側とで異なってい
る場合に、それらを並列に測定することができ、上記実
施形態のような装置、又は上記連動モードを用いる場合
に比べて測定時間が短縮される。
The movement control means has, as operation modes, a non-interlocking mode in which the two measuring heads are moved independently of each other, and an interlocking mode in which the measuring positions of the two measuring heads are moved while matching the positions in the horizontal plane. According to the interlocking mode, the measurement is performed while maintaining the consistency in the horizontal plane direction between the front side and the back side of the DUT, as in the apparatus of the above embodiment. On the other hand, if the non-interlocking mode is used, when the position in the horizontal plane direction of the region to be measured is different between the front side and the back side of the measured object, they can be measured in parallel, as in the above embodiment. The measurement time is reduced as compared with the case of using a simple device or the above-mentioned interlocking mode.

【0034】本装置では、両測定ヘッド98、100が
独立に移動可能な構成であるので、両測定ヘッドの水平
面方向の相対位置関係が、例えば上下ヘッドの組付誤差
などによって変動する可能性がある。すなわち、移動制
御手段上では上部測定ヘッド98と下部測定ヘッド10
0とが水平面内での同一の座標に移動されても、実際に
はそれらの水平面内での位置はずれている可能性があ
る。その量はわずかなものであるが、本装置のように被
測定物の両面の形状の相関関係を精度良く測定すること
を目的とする場合には、性能劣化の原因となる。そこ
で、本装置では、測定ヘッドの相対位置を検知するヘッ
ド相対位置検出手段を設け、検出された相対位置に基づ
いて移動制御手段の制御誤差を補正する。
In the present apparatus, since the two measuring heads 98 and 100 are independently movable, the relative positional relationship between the two measuring heads in the horizontal plane may vary due to, for example, an assembling error between the upper and lower heads. is there. That is, the upper measuring head 98 and the lower measuring head 10
Even if 0 is moved to the same coordinates in the horizontal plane, their positions in the horizontal plane may actually be shifted. The amount is small, but when the purpose is to accurately measure the correlation between the shapes of both surfaces of the object to be measured as in the present apparatus, it may cause performance degradation. Therefore, in this apparatus, head relative position detecting means for detecting the relative position of the measuring head is provided, and the control error of the movement control means is corrected based on the detected relative position.

【0035】図5は、ヘッド相対位置検知手段の一例の
原理を示す模式図である。各測定ヘッド98、100は
それぞれ、撮像手段としてCCDカメラ130、垂直落
射照明光源としてハロゲンランプ132とを備えてい
る。垂直落射照明の光軸と撮像される反射光の光軸とは
各測定ヘッドの外では同一線上にあるが、これら2つの
光軸は測定ヘッド内でハーフミラー134を用いて分離
される。すなわち、ハロゲンランプ132から放射され
た光線の一部がハーフミラー134で直角方向に曲げら
れ、被測定物に鉛直に向かう。この光線と同一線上であ
ってハーフミラー134の背後にCCDカメラ130は
配置され、被測定物からの反射光のうちハーフミラー1
34で反射されずに直進する成分を受光する。
FIG. 5 is a schematic diagram showing the principle of an example of the head relative position detecting means. Each of the measuring heads 98 and 100 includes a CCD camera 130 as an imaging unit and a halogen lamp 132 as a vertical epi-illumination light source. The optical axis of the vertical epi-illumination and the optical axis of the reflected light to be imaged are on the same line outside each measurement head, but these two optical axes are separated using the half mirror 134 in the measurement head. That is, a part of the light beam emitted from the halogen lamp 132 is bent in a right angle direction by the half mirror 134 and goes vertically to the measured object. The CCD camera 130 is arranged on the same line as the light beam and behind the half mirror 134, and the half mirror 1
At 34, a component that travels straight without being reflected is received.

【0036】ヘッド相対位置検出手段を構成するため、
上記測定ヘッドの構成において、一方の測定ヘッド(本
装置では下部測定ヘッド100)に透過形液晶パネルで
構成された目合わせパターン用のマスク140が配置さ
れている。マスク140は下部測定ヘッド100のハロ
ゲンランプ132とハーフミラー134との間に配置さ
れ、測定ヘッドの相対位置を測定する場合に、電圧信号
を印加されて図6に示すような目合わせパターンを生成
する。この目合わせパターンは平面を直交する2つの直
線で4つの領域に分割したものである。これら2つの直
線、ひいては目合わせパターンの中心となるこれら2直
線の交点を画像処理で容易に処理できるように、4つの
領域の明暗は交互に定義されている。目合わせパターン
は画像処理により中心が容易に見出せるものであれば他
のパターンでもよい。
In order to constitute the head relative position detecting means,
In the configuration of the measurement head, a mask 140 for an alignment pattern formed of a transmissive liquid crystal panel is arranged on one of the measurement heads (the lower measurement head 100 in the present apparatus). The mask 140 is arranged between the halogen lamp 132 and the half mirror 134 of the lower measurement head 100, and when a relative position of the measurement head is measured, a voltage signal is applied to generate an alignment pattern as shown in FIG. I do. This alignment pattern is obtained by dividing a plane into four regions by two orthogonal straight lines. Brightness and darkness of the four regions are defined alternately so that the intersection of the two straight lines, and thus the intersection of the two straight lines, which is the center of the alignment pattern, can be easily processed by image processing. The alignment pattern may be another pattern as long as the center can be easily found by image processing.

【0037】ハロゲンランプ132からの照明光はレン
ズ142によってマスク140の位置にフォーカスさ
れ、レンズ144、146は測定ヘッド100の測定方
向線上に、マスク140の透過光による光像148を形
成する。下部測定ヘッド100のCCDカメラ130に
対する目合わせパターンの位置は、物体に投影された光
像148を撮像することによりあらかじめ決定されてい
る。
The illumination light from the halogen lamp 132 is focused on the position of the mask 140 by the lens 142, and the lenses 144 and 146 form an optical image 148 by the transmitted light of the mask 140 on the measurement direction line of the measurement head 100. The position of the alignment pattern of the lower measurement head 100 with respect to the CCD camera 130 is determined in advance by capturing the light image 148 projected on the object.

【0038】上下の測定ヘッドの水平面内での相対位置
の測定は、上下の測定ヘッド間を光が透過しうる状態
で、両測定ヘッドの測定口が移動制御手段によって正対
させられて行われる。すなわち、両測定ヘッドの水平面
内の座標は移動制御手段上は同一である。この状態で、
上部測定ヘッド98は上下に移動し、その撮像フォーカ
ス位置を上下に移動させてマスク140の光像148を
検出する。データ処理部では、上部測定ヘッド98のC
CDカメラ130から出力された画像における目合わせ
パターンの中心位置を求め、これと予め求められている
下部測定ヘッド100での中心位置との差異を両測定ヘ
ッドの相対位置として求める相対位置演算処理を行う。
The measurement of the relative positions of the upper and lower measuring heads in the horizontal plane is performed with the measuring ports of both measuring heads facing each other by the movement control means in a state where light can pass between the upper and lower measuring heads. . That is, the coordinates in the horizontal plane of both measurement heads are the same on the movement control means. In this state,
The upper measuring head 98 moves up and down, and moves its imaging focus position up and down to detect the light image 148 of the mask 140. In the data processing section, C of the upper measuring head 98
Relative position calculation processing is performed to determine the center position of the registration pattern in the image output from the CD camera 130 and determine the difference between the center position and the center position of the lower measurement head 100 previously determined as the relative position of the two measurement heads. Do.

【0039】各測定ヘッドにて得られた被測定物の表
側、裏側それぞれの形状の測定データの水平座標を、上
記相対位置を用いて補正することにより、両側の形状の
水平面方向の整合性を得ることができる。両測定ヘッド
の相対位置の測定は、例えば、上記連動モードによる測
定の開始時や終了時に支持台92の開口94に被測定物
96を載置しない状態にて行ったり、支持台92に被測
定物96載置用の開口94とは別に相対位置測定用の開
口を設け、これを用いて形状測定の途中にて適宜行うこ
とができるようにしてもよい。上述したヘッド相対位置
検出手段によれば、測定者に支持台92上に目合わせ用
の基準測定物を置いたりする手間を煩わせる必要がない
ので、相対位置の測定を自動化することができる。
By correcting the horizontal coordinates of the measurement data of the front and back sides of the measured object obtained by each measuring head using the above-described relative positions, the consistency of the shapes on both sides in the horizontal plane direction is corrected. Obtainable. The measurement of the relative position between the two measurement heads is performed, for example, at the start or end of the measurement in the above-described interlocking mode, with the object 96 not to be placed in the opening 94 of the support base 92, or when the measurement is performed on the support base 92. An opening for relative position measurement may be provided separately from the opening 94 for mounting the object 96, and the opening may be appropriately used in the middle of shape measurement using the opening. According to the above-described head relative position detection means, it is not necessary for a measurer to put a reference measurement object for alignment on the support base 92, so that the relative position measurement can be automated.

【0040】[実施形態4]図7は、本発明を実施した
物体形状測定装置の機械本体部の側面図である。この装
置は、上記実施形態と同様、機械本体部の他、データ処
理部(図示せず)とコントローラ部(図示せず)とを含
んで構成される。
[Embodiment 4] FIG. 7 is a side view of a machine main body of an object shape measuring apparatus embodying the present invention. This device is configured to include a data processing unit (not shown) and a controller unit (not shown), in addition to the machine main unit, as in the above embodiment.

【0041】機械本体部は、支持台152の上にXYス
テージ154を備えている。これら支持台152、XY
ステージ154は中央部に開口156を有する。このX
Yステージ154の開口156上に被測定物158が載
置される。
The machine body has an XY stage 154 on a support 152. These supports 152, XY
The stage 154 has an opening 156 at the center. This X
An object to be measured 158 is placed on the opening 156 of the Y stage 154.

【0042】本装置は、上部測定ヘッドを2つ有する。
第1の上部測定ヘッドは光学式測定ヘッド160であ
る。また第2の上部測定ヘッドはレーザ変位計162で
ある。装置下部には、光学式測定ヘッド160による測
定に用いる透過照明光源164が配置される。光学式測
定ヘッド160は支柱166からのアーム168によっ
て、透過照明光源164に正対して装置上部に配置さ
れ、一方、レーザ変位計162はアーム168によっ
て、光学式測定ヘッド160と透過照明光源164との
光軸170の脇に支持される。
This device has two upper measuring heads.
The first upper measuring head is an optical measuring head 160. The second upper measuring head is a laser displacement meter 162. A transmitted illumination light source 164 used for measurement by the optical measuring head 160 is disposed below the apparatus. The optical measuring head 160 is disposed on the upper part of the apparatus by the arm 168 from the support 166 and directly facing the transmitted illumination light source 164, while the laser displacement meter 162 is moved by the arm 168 to the optical measuring head 160 and the transmitted illumination light source 164. Is supported beside the optical axis 170.

【0043】レーザ変位計162は測定口162Aから
水平方向に射出したレーザを、光軸170上に配置され
たハーフミラー172にて垂直下方に反射する。そして
被測定物158で反射されたレーザ光はハーフミラー1
72にて反射されてレーザ変位計162に入射する。例
えばレーザ光を垂直方向からわずかに傾けて被測定物1
58に入射させると、レーザ変位計162における被測
定物158からのレーザ光の反射像の位置と射出位置と
のずれはレーザ光の光路長に比例する。このずれをCC
Dラインセンサ上での受光位置から検知して被測定物1
58上の反射点の垂直位置を測定することができる。そ
の他、射出されたレーザ光と反射により測定口162A
に戻ったレーザ光との位相差の変化を検出して、被測定
物158の反射点の垂直方向変位を検知するようなレー
ザ変位計も考えられる。レーザ変位計162は高さ測定
を光学式測定ヘッド160より精度良く行うことができ
る。
The laser displacement meter 162 reflects the laser emitted in the horizontal direction from the measurement port 162A vertically downward by the half mirror 172 arranged on the optical axis 170. The laser beam reflected by the object 158 is reflected by the half mirror 1
The light is reflected at 72 and enters the laser displacement meter 162. For example, the laser light is slightly tilted from the vertical
When the laser beam is incident on the laser beam 58, the deviation between the position of the reflected image of the laser beam from the object 158 and the position of the laser beam emitted from the laser displacement meter 162 is proportional to the optical path length of the laser beam. This shift is CC
The object to be measured 1 is detected from the light receiving position on the D line sensor.
The vertical position of the reflection point on 58 can be measured. In addition, the measurement port 162A is generated by the emitted laser light and reflection.
A laser displacement meter that detects a change in the phase difference from the laser light returned to the above and detects the vertical displacement of the reflection point of the object 158 to be measured is also conceivable. The laser displacement gauge 162 can measure the height more accurately than the optical measuring head 160.

【0044】光学式測定ヘッド160は、ハーフミラー
172を直進する光を用いて、測定口160Aから被測
定物の表面画像を撮像して、出力する。そしてデータ処
理部がその画像を処理して表面形状を測定する。つま
り、光学式測定ヘッド160とレーザ変位計162とは
配置位置は異なるが、同一の光軸172から被測定物1
58の表面を測定する。
The optical measuring head 160 captures and outputs a surface image of an object to be measured from the measuring port 160A using light traveling straight through the half mirror 172. Then, the data processing unit processes the image and measures the surface shape. That is, although the optical measuring head 160 and the laser displacement meter 162 are located at different positions, the measurement target 1 is moved from the same optical axis 172.
Measure the surface of 58.

【0045】本装置では、同一の測定方向から複数種類
の測定ヘッドを用いて被測定物の複数の表面情報を同時
採取する。つまり、本装置では、光学式測定ヘッド16
0が画像により水平面方向の形状を精度良く測定し、一
方、レーザ変位計162は光学式測定ヘッド160のフ
ォーカスによる高さ測定を補助し、精度の良い高さ測定
を実現し、これら両測定ヘッドにより被測定物の表面形
状を水平、垂直いずれにも精度良く測定することができ
る。
In the present apparatus, a plurality of types of surface information of an object to be measured are simultaneously sampled using a plurality of types of measuring heads from the same measuring direction. That is, in the present apparatus, the optical measuring head 16
0 accurately measures the shape in the horizontal plane from the image, while the laser displacement meter 162 assists the height measurement by focusing the optical measurement head 160 to realize accurate height measurement. Thereby, the surface shape of the object to be measured can be accurately measured both horizontally and vertically.

【0046】このように本装置は、平面寸法、高さ寸
法、形状といった複数の測定項目を複数種類の測定ヘッ
ドで同時に測定することにより、測定時間が短縮される
とともに、各測定項目のデータ間の水平面方向の位置の
整合性が確保される。なお光学式測定ヘッドに併用され
る他方式の測定ヘッドは、レーザ変位計以外のもの、例
えばタッチプローブなどであってもよい。
As described above, the present apparatus simultaneously measures a plurality of measurement items such as a plane dimension, a height dimension, and a shape with a plurality of types of measurement heads, thereby shortening the measurement time and reducing the time between data of each measurement item. Is ensured in the horizontal direction. The other type of measuring head used in combination with the optical measuring head may be other than a laser displacement meter, for example, a touch probe.

【0047】[0047]

【発明の効果】本発明の物体形状測定装置によれば、複
数の光学式測定ヘッドを備えて複数方向から同時に測定
することにより、複数方向から見た表面形状の測定が短
時間に行われ、またそれら複数方向に係る測定データ間
の座標の整合性が向上するという効果が得られる。ま
た、本発明の物体形状測定装置によれば、異なる方式の
複数測定ヘッドを備えて同一方向から同時に測定するこ
とにより、複数項目の表面情報の測定が短時間に行わ
れ、またそれら複数項目の測定データ間の座標の整合性
が向上するという効果が得られる。
According to the object shape measuring device of the present invention, by simultaneously measuring from a plurality of directions with a plurality of optical measuring heads, the surface shape can be measured from a plurality of directions in a short time. Further, an effect of improving the consistency of coordinates between the measurement data in the plurality of directions can be obtained. Further, according to the object shape measuring apparatus of the present invention, by simultaneously measuring from the same direction with a plurality of measuring heads of different types, the measurement of the surface information of a plurality of items is performed in a short time, and the measurement of the plurality of items is performed. The effect of improving the consistency of coordinates between measurement data is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る物体形状測定
装置の機械本体部の側面図。
FIG. 1 is a side view of a machine main body of an object shape measuring apparatus according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係る物体形状測定
装置の機械本体部の側面図。
FIG. 2 is a side view of a machine main body of an object shape measuring device according to a second embodiment of the present invention.

【図3】 本発明の第3の実施形態に係る物体形状測定
装置の機械本体部の側面図。
FIG. 3 is a side view of a machine main body of an object shape measuring apparatus according to a third embodiment of the present invention.

【図4】 第3の実施形態における上部測定ヘッドの移
動手段の一例を示す模式的な斜視図。
FIG. 4 is a schematic perspective view showing an example of a moving unit of an upper measuring head according to a third embodiment.

【図5】 ヘッド相対位置検知手段の一例の原理を示す
模式図。
FIG. 5 is a schematic diagram illustrating the principle of an example of a head relative position detection unit.

【図6】 目合わせパターンの一例を示す模式図。FIG. 6 is a schematic diagram showing an example of a matching pattern.

【図7】 本発明の第4の実施形態に係る物体形状測定
装置の機械本体部の側面図。
FIG. 7 is a side view of a machine main body of an object shape measuring apparatus according to a fourth embodiment of the present invention.

【図8】 従来の物体形状測定装置の側面図。FIG. 8 is a side view of a conventional object shape measuring device.

【符号の説明】[Explanation of symbols]

52,152 支持台、54,154,110 XYス
テージ、60,98上部測定ヘッド、62,100 下
部測定ヘッド、70 側面測定ヘッド、72,96,1
58 被測定物、90 下部筺体、92 支持台、10
4,106ボールねじ、130 CCDカメラ、132
ハロゲンランプ、134,172ハーフミラー、14
0 目合わせパターン用マスク、160 光学式測定ヘ
ッド、162 レーザ変位計、164 透過照明光源。
52, 152 support base, 54, 154, 110 XY stage, 60, 98 upper measuring head, 62, 100 lower measuring head, 70 side measuring head, 72, 96, 1
58 DUT, 90 Lower housing, 92 Support base, 10
4,106 ball screw, 130 CCD camera, 132
Halogen lamp, 134,172 half mirror, 14
0 Mask for alignment pattern, 160 Optical measuring head, 162 Laser displacement meter, 164 Transmission illumination light source.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被測定物を撮像する光学式測定ヘッドか
ら出力される画像情報を画像処理して、任意の測定方向
から見た前記被測定物の表面形状を測定する物体形状測
定装置において、 前記光学式測定ヘッドが複数設けられ、前記被測定物の
形状を複数の前記測定方向から同時に測定することを特
徴とする物体形状測定装置。
An object shape measuring apparatus for processing image information output from an optical measuring head for imaging an object to measure a surface shape of the object viewed from an arbitrary measurement direction, An object shape measuring apparatus, wherein a plurality of the optical measuring heads are provided, and the shape of the object to be measured is simultaneously measured from a plurality of the measuring directions.
【請求項2】 前記複数の光学式測定ヘッドに含まれる
第1、第2の光学式測定ヘッドはそれらの前記測定方向
が互いに逆向きであること、を特徴とする請求項1記載
の物体形状測定装置。
2. The object shape according to claim 1, wherein the first and second optical measurement heads included in the plurality of optical measurement heads have the measurement directions opposite to each other. measuring device.
【請求項3】 前記第1と第2の各光学式測定ヘッドを
それらの前記測定方向に垂直な面方向に、互いに独立に
移動させるヘッド移動手段と、 前記第1と第2の各光学式測定ヘッドを互いに独立に移
動させて前記被測定物の両側を走査し測定するモード
と、前記第1と第2の両光学式測定ヘッドをそれらの前
記垂直な面方向における測定位置を一致させながら移動
させて前記被測定物の両側を走査し測定するモードとの
いずれかのモードに応じて前記ヘッド移動手段を制御す
る移動制御手段と、を有することを特徴とする請求項2
記載の物体形状測定装置。
3. A head moving means for moving the first and second optical measuring heads independently of each other in a plane direction perpendicular to the measuring direction thereof, and the first and second optical measuring heads. A mode in which the measuring heads are moved independently of each other to scan and measure both sides of the object to be measured, and the first and second optical measuring heads are caused to coincide with each other at the measurement positions in the vertical plane direction. 3. A moving control means for controlling the head moving means in accordance with one of a mode of moving and scanning both sides of the object to be measured and measuring.
An object shape measuring apparatus according to claim 1.
【請求項4】 前記垂直な面方向での前記第1の光学式
測定ヘッドと前記第2の光学式測定ヘッドとの相対位置
を検出するヘッド相対位置検知手段をさらに有すること
を特徴とする請求項3記載の物体形状測定装置。
4. A head relative position detecting means for detecting a relative position between the first optical measuring head and the second optical measuring head in the vertical plane direction. Item 3. The object shape measuring device according to Item 3.
【請求項5】 前記第1と第2の光学式測定ヘッドが、
それぞれフォーカスする光を照射する照明器と前記光が
前記被測定物の表面にフォーカスしたことを検出するセ
ンサとを含み、 前記ヘッド相対位置検出手段は、 前記第1の前記光学式測定ヘッドの前記照射器に設けら
れた、目合わせパターンを投影する手段と、前記第2の
前記光学式測定ヘッドの前記センサにて前記目合わせパ
ターンの光学像を検知する手段とを備え、前記光学像の
位置から前記第1の光学式測定ヘッドと前記第2の光学
式測定ヘッドとの相対位置を求め出力すること、 を特徴とする請求項4記載の物体形状測定装置。
5. The method according to claim 1, wherein the first and second optical measuring heads include:
An illuminator for irradiating light to be focused and a sensor for detecting that the light is focused on the surface of the device to be measured, wherein the head relative position detecting means comprises: Means for projecting an alignment pattern, provided on the irradiator, and means for detecting an optical image of the alignment pattern by the sensor of the second optical measuring head, wherein the position of the optical image is The object shape measuring apparatus according to claim 4, wherein a relative position between the first optical measuring head and the second optical measuring head is obtained and output from the following.
【請求項6】 前記第1と第2の各光学式測定ヘッドの
それぞれの前記測定方向に垂直な面方向に前記被測定物
を移動させる被測定物移動手段を有し、 前記第1と第2の各光学式測定ヘッドは互いに正対して
固定され、 前記被測定物を前記被測定物移動手段により前記垂直な
面方向に移動させることにより前記被測定物の両側を走
査し測定すること、を特徴とする請求項2記載の物体形
状測定装置。
6. An object moving means for moving the object to be measured in a plane direction perpendicular to the measuring direction of each of the first and second optical measuring heads, wherein the first and second optical measuring heads are provided. 2 each optical measuring head is fixed to face each other, scanning and measuring both sides of the measured object by moving the measured object in the vertical plane direction by the measured object moving means; The object shape measuring apparatus according to claim 2, wherein:
【請求項7】 前記第1の光学式測定ヘッドが被測定物
を落射照明する照射器を含み、 この照射器が前記第2の光学式測定ヘッドによる測定に
おいて透過照明として用いられること、 を特徴とする請求項2記載の物体形状測定装置。
7. The apparatus according to claim 1, wherein the first optical measuring head includes an irradiator that illuminates the object under illumination, and the irradiator is used as transmitted illumination in the measurement by the second optical measuring head. The object shape measuring device according to claim 2, wherein
【請求項8】 被測定物を撮像する光学式測定ヘッドか
ら出力される画像情報を画像処理して、任意の測定方向
から見た前記被測定物の表面形状を測定する物体形状測
定装置において、 前記光学式測定ヘッドと同一の前記測定方向から前記被
測定物の表面情報を測定する他方式の測定ヘッドを有
し、これら光学式測定ヘッドと他方式の測定ヘッドとを
相補的に用いて前記被測定物の表面を測定することを特
徴とする物体形状測定装置。
8. An object shape measuring apparatus for processing image information output from an optical measuring head for imaging an object to measure the surface shape of the object viewed from an arbitrary measurement direction, The optical measuring head has another type of measuring head that measures the surface information of the object to be measured from the same measuring direction as the optical measuring head, and these optical measuring heads and the other types of measuring heads are used in a complementary manner. An object shape measuring device for measuring a surface of an object to be measured.
JP19744496A 1996-07-26 1996-07-26 Object shape measuring device Expired - Fee Related JP3715377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19744496A JP3715377B2 (en) 1996-07-26 1996-07-26 Object shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19744496A JP3715377B2 (en) 1996-07-26 1996-07-26 Object shape measuring device

Publications (2)

Publication Number Publication Date
JPH1038538A true JPH1038538A (en) 1998-02-13
JP3715377B2 JP3715377B2 (en) 2005-11-09

Family

ID=16374616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19744496A Expired - Fee Related JP3715377B2 (en) 1996-07-26 1996-07-26 Object shape measuring device

Country Status (1)

Country Link
JP (1) JP3715377B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221550A (en) * 2001-01-29 2002-08-09 Hioki Ee Corp Mounting position correction method of position measuring camera in double-sided board inspection device
JP2007171026A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Vertical two-dimensional surface scan mechanism and method
JP2008046066A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Method and system for measuring geometry
JP2008051733A (en) * 2006-08-28 2008-03-06 Seiko Epson Corp Profile measuring device and method
JP2009092553A (en) * 2007-10-10 2009-04-30 Olympus Corp Substrate inspecting apparatus
JP2009147320A (en) * 2007-11-21 2009-07-02 Horiba Ltd Inspection apparatus
JP2010016556A (en) * 2008-07-02 2010-01-21 Juki Corp Button recognition unit, and button recognition method
JP2013257245A (en) * 2012-06-13 2013-12-26 Daido Steel Co Ltd Inspection device for articles
CN105180829A (en) * 2015-08-24 2015-12-23 广州华工百川科技有限公司 On-line contour measurement device for production of tyre rubber part

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221550A (en) * 2001-01-29 2002-08-09 Hioki Ee Corp Mounting position correction method of position measuring camera in double-sided board inspection device
JP2007171026A (en) * 2005-12-22 2007-07-05 Toshiba Mach Co Ltd Vertical two-dimensional surface scan mechanism and method
JP2008046066A (en) * 2006-08-21 2008-02-28 Seiko Epson Corp Method and system for measuring geometry
JP2008051733A (en) * 2006-08-28 2008-03-06 Seiko Epson Corp Profile measuring device and method
JP2009092553A (en) * 2007-10-10 2009-04-30 Olympus Corp Substrate inspecting apparatus
JP2009147320A (en) * 2007-11-21 2009-07-02 Horiba Ltd Inspection apparatus
JP2010016556A (en) * 2008-07-02 2010-01-21 Juki Corp Button recognition unit, and button recognition method
JP2013257245A (en) * 2012-06-13 2013-12-26 Daido Steel Co Ltd Inspection device for articles
CN105180829A (en) * 2015-08-24 2015-12-23 广州华工百川科技有限公司 On-line contour measurement device for production of tyre rubber part

Also Published As

Publication number Publication date
JP3715377B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
US7508529B2 (en) Multi-range non-contact probe
US6464126B2 (en) Bonding apparatus and bonding method
US5008743A (en) Telecentric imaging system optical inspection machine using the same and method for correcting optical distortion produced thereby
CN108225190B (en) Measuring system
US20020054299A1 (en) Three dimensional scanning camera
JPH0150844B2 (en)
KR950012572A (en) Exposure method
JPH07311025A (en) Three-dimensional shape inspection device
WO2018096728A1 (en) Bonding device and method for detecting height of subject
JP2001249007A (en) Offset measurement method, tool position detection method and bonding device
KR20160068675A (en) Probe apparatus and probe method
JPH08167558A (en) Projection aligner
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
JP3715377B2 (en) Object shape measuring device
JPH0812127B2 (en) Curvature radius measuring device and method
KR20090062027A (en) Apparatus and method for 3-dimensional position and orientation measurements of reflection mirror package
JP3223483B2 (en) Defect inspection method and device
JPH10288508A (en) External appearance inspection device
EP0296252A1 (en) Optical measuring instrument
JP2001034743A (en) Method and device for comparison and checking
CN117337375A (en) Height measurement through a lens
JPH04113201A (en) Length measuring device
JP2924485B2 (en) Overlay accuracy measuring machine
JPH0359410A (en) Pattern detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees