JPH1037841A - Continuous wind power generator used with tide level - Google Patents
Continuous wind power generator used with tide levelInfo
- Publication number
- JPH1037841A JPH1037841A JP8227317A JP22731796A JPH1037841A JP H1037841 A JPH1037841 A JP H1037841A JP 8227317 A JP8227317 A JP 8227317A JP 22731796 A JP22731796 A JP 22731796A JP H1037841 A JPH1037841 A JP H1037841A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- tide
- air
- factory
- wind power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【0001】本発明は、上げ潮状態、満潮時の潮止まり
状態、下げ潮状態、干潮時の潮止まり状態の4つのサイ
クルを、2つの異なった働きをするタンクのバルブの開
閉の切り替えにより、風力を利用する工場内のパイプに
連続的に、風力を発生させる装置である。The present invention provides four cycles of a rising tide, a tide at high tide, a tide at low tide, and a tide at low tide by controlling the opening and closing of two differently functioning tank valves. This is a device that continuously generates wind power on pipes in a factory to be used.
【0002】工場内のパイプを流れる風力は、バルブを
絞ることにより、一定の風力に制御することができる、
また、開閉するバルブを変えることにより、工場内のパ
イプを流れる風向を変えることもできる。[0002] The wind power flowing through a pipe in a factory can be controlled to a constant wind power by closing a valve.
Also, by changing the valve that opens and closes, the direction of the wind flowing through the pipes in the factory can be changed.
【0003】工場内で必要とする最低限の風力は、年間
を通じて最低の潮位、2つのタンクの大きさ、工場内の
パイプの断面積の3つの条件から計算できる。The minimum wind power required in a factory can be calculated from three conditions: the lowest tide level throughout the year, the size of two tanks, and the cross-sectional area of pipes in the factory.
【0004】各タンクの圧力や、パイプ内の各所の圧力
や風力のデータを、工場内に集中管理し、そのデータを
もとに、各所のバルブを自動的に開閉する。[0004] The pressure of each tank, the pressure and the wind power of each location in the pipe are centrally managed in the factory, and the valves of each location are automatically opened and closed based on the data.
【0005】各タンクの圧力をクリアするときは、短時
間にクリアするのが望ましいので、圧力クリアパイプ
は、直径の大きなパイプか、複数個取り付ける。[0005] When clearing the pressure in each tank, it is desirable to clear the pressure in a short time. Therefore, the pressure clear pipe is provided with a large diameter or a plurality of pipes.
タンク1、タンク2は上の図のように、波の穏やかな、
比較的浅い海底に固定設置するのが望ましい。潮が満ち
るときは、タンクの下部の窓から、海水が流入し、タン
クの上部の空気を押し上げる、このとき、タンク1では
押し上げられた空気が、送風パイプを通って工場内のパ
イプを流れる、一方タンク2ではすべてのバルブがとじ
られているので、空気の圧力が上昇する、潮が満潮に近
ずくと、潮止まりの状態になりタンク1からの送風が弱
くなる、このときタンク2の圧縮された空気を、送風パ
イプを通して、工場内のパイプに流す。潮が下げに転ず
ると、タンクの下部の窓から、海水が流出し、タンクの
上部の空気を引き下げる、このとき、タンク1では、外
部の空気が工場内のパイプを流れて、吸い込みパイプを
通して、タンク1に流れ込む、タンク2ではすべてのバ
ルブが閉じられているので、空気が減圧状態になる、潮
が干潮に近ずくと、潮止まりの状態になり、タンク1へ
の空気の流れ込みが弱くなる、このとき、外部からの空
気は、工場内のパイプを流れて、減圧されたタンク2に
吸い込まれるようにする。このサイクルを繰り返すこと
により、風力を利用しようとする工場内のパイプには、
連続的に風力を発生させることができる。 Tank 1 and tank 2 have gentle waves as shown above.
It is desirable to fix it on the relatively shallow seabed. When the tide rises, seawater flows in from the window at the bottom of the tank and pushes up the air at the top of the tank. At this time, the pushed up air flows through the pipes in the factory through the blast pipe in the tank 1. On the other hand, since all valves are closed in the tank 2, the pressure of the air rises, and when the tide approaches high tide, the tide stops and the ventilation from the tank 1 is weakened. The produced air is passed through a pipe in the factory through a blower pipe. When the tide starts to fall, seawater flows out of the window at the bottom of the tank and pulls down the air at the top of the tank. At this time, in tank 1, external air flows through the pipes in the factory, through the suction pipe, The air flows into tank 1 and all valves are closed in tank 2, so the air is in a reduced pressure state. When the tide approaches low tide, the tide stops and the flow of air into tank 1 becomes weak. At this time, the air from the outside flows through the pipes in the factory and is sucked into the depressurized tank 2. By repeating this cycle, pipes in factories that try to use wind power
Wind power can be generated continuously.
【発明の効果】本装置は風力を発生させる装置である
が、仮にタンクの大きさを、幅250m長さ3000
m、パイプの直径を1m、潮位を2mとするならば、上
げ潮時を5時間として単純に計算すれば、工場内のパイ
プを流れる風速は約毎秒100mとなる、この条件でパ
イプの直径を半分の0.5mにするならば、工場内のパ
イプを流れる風速は約毎秒400mにも達する、しかも
これが一時的なものでなく、連続的な風力発生装置であ
るから、産業用として、いろいろな分野で利用できる。
この装置を発電に利用すれば、数々の大きなメリットが
ある、原子力発電や火力発電と違って、まず燃料が不要
である、原子力発電や火力発電では、その燃料のほとん
どを外国からの輸入に頼っているので、常に世界の政情
不安を気にしながら燃料の確保に当たらねばならない、
また、これらの燃料にかかるコストが電力料金の大きな
ウエイトを占めている、また、放射能漏れや、一酸化炭
素などの排出により環境破壊を引き起し大きな社会問題
となつている。本装置の潮位を利用して発電をすること
を潮位力発電という、この潮位力発電は、原子力発電
や、火力発電の上記した問題点をすべて解決できる画期
的な発電システムである、潮位力発電のエネルギーが風
力であることは、原子力発電や火力発電の高圧蒸気と違
い、温度下降によるエネルギーの減衰の心配がない点で
ある、従って工場内に長いパイプを通して、パイプの複
数の箇所からエネルギーを集め、それを1カ所又は、2
カ所に集約して巨大なエネルギーを作り、これで発電タ
ービンをまわすと大きな出力が得られる。The present apparatus is an apparatus for generating wind power, but the size of the tank is temporarily set to 250 m in width and 3000 m in length.
m, if the pipe diameter is 1 m, and the tide level is 2 m, the wind speed flowing through the pipes in the factory will be about 100 m per second if the calculation is simply made with the rising tide being 5 hours. Under these conditions, the pipe diameter is reduced by half. If it is 0.5 m, the wind speed flowing through the pipes in the factory will reach about 400 m per second, and since this is not a temporary but a continuous wind generator, it will be used in various fields for industrial use. Available at
If this device is used for power generation, there are a number of major advantages. Unlike nuclear power and thermal power, there is no need for fuel first. So, we have to worry about the world's political uncertainty and secure fuel.
In addition, the cost of these fuels accounts for a large part of the electricity rate, and leakage of radioactivity and emission of carbon monoxide cause environmental destruction, which is a serious social problem. Generating power using the tidal level of this device is called tidal power generation. This tidal power generation is a revolutionary power generation system that can solve all of the above-mentioned problems of nuclear power generation and thermal power generation. The fact that the energy of power generation is wind power is different from the high-pressure steam of nuclear power generation and thermal power generation in that there is no fear of the energy decay due to the temperature drop. And place it in one place or two
The energy can be concentrated in several places to produce huge energy, which can be used to turn the power generation turbine to produce a large output.
【図1】潮位の変動をグラフ化したものである、1回の
潮位の変動を、4つのサイクルに分けて、その時々の時
間と、タンク内にもたらすエネルギーを、推し量ること
ができる。FIG. 1 is a graph of the tide level fluctuation. One tide level fluctuation is divided into four cycles, and the time at that time and the energy brought into the tank can be estimated.
【図2】上げ潮の時は、タンク1の空気が、潮の上がっ
た容積だけパイプに押し出され矢印のように工場内を流
れる。工場内の風力が強すぎるときは、A又はDのバル
ブを絞る、以下このようにして、工場の入り口のバルブ
と、出口のバルブを絞ることにより、工場内の風力を制
御する、タンク2は密閉状態なので、空気の圧力が上昇
する。このときのバルブの開閉状態は...開かれたバ
ルブは、AとDで、閉じられたバルブは、B、C、E、
F、G、Hである。FIG. 2 When the tide rises, the air in the tank 1 is pushed out by the pipe by the tidal volume and flows through the factory as indicated by the arrow. When the wind power in the factory is too strong, throttle the valve of A or D. In this way, the wind power in the factory is controlled by squeezing the valve at the entrance of the factory and the valve at the outlet. Because of the closed state, the air pressure increases. The open / closed state of the valve at this time is. . . Open valves are A and D, closed valves are B, C, E,
F, G, H.
【図3】タンクの中での潮位の変動と、空気の流れの様
子の図である、干潮時に点線の部分まであった潮位が、
上げ潮状態で実線の部分まで、潮位が上がってくる、タ
ンク1では、点線と実線の間の容積分の空気が、送風用
パイプから押し出される一方タンク2では密閉状態なの
で、点線と実線の間の容積分の空気は、圧縮空気として
残る。FIG. 3 is a diagram of the tide level fluctuation in the tank and the state of the air flow.
In the rising tide, the tide level rises up to the solid line. In the tank 1, the air of the volume between the dotted line and the solid line is pushed out from the ventilation pipe, while in the tank 2, the air is closed. The volume of air remains as compressed air.
【図4】満潮時の潮止まり状態の時は、タンク1からの
風力が得られなくなるので、高圧の状態のタンク2から
の風力を得る、このとき、タンク1のバルブGを開き、
タンク1の圧力をクリアする、圧力がクリアされたら、
バルブGを閉じる。このときのバルブの開閉状態
は...開かれたバルブは、EとDで、閉じられたバル
ブは、A、B、C、F、G、H、である。FIG. 4 When the tide is stopped at the time of high tide, since wind power from the tank 1 cannot be obtained, wind power from the tank 2 in a high pressure state is obtained. At this time, the valve G of the tank 1 is opened,
Clear the pressure in tank 1, once the pressure is cleared,
Close valve G. The open / closed state of the valve at this time is. . . The open valves are E and D and the closed valves are A, B, C, F, G, H.
【図5】タンクの中での潮位の変動と、空気の流れの様
子の図である、タンク1では、空気の動きはなくなる、
タンク2では、圧縮された空気が、送風パイプを通って
工場内を流れ、外部に排出される。FIG. 5 is a diagram showing a change in tide level in a tank and a state of air flow. In tank 1, air movement stops.
In the tank 2, the compressed air flows through the factory through the blower pipe and is discharged to the outside.
【図6】下げ潮状態の時は、外部からの空気を、タンク
1に引き込む状態にして、工場内に風力を得る、そし
て、バルブHを開いてタンク2の圧力をクリアする、タ
ンク2の圧力がクリアされたら、バルブHを閉じて減圧
状態をつくる。このときのバルブの開閉状態は...開
かれたバルブは、BとCで、閉じられたバルブは、A、
D、E、F、G、H、である。FIG. 6 is a diagram showing a state of ebb from the outside when the ebb tide is in effect, drawing air from the outside into the tank 1 to obtain wind power in the factory, and opening the valve H to clear the pressure in the tank 2; Is cleared, the valve H is closed to create a reduced pressure state. The open / closed state of the valve at this time is. . . Open valves are B and C, closed valves are A,
D, E, F, G, H.
【図7】タンクの中での潮位の変動と、空気の流れの様
子の図である、満潮時に点線の部分まであった潮位が、
実線の部分まで下がる、点線と実線の間の容積分の空気
が、吸い込みパイプを通して、タンク1内にひきこまれ
る、タンク2は密閉状態なので、減圧状態となる。FIG. 7 is a diagram of the tide level fluctuation in the tank and the state of the air flow.
The air of the volume between the dotted line and the solid line, which goes down to the solid line portion, is drawn into the tank 1 through the suction pipe, and the tank 2 is in a sealed state, so that the pressure is reduced.
【図8】干潮時の潮止まり状態の時は、外部からの空気
を、減圧されたタンク2に引き込む状態にして、工場内
に風力を得る、そして、タンク1ではバルブGを開いて
圧力をクリアする、タンク1の圧力がクリアされたら、
バルブGを閉じる。このときのバルブの開閉状態
は...開かれたバルブは、BとFで、閉じられたバル
ブは、A、C、D、E、G、H、である。FIG. 8 When the tide is stopped at low tide, the air from the outside is drawn into the depressurized tank 2 to obtain wind power in the factory, and the valve G is opened in the tank 1 by opening the valve G. Clear, once the pressure in tank 1 is cleared,
Close valve G. The open / closed state of the valve at this time is. . . The open valves are B and F and the closed valves are A, C, D, E, G, H.
【図9】タンクの中の潮位の変動と、空気の流れの様子
の図である、タンク1では、潮位の変動がないので、無
圧の状態である、一方タンク2は減圧状態なので、外部
からの空気が、吸い込みパイプを通って、タンク内にひ
きこまれる。FIG. 9 is a diagram showing a change in tide level in the tank and a flow of air. In tank 1, there is no change in tide level, and there is no pressure. Air is drawn into the tank through the suction pipe.
Claims (1)
設置した2つの異なった働きをするタンクをパイプでつ
なぎ、これを潮位の変動でポンプ代わりに利用する、潮
位の変動は、上げ潮状態、満潮時の潮止まり状態、下げ
潮状態、干潮時の潮止まり状態の4つのサイクルに分
け、タンクからの圧縮又は減圧される空気と外部からの
空気を、パイプに取り付けたバルブ(弁)の開閉との組
み合わせにより、風力を利用しようとする工場内のパイ
プに、連続的に風力を発生させる装置1. Two differently functioning tanks installed in a place where tide works (generally in the sea) are connected by pipes, and this is used instead of a pump for tide fluctuations. Floating, rising tide, high tide, low tide, and low tide at low tide. Compressed or decompressed air from the tank and external air are attached to a pipe (valve). ) A device that continuously generates wind power in a pipe in a factory that uses wind power in combination with opening and closing
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8227317A JPH1037841A (en) | 1996-07-25 | 1996-07-25 | Continuous wind power generator used with tide level |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8227317A JPH1037841A (en) | 1996-07-25 | 1996-07-25 | Continuous wind power generator used with tide level |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1037841A true JPH1037841A (en) | 1998-02-13 |
Family
ID=16858915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8227317A Pending JPH1037841A (en) | 1996-07-25 | 1996-07-25 | Continuous wind power generator used with tide level |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1037841A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281344A (en) * | 2008-05-26 | 2009-12-03 | Kenichi Kobayashi | Tidal power generator |
JP2022012421A (en) * | 2020-07-01 | 2022-01-17 | パナソニックIpマネジメント株式会社 | Wave power utilization device and control method thereof |
JP2023152207A (en) * | 2022-03-30 | 2023-10-16 | 舩田 三千▲徳▼ | Provision of technology capable of performing wind pressure power generation and wind power generation for a long time by artificially performing compression/suction of air using tide force of natural energy |
-
1996
- 1996-07-25 JP JP8227317A patent/JPH1037841A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009281344A (en) * | 2008-05-26 | 2009-12-03 | Kenichi Kobayashi | Tidal power generator |
JP2022012421A (en) * | 2020-07-01 | 2022-01-17 | パナソニックIpマネジメント株式会社 | Wave power utilization device and control method thereof |
JP2023152207A (en) * | 2022-03-30 | 2023-10-16 | 舩田 三千▲徳▼ | Provision of technology capable of performing wind pressure power generation and wind power generation for a long time by artificially performing compression/suction of air using tide force of natural energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4288985A (en) | Apparatus for generating energy from the rise and fall of tides | |
JP4444279B2 (en) | production equipment | |
US7355298B2 (en) | Syphon wave generator | |
KR20230070537A (en) | Apparatus and method for extracting energy from a fluid | |
US20110042956A1 (en) | Free flow hydro-powered hydraulic ram | |
JPH0112945B2 (en) | ||
US20110225965A1 (en) | Wave energy convertor | |
US7682127B2 (en) | Dynamically self-balanced fluid turbine | |
CN109372682A (en) | A kind of automatic drain system and method suitable for floating wave energy generating set | |
US20130009401A1 (en) | Offshore hydro power station | |
JPH1037841A (en) | Continuous wind power generator used with tide level | |
JP2019015282A (en) | Wave power generator | |
FR2289763A1 (en) | Sea swell energy extraction system - has hydraulic motors between housings with flap valves controlling water flow | |
US9541055B2 (en) | Water pressure power-generating system | |
NZ534415A (en) | Modular near-shore wave-powered energy collection system | |
JPS61129476A (en) | Air flow check water valve | |
JPH03179172A (en) | Power generator for hydraulic power generation | |
US20240271592A1 (en) | Hermetic cap tidal pulse responder | |
JPS5768574A (en) | Method of pumping up water in power plant utilizing wind and water power | |
JPS60501119A (en) | Devices that use wave energy | |
JPS62228672A (en) | Tide utilizing dock type pressure power generating method | |
US10900463B2 (en) | Wave powered pump | |
JP2018100657A (en) | Tidal power generation device with water tank chamber | |
JPH04319109A (en) | Sea water-clarifying device | |
RU2127373C1 (en) | Hydroelectric power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070515 |