JPH1036912A - Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss - Google Patents

Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss

Info

Publication number
JPH1036912A
JPH1036912A JP19507596A JP19507596A JPH1036912A JP H1036912 A JPH1036912 A JP H1036912A JP 19507596 A JP19507596 A JP 19507596A JP 19507596 A JP19507596 A JP 19507596A JP H1036912 A JPH1036912 A JP H1036912A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
annealing
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19507596A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Masahiro Yamamoto
政広 山本
Seiichi Senoo
聖一 妹尾
Kazufumi Hanzawa
和文 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19507596A priority Critical patent/JPH1036912A/en
Publication of JPH1036912A publication Critical patent/JPH1036912A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of production of a nonoriented silicon steel sheet having high magnetic flux density and low iron loss at a low cost. SOLUTION: The nonoriented silicon steel sheet can be produced by using a slab having a composition consisting of, by weight, >0.1-4.0% Si, 0.1-1.0% Mn, <=0.005% C, <=0.005% N, <=0.005% S, and the balance Fe with inevitable impurities, hot-rolling the slab, subjecting the resultant hot rolled plate to acid pickling and to a single cold rolling stage, and applying finish annealing or applying skin pass rolling after finish annealing. At this time, the average coefficient of friction between the finish hot rolling roll and the steel plate is <=0.25 and coiling temp. is 750-1000 deg.C, and self-annealing is performed by means of the retained heat of a coil. Further, it is preferable to mix 0.5-20% fats and oils as lubricant with hot rolling roll cooling water at the time of hot rolling or to join a roughed sheet bar to a preceding sheet bar before finish hot rolling and carry out finish hot rolling continuously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高く、鉄損が低い優れ
た磁気特性を有する無方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density and low iron loss, which is used as an iron core material of electric equipment.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。
2. Description of the Related Art In recent years, in the fields of electric machines, especially rotating machines and medium-sized and small-sized transformers in which non-oriented electrical steel sheets are used as iron core materials, worldwide electric power and energy savings, as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading.

【0003】無方向性電磁鋼板においては低鉄損化の手
段として一般に、電気抵抗増大による渦電流損低減の観
点からSiあるいはAl等の含有量を高める方法がとら
れてきた。しかし、この方法では磁束密度が低下すると
いう問題点があった。このような問題点の克服のため
に、熱延板結晶粒径を粗大化することで磁束密度と鉄損
の両方を改善させる方法が行われてきた。
In non-oriented electrical steel sheets, as a means of reducing iron loss, a method of increasing the content of Si, Al, or the like has been generally adopted from the viewpoint of reducing eddy current loss due to an increase in electric resistance. However, this method has a problem that the magnetic flux density decreases. In order to overcome such problems, a method of improving both the magnetic flux density and the iron loss by increasing the crystal grain size of the hot-rolled sheet has been performed.

【0004】高磁束密度低鉄損の材料を提供するために
は、仕上熱延終了後、箱焼鈍あるいは連続焼鈍による熱
延板焼鈍を施し、結晶組織の粗大化を図ることが行われ
てきた。しかしながらこれらの方法では熱延板焼鈍もし
くは箱焼鈍によるコスト上昇が避けられず、昨今の需要
家の機能と価格に対する厳しい要請を同時に満足するこ
とは出来ず、低コストで高磁束密度低鉄損な無方向性電
磁鋼板を製造しうる方法の開発が求められている。
[0004] In order to provide a material having a high magnetic flux density and a low iron loss, after the finish hot rolling, a hot rolled sheet is subjected to box annealing or continuous annealing to increase the crystal structure. . However, these methods inevitably increase the cost due to hot-rolled sheet annealing or box annealing, and cannot simultaneously satisfy the strict demands of the functions and prices of recent customers at the same time, resulting in low cost, high magnetic flux density and low iron loss. Development of a method capable of manufacturing non-oriented electrical steel sheets is required.

【0005】このような問題点を解決する方法として、
特開昭54−76422号公報には、コイルを750℃
から1000℃の温度で巻取り、コイル自身の保有熱で
自己焼鈍する方法が開示されている。しかしながら先願
により提供される低コスト高磁束密度無方向性電磁鋼板
に対しても需要家の価格と磁気特性に対してはさらなる
厳しい要求があり、この要求を満足する製造プロセスの
開発が求められていた。
As a method for solving such a problem,
Japanese Patent Application Laid-Open No. 54-76422 discloses that a coil is heated at 750 ° C.
And a method of self-annealing with the heat held by the coil itself. However, even for the low-cost, high-flux-density non-oriented electrical steel sheets provided by the earlier application, there are even more stringent demands on customer prices and magnetic properties, and it is necessary to develop a manufacturing process that satisfies these requirements. I was

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
昨今の市場の要請に対し、従来困難であった、低コスト
で高磁束密度かつ低鉄損を達成する製造法を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to provide a manufacturing method which achieves a high magnetic flux density and a low iron loss at a low cost, which has been difficult in the past, in response to such demands of the market. It is the purpose.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)鋼中に重量%で、0.10%≦Si≦4.00
%、0.10%≦Mn≦1.00%、C≦0.0050
%、N≦0.0050%、S≦0.0050%を含有
し、残部がFeおよび不可避的不純物からなる成分のス
ラブを用い、熱間圧延し熱延板とし、酸洗し、1回の冷
間圧延を施し、次いで仕上焼鈍を施す無方向性電磁鋼板
の製造方法において、仕上熱間圧延時の熱延ロールと鋼
板との平均摩擦係数が0.25以下であり、仕上熱延終
了後、750℃以上1000℃以下の温度でコイルを巻
取り、5分以上5時間以下コイル自身の保有熱で自己焼
鈍することを特徴とする無方向性電磁鋼板の製造方法。 (2)1回目の冷間圧延後、仕上焼鈍を施し、さらに2
〜20%のスキンパス圧延を施す事を特徴とする前項
(1)記載の無方向性電磁鋼板の製造方法。 (3)鋼中に重量%で、更に 0.10%≦Al≦2.00% を含有することを特徴とする前項(1)あるいは(2)
記載の無方向性電磁鋼板の製造方法。 (4)仕上熱延時に潤滑剤として熱延ロール冷却水に
0.5〜20%の油脂をエマルジョン状態で混入するこ
とを特徴とする前項(1),(2)あるいは(3)の何
れか一つに記載の無方向性電磁鋼板の製造方法。 (5)粗圧延後のシートバーを仕上熱延前に先行するシ
ートバーに接合し、当該シートバーを連続して仕上熱延
に供することを特徴とする前項(1),(2),(3)
あるいは(4)の何れか一つに記載の無方向性電磁鋼板
の製造方法。
The gist of the present invention is as follows. (1) 0.10% ≦ Si ≦ 4.00% by weight in steel
%, 0.10% ≦ Mn ≦ 1.00%, C ≦ 0.0050
%, N ≦ 0.0050%, and S ≦ 0.0050%, and the remainder is made of a slab containing Fe and inevitable impurities, hot-rolled into a hot-rolled sheet, pickled, and washed once. In the method for producing a non-oriented electrical steel sheet which is subjected to cold rolling and then subjected to finish annealing, the average coefficient of friction between the hot-rolled roll and the steel sheet at the time of finishing hot rolling is 0.25 or less, and after finishing the hot rolling. A method for producing a non-oriented electrical steel sheet, comprising: winding a coil at a temperature of 750 ° C. or more and 1000 ° C. or less and self-annealing with the heat of the coil itself for 5 minutes or more and 5 hours or less. (2) After the first cold rolling, finish annealing is performed, and further 2
The method for producing a non-oriented electrical steel sheet according to the above (1), wherein skin pass rolling of up to 20% is performed. (3) The above item (1) or (2), wherein the steel further contains 0.10% ≦ Al ≦ 2.00% by weight.
The method for producing a non-oriented electrical steel sheet according to the above. (4) Any one of (1), (2) and (3) above, wherein 0.5 to 20% of fats and oils is mixed in an emulsion state in hot roll cooling water as a lubricant at the time of finishing hot rolling. A method for producing a non-oriented electrical steel sheet according to one aspect. (5) The preceding paragraphs (1), (2), and (2), wherein the sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling for finish, and the sheet bar is continuously subjected to the hot rolling for finish. 3)
Alternatively, the method for producing a non-oriented electrical steel sheet according to any one of (4).

【0008】[0008]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。発明者らは、低鉄損と高磁束密度を同時に達成すべ
く従来技術における問題点を鋭意検討を重ねた結果、重
量%でSiを0.1%を上回り4.0%以下、Mnを
0.1%以上1.0%以下、Alを0.1%以上2.0
%以下含有する鋼にあって、仕上熱間圧延時の熱延ロー
ルと鋼板との平均摩擦係数が0.25以下として熱延を
行い、これにより得た熱延板を高温で巻取り、コイル自
身の保有熱で自己焼鈍を施すことにより、磁束密度が高
く鉄損の低い無方向性電磁鋼板を製造することが可能で
あることを見出し発明の完成に至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present inventors have conducted intensive studies on the problems in the prior art in order to simultaneously achieve a low iron loss and a high magnetic flux density. As a result, the weight percentage of Si exceeds 0.1% and is 4.0% or less, and Mn is 0% or less. 0.1% or more and 1.0% or less, Al is 0.1% or more and 2.0% or less.
% Or less, and the average friction coefficient between the hot-rolled roll and the steel sheet at the time of finishing hot rolling is set to 0.25 or less, and hot-rolled. The inventors have found that it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss by performing self-annealing with own heat, and have completed the invention.

【0009】無方向性電磁鋼板の磁気特性は冷延前結晶
組織を粗大化することで改善することが可能である。従
来技術では、冷延前結晶組織をより粗大化するために、
連続焼鈍炉もしくは箱焼鈍による熱延板焼鈍を施すこと
が行われてきた。しかしながらこれらの従来技術では、
成品磁束密度の改善はみられるものの、熱延板焼鈍工程
の付加によるコスト上昇が大きく、需要家においてはそ
のコスト上昇を受け入れがたいのが実情であった。
The magnetic properties of the non-oriented electrical steel sheet can be improved by increasing the crystal structure before cold rolling. In the prior art, in order to further coarsen the crystal structure before cold rolling,
Hot-rolled sheet annealing by a continuous annealing furnace or box annealing has been performed. However, in these prior arts,
Although the magnetic flux density of the product has been improved, the cost increase due to the addition of the hot-rolled sheet annealing process has been large, and it has been difficult for consumers to accept the cost increase.

【0010】一方でこのような問題点を解決する方法と
して、特開昭54−76422号公報にはコイルを75
0℃から1000℃の温度で巻取り、コイル自身の保有
熱で自己焼鈍する方法が開示されている。しかしながら
先願による磁束密度が改善された低コスト無方向性電磁
鋼板に対しても、昨今の需要家からは更なる価格と磁気
特性に対する厳しい要求が寄せられている。
On the other hand, as a method for solving such a problem, Japanese Patent Laid-Open Publication No.
A method of winding at a temperature of 0 ° C. to 1000 ° C. and self-annealing with the heat retained by the coil itself is disclosed. However, even with the low-cost non-oriented electrical steel sheet with improved magnetic flux density according to the prior application, more and more stringent demands have been placed on the price and magnetic properties from recent consumers.

【0011】発明者等はこのような無方向性電磁鋼板の
低コストプロセスにおける磁気特性の限界を打破すべく
鋭意検討を進めた結果、Siを0.1%を上回り4.0
%以下、Mnを0.1%以上1.0%以下、Alを0.
1%以上2.0%以下含有する鋼にあって、仕上熱間圧
延時の熱延ロールと鋼板との平均摩擦係数を0.25以
下として熱延を実施し、さらにこれを750℃以上10
00℃以下の温度でコイルに巻取り、コイル自身の保有
熱で自己焼鈍を施すことで、仕上焼鈍後の製品における
磁束密度が従来の自己焼鈍法よりも高く、鉄損が低い無
方向性電磁鋼板を製造することに成功した。また、本発
明のような低摩擦率の仕上熱間圧延を安定的に行う観点
から、粗圧延後のシートバーを、先行するシートバーに
接合し、仕上熱間圧延を連続的に行うことが有効である
ことも見出した。
The present inventors have conducted intensive studies to overcome the limitations of the magnetic properties of such non-oriented electrical steel sheets in a low-cost process, and as a result, the content of Si exceeded 0.1% and was 4.0.
% Or less, Mn is 0.1% or more and 1.0% or less, and Al is 0.1% or less.
In a steel containing 1% or more and 2.0% or less, hot rolling is performed by setting the average friction coefficient between a hot-rolled roll and a steel sheet at the time of finish hot rolling to 0.25 or less, and further increasing the temperature to 750 ° C or more and 10% or less.
By winding the coil at a temperature of 00 ° C or less and applying self-annealing with the heat held by the coil itself, the magnetic flux density in the product after finish annealing is higher than that of the conventional self-annealing method, and the iron loss is low. Succeeded in producing steel sheets. In addition, from the viewpoint of stably performing the finish hot rolling with a low friction coefficient as in the present invention, the sheet bar after the rough rolling is joined to the preceding sheet bar, and the finish hot rolling is continuously performed. It was found to be effective.

【0012】まず、成分について説明すると、Siは鋼
板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改
善するために添加される。Si含有量が0.10%未満
であると固有抵抗が十分に得られないので0.10%以
上の量添加する必要がある。一方、Si含有量が4.0
%を超えると圧延時の耳割れが著しく増加し、圧延が困
難になるので4.0%以下とする必要がある。
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce eddy current loss, and improve the iron loss value. If the Si content is less than 0.10%, sufficient resistivity cannot be obtained, so it is necessary to add Si in an amount of 0.10% or more. On the other hand, when the Si content is 4.0
%, Ear cracks at the time of rolling increase remarkably, and rolling becomes difficult. Therefore, it is necessary to be 4.0% or less.

【0013】Alも、Siと同様に、鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有する。本発明が
目的とする低鉄損高磁束密度無方向性電磁鋼板を得るた
めには、0.10%以上添加する必要がある。一方、A
l含有量が2.0%を超えると、磁束密度が低下し、コ
スト高ともなるので2.00%以下とする。
Al, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. In order to obtain a low iron loss high magnetic flux density non-oriented electrical steel sheet aimed at by the present invention, it is necessary to add 0.10% or more. On the other hand, A
If the 1 content exceeds 2.0%, the magnetic flux density decreases and the cost increases, so the content is set to 2.00% or less.

【0014】Mnは、Al,Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
目的のため、Mn含有量は0.10%以上とする必要が
ある。一方、Mn含有量が1.00%を超えると熱延時
の変形抵抗が増加し、熱延が困難となるとともに、熱延
後の結晶組織が微細化しやすくなり、製品の磁気特性が
悪化するので、Mn含有量は1.00%以下とする必要
がある。また、Mn添加量は仕上熱延前の高温のシート
バー接合部の強度確保の点からも極めて重要である。な
ぜなら、低融点の硫化物が結晶粒界に存在することによ
るシートバー接合部の熱間脆化を防止するために、Mn
とSとの重量濃度の比であるMn/Sの値を20以上と
することが必要であるからである。本発明の成分範囲で
は、Mn含有量が0.10%以上であり、S含有量は
0.0050%以下であるので、Mn/Sの値は20以
上に保たれ、この観点からは問題がない。
Mn, like Al and Si, has the effect of increasing the specific resistance of a steel sheet and reducing eddy current loss. For this purpose, the Mn content needs to be 0.10% or more. On the other hand, if the Mn content exceeds 1.00%, the deformation resistance during hot rolling increases, and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer, and the magnetic properties of the product deteriorate. , Mn content must be 1.00% or less. Further, the amount of Mn addition is extremely important from the viewpoint of ensuring the strength of the high temperature sheet bar joint before hot rolling. This is because Mn is used to prevent hot embrittlement of the sheet bar joint due to the presence of the low-melting sulfide at the crystal grain boundaries.
This is because it is necessary to set the value of Mn / S, which is the ratio of the weight concentration of S and S, to 20 or more. In the component range of the present invention, since the Mn content is 0.10% or more and the S content is 0.0050% or less, the value of Mn / S is maintained at 20 or more. Absent.

【0015】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Cr,Sb,Sn,Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
In order to improve the mechanical properties, magnetic properties, and rust resistance of the product or for other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in steel, the effect of the present invention is not impaired.

【0016】C含有量が0.0050%を超えると使用
中の磁気時効により鉄損が悪化して使用時のエネルギー
ロスが増加するため、0.0050%以下に制御するこ
とが必要である。なお、熱延板焼鈍時の結晶粒成長を促
進して成品の磁気特性を向上させるため、ならびに仕上
焼鈍時の結晶粒成長を促進しさらに鉄損の改善(低減)
をはかるためには、C含有量は好ましくは0.0020
%以下、さらに好ましくは0.0010%以下であるこ
とが好ましい。
If the C content exceeds 0.0050%, iron loss is deteriorated by magnetic aging during use and energy loss during use is increased. Therefore, it is necessary to control the content to 0.0050% or less. In order to improve the magnetic properties of the product by promoting the growth of crystal grains during hot-rolled sheet annealing, and to promote the growth of crystal grains during finish annealing and further improve (reduce) iron loss.
In order to measure the C content is preferably 0.0020
%, More preferably 0.0010% or less.

【0017】S,Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延組織の粒成長を妨げるとともに、仕上焼鈍時の結
晶粒成長を妨げ鉄損が悪化するのでSは0.0050
%、Nは0.0050%以下にする必要がある。なお、
熱延板焼鈍時の結晶粒成長を促進して成品の磁気特性を
向上させるため、ならびに仕上焼鈍時の結晶粒成長を促
進し、さらに鉄損の改善(低減)をはかるためには、好
ましくはS,Nとも0.0020%以下、さらに好まし
くは0.0010%以下であることが好ましい。
S and N partially re-dissolve during the slab heating in the hot rolling step, and sulfides such as MnS and A
A nitride such as 1N is formed. The presence of S prevents the grain growth of the hot-rolled structure, and also impairs the growth of crystal grains during finish annealing, resulting in an increase in iron loss.
% And N must be 0.0050% or less. In addition,
In order to promote crystal grain growth during hot-rolled sheet annealing to improve the magnetic properties of the product, and to promote crystal grain growth during finish annealing and further improve (reduce) iron loss, Both S and N are preferably 0.0020% or less, more preferably 0.0010% or less.

【0018】次に本発明のプロセス条件について説明す
る。前記成分からなる鋼スラブは、転炉で溶製され連続
鋳造あるいは造塊−分塊圧延により製造される。鋼スラ
ブは公知の方法にて加熱される。このスラブに熱間圧延
を施し所定の厚みとする。
Next, the process conditions of the present invention will be described. The steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. This slab is subjected to hot rolling to a predetermined thickness.

【0019】仕上熱延において、仕上熱延機のワークロ
ールと鋼板との間の摩擦係数を低減するために、潤滑剤
として油脂をロール冷却水に混入する。油脂と冷却水が
分離することを防止するために必要に応じ界面活性剤を
加える。仕上熱延時にロール冷却水に混入する油脂の量
は体積比で0.5%以上20%以下とする。ロール冷却
水中の油脂量が0.5%未満ではその効果が得られず、
20%超ではその効果が飽和し、不経済であるので20
%以下とする。
In the finishing hot rolling, in order to reduce the friction coefficient between the work roll of the finishing hot rolling machine and the steel sheet, fat or oil is mixed into the roll cooling water as a lubricant. A surfactant is added as necessary to prevent separation of the oil and fat from the cooling water. The amount of fats and oils mixed into the roll cooling water at the time of finishing hot rolling is 0.5% or more and 20% or less by volume ratio. If the amount of fats and oils in the roll cooling water is less than 0.5%, the effect cannot be obtained,
If it exceeds 20%, the effect saturates and is uneconomical.
% Or less.

【0020】仕上熱延時の熱延ロールと鋼板との平均摩
擦係数の成品磁気特性に対する影響を調査するため下記
のような実験を行った。表1に示す成分の鋼を溶製し仕
上熱延を実施した。仕上熱延時の摩擦係数をロール冷却
水中の油脂含有量、油脂成分を変化させることにより
0.1以下から0.3以上まで変化させた。平均摩擦係
数は各スタンドにおける実測の先進率より計算し、その
平均値により求めた。仕上熱延終了温度は1000℃で
一定とし、2.5mm厚に仕上げ、900℃で巻取り、直
ちに保熱炉にコイルを装入し、860℃で1時間の自己
焼鈍を実施した。これを酸洗、冷延し0.50mm厚と
し、脱脂した後、成分1は900℃で、成分2は980
℃で45秒焼鈍しエプスタイン試料を切断して磁気特性
を測定した。
The following experiment was conducted in order to investigate the influence of the average friction coefficient between the hot-rolled roll and the steel sheet during the finish hot-rolling on the product magnetic properties. Steels having the components shown in Table 1 were melted and finish hot rolling was performed. The friction coefficient at the time of hot rolling was changed from 0.1 or less to 0.3 or more by changing the oil content and the oil component in the roll cooling water. The average coefficient of friction was calculated from the measured advanced rate at each stand, and the average value was determined. The finishing hot rolling end temperature was fixed at 1000 ° C., finished to a thickness of 2.5 mm, wound up at 900 ° C., immediately charged with a coil in a heat retaining furnace, and self-annealed at 860 ° C. for 1 hour. This was pickled, cold rolled to a thickness of 0.50 mm, and degreased.
The sample was annealed at 45 ° C. for 45 seconds, and the Epstein sample was cut to measure magnetic properties.

【0021】[0021]

【表1】 [Table 1]

【0022】仕上熱延時の平均摩擦係数に対する製品磁
束密度の依存性を図1に示した。平均摩擦係数として仕
上熱延機の各スタンドの実測値の平均を用いた。仕上熱
延時の平均摩擦係数が0.25以下であると成品磁束密
度が上昇することがわかる。以上の実験から示されるよ
うに、仕上熱延の圧延ロールと鋼板との間の摩擦係数の
値は、仕上熱延全スタンドの平均値が0.25以下であ
れば良い。0.25超ではその効果が不十分であり成品
磁束密度が低下する。
FIG. 1 shows the dependency of the product magnetic flux density on the average friction coefficient during hot rolling. The average of the actually measured values of each stand of the finishing hot rolling mill was used as the average friction coefficient. It can be seen that when the average coefficient of friction during hot rolling is 0.25 or less, the product magnetic flux density increases. As shown in the above experiment, the value of the coefficient of friction between the rolling roll and the steel plate of the hot-rolled finish may be such that the average value of all the stands of the hot-rolled finish is 0.25 or less. If it exceeds 0.25, the effect is insufficient, and the product magnetic flux density decreases.

【0023】本発明のごとく仕上熱間圧延を低摩擦率で
行う場合、仕上熱延機へのシートバーへの噛み込み時
に、シートバーの噛み込み不良の発生や、仕上熱延中に
ロールと鋼板の間にスリップが生じ、延ロールの寿命を
著しく縮めるとともに、鋼板表層に深い圧延疵を生じせ
しめる場合がある。このような低摩擦率の仕上熱間圧延
における問題点を解決し、安定的に操業を行う方法とし
て、粗圧延後のシートバーを、仕上熱間圧延前に先行す
るシートバーに接合し、当該シートバーを連続して仕上
熱間圧延に供することが特に有効である。
In the case where the finishing hot rolling is performed at a low friction rate as in the present invention, when the sheet bar is bitten into the finishing hot rolling machine, the sheet bar biting failure occurs, and the roll is not rolled during the finishing hot rolling. In some cases, slip occurs between the steel sheets, which significantly shortens the life of the rolls and causes deep rolling defects on the surface layer of the steel sheets. As a method of solving such problems in the finish hot rolling with a low friction coefficient and performing a stable operation, the sheet bar after the rough rolling is joined to the preceding sheet bar before the finish hot rolling, and It is particularly effective to continuously subject the sheet bar to finish hot rolling.

【0024】自己焼鈍を行う際のコイルの巻取温度は7
50℃未満では磁気特性の改善が不十分であるので、7
50℃以上とする。一方、1000℃を上回るとコイル
の巻きずれが発生しやすくなり、鋼板表層の酸化も激し
くなるため1000℃以下とする。自己焼鈍の時間は、
5分未満では磁気特性改善が不十分であるので、5分以
上行う。また、5時間を超えると鋼板の酸化が激しくな
り酸洗不良が発生しやすくなるので、5時間以下とす
る。焼鈍の効果、および経済性からみた好ましい自己焼
鈍時間は30分から90分である。本発明では自己焼鈍
中のコイルの酸化を防止するため水素を含有する還元性
雰囲気、あるいは窒素、アルゴン等の不活性ガス雰囲
気、あるいは減圧下で自己焼鈍を行ってもよい。このよ
うにして自己焼鈍を施した熱延板は1回の冷間圧延工程
を施し、次いで仕上焼鈍を施すか、その後さらにスキン
パス圧延工程を施して製品としてもよい。
The coil winding temperature during self-annealing is 7
If the temperature is lower than 50 ° C., the magnetic properties are not sufficiently improved.
50 ° C. or higher. On the other hand, if the temperature is higher than 1000 ° C., the coil is likely to be displaced, and the surface layer of the steel sheet is oxidized too much. The time for self-annealing is
If the time is less than 5 minutes, the improvement of the magnetic properties is insufficient, so that it is performed for 5 minutes or more. If the time exceeds 5 hours, oxidation of the steel sheet becomes severe, and poor pickling tends to occur. The preferable self-annealing time is 30 to 90 minutes in view of the effect of the annealing and the economic efficiency. In the present invention, in order to prevent oxidation of the coil during self-annealing, self-annealing may be performed in a reducing atmosphere containing hydrogen, in an inert gas atmosphere such as nitrogen or argon, or under reduced pressure. The hot-rolled sheet thus subjected to self-annealing may be subjected to one cold rolling step and then to finish annealing, or may be further subjected to a skin pass rolling step to obtain a product.

【0025】仕上焼鈍は連続焼鈍により施すが、その際
に特開昭61−231120号広報に開示されているご
とく、前段で950℃〜1100℃の温度範囲で5秒〜
1分間の短時間焼鈍し、後段で800℃〜950℃で1
0秒〜2分間保定するなどの方法により仕上焼鈍を行っ
てもよい。
The finish annealing is performed by continuous annealing. At that time, as disclosed in Japanese Patent Application Laid-Open No. 61-231120, the former stage is performed at a temperature range of 950 ° C. to 1100 ° C. for 5 seconds to 5 hours.
Anneal for a short time of 1 minute, and at a later stage at 800 to 950 ° C for 1 minute.
Finish annealing may be performed by a method such as holding for 0 seconds to 2 minutes.

【0026】またさらに連続焼鈍後にスキンパス圧延工
程を付加して製品としてもよい。スキンパス圧延率は2
%未満ではその効果が得られず、20%超では磁気特性
が悪化するため2%から20%とする。
Further, a skin pass rolling step may be added after the continuous annealing to obtain a product. Skin pass rolling rate is 2
If it is less than 20%, the effect cannot be obtained, and if it exceeds 20%, the magnetic properties are deteriorated.

【0027】[0027]

【実施例】次に、本発明の実施例について述べる。 (実施例1)表2に示した成分を有する無方向性電磁鋼
用スラブを通常の方法にて加熱し、粗圧延機により厚み
50mmの粗バーに仕上げ、その後、仕上熱延機により
2.5mmに仕上げた。仕上熱延機のロール冷却水に油脂
をエマルジョン状態で混入し、その混入量を変えること
より摩擦係数を調整した。平均摩擦係数は各スタンドに
おける実測の先進率より計算し、その平均値により求め
た。この時、仕上熱延終了温度は1000℃とし、90
0℃で巻取り、コイルを保熱炉に装入し、880℃で1
時間の自己焼鈍を施した。
Next, an embodiment of the present invention will be described. (Example 1) A slab for non-oriented electromagnetic steel having the components shown in Table 2 was heated by a usual method, finished to a rough bar with a thickness of 50 mm by a rough rolling machine, and then finished by a finishing hot rolling machine. Finished to 5mm. Oil and fat were mixed in an emulsion state into the cooling water of the roll of the finishing hot rolling machine, and the friction coefficient was adjusted by changing the mixing amount. The average coefficient of friction was calculated from the measured advanced rate at each stand, and the average value was determined. At this time, the finish hot rolling end temperature was 1000 ° C.
Winding at 0 ° C, charging the coil into a heat retention furnace,
Time self-annealing was applied.

【0028】その後、酸洗を施し、冷間圧延により0.
50mmに仕上げた。これを連続焼鈍炉にて900℃で4
5秒間焼鈍した。その後、エプスタイン試料に切断し、
磁気特性を測定した。表3に本発明と比較例の成分と磁
気測定結果をあわせて示す。このように仕上熱延時の平
均摩擦係数を0.25以下に低減すれば、磁束密度の値
が高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼
板を得ることが可能である。
After that, it is pickled and then cold-rolled to a thickness of 0.1 mm.
Finished to 50mm. This was heated at 900 ° C in a continuous annealing furnace for 4 hours.
Anneal for 5 seconds. Then, cut into Epstein samples,
The magnetic properties were measured. Table 3 also shows the components of the present invention and comparative examples and the results of magnetic measurement. If the average friction coefficient at the time of finishing hot rolling is reduced to 0.25 or less, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss value and excellent magnetic properties.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例2)表4に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み55mmの粗バーに仕上げ、その後、仕上熱
延機により2.5mmに仕上げた。仕上熱延機のロール冷
却水に油脂をエマルジョン状態で混入し、その混入量を
調整するこにより平均摩擦係数を変化させた。平均摩擦
係数は各スタンドにおける実測の先進率より計算し、そ
の平均値により求めた。また、仕上熱間圧延時に鋼板と
ワークロール間にスリップが生じ、鋼板の表面に疵が形
成されることを防止するために、粗圧延後のシートバー
を先行するシートバーに溶接し、仕上熱間圧延を連続し
て行った。熱延仕上温度は950℃とし、860℃で巻
取り、コイルを直ちに保熱炉に装入し、860℃で1時
間の自己焼鈍を施した。
(Example 2) A slab for non-oriented electromagnetic steel having the components shown in Table 4 was heated by a usual method, and was finished into a rough bar having a thickness of 55 mm by a rough rolling mill. To 2.5 mm. Oils and fats were mixed in an emulsion state into the cooling water of the roll of the finishing hot rolling machine, and the average friction coefficient was changed by adjusting the mixing amount. The average coefficient of friction was calculated from the measured advanced rate at each stand, and the average value was determined. Further, in order to prevent a slip from occurring between the steel sheet and the work roll during the finish hot rolling and forming a flaw on the surface of the steel sheet, the sheet bar after the rough rolling is welded to the preceding sheet bar, and the finish heat is applied. Cold rolling was performed continuously. The hot-rolling finishing temperature was 950 ° C., the coil was wound at 860 ° C., the coil was immediately charged into a heat retaining furnace, and self-annealed at 860 ° C. for 1 hour.

【0032】その後、酸洗を施し、冷間圧延により0.
35mmに仕上げた。これを連続焼鈍炉にて前段において
1050℃で10秒保定し、後段は900℃で30秒保
定し焼鈍した。その後、エプスタイン試料に切断し、磁
気特性を測定した。表5に本発明と比較例の成分と磁気
測定結果をあわせて示す。表5に示されるように、仕上
熱延時の平均摩擦係数を0.25以下に低減すれば、磁
束密度の値が高く、鉄損値の低い磁気特性の優れた無方
向性電磁鋼板を得ることが可能である。
Thereafter, pickling is carried out and cold rolling is carried out to obtain 0.1%.
Finished to 35mm. This was annealed in a continuous annealing furnace at 1050 ° C. for 10 seconds in the first stage and 900 ° C. for 30 seconds in the second stage. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured. Table 5 also shows the components of the present invention and comparative examples and the results of magnetic measurement. As shown in Table 5, if the average friction coefficient at the time of finishing hot rolling is reduced to 0.25 or less, a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss value and excellent magnetic properties can be obtained. Is possible.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】(実施例3)表6に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み50mmの粗バーに仕上げ、その後、仕上熱
延機により2.5mmに仕上げた。仕上熱延機のロール冷
却水に油脂をエマルジョン状態で混入し、その混入量を
調整するこにより平均摩擦係数を0.21とした。平均
摩擦係数は各スタンドにおける実測の先進率より計算
し、その平均値により求めた。熱延終了後のコイルは表
7に示した条件で自己焼鈍を実施した。その後、酸洗を
施し、冷間圧延により0.35mmに仕上げた。これを連
続焼鈍炉にて980℃で45秒間焼鈍した。その後、エ
プスタイン試料に切断し、磁気特性を測定した。表7に
自己焼鈍条件と磁気測定結果をあわせて示す。
(Example 3) A slab for non-oriented electromagnetic steel having the components shown in Table 6 was heated by a usual method, and finished into a 50 mm-thick coarse bar by a rough rolling mill. To 2.5 mm. Oils and fats were mixed in an emulsion state into the roll cooling water of the finishing hot rolling mill, and the average friction coefficient was adjusted to 0.21 by adjusting the mixing amount. The average coefficient of friction was calculated from the measured advanced rate at each stand, and the average value was determined. After the completion of hot rolling, the coil was subjected to self-annealing under the conditions shown in Table 7. Then, it was pickled and finished to 0.35 mm by cold rolling. This was annealed at 980 ° C. for 45 seconds in a continuous annealing furnace. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured. Table 7 also shows the self-annealing conditions and the results of the magnetic measurement.

【0036】表7に示されるように、自己焼鈍温度が7
50℃以上1000℃以下であれば、特性の優れた無方
向性電磁鋼板を得ることが可能である。850℃未満で
あれば磁気特性の改善が不十分であり、1000℃以上
にコイルの巻取温度を上昇させると巻きずれが発生する
ため、自己焼鈍は不可能であった。また、自己焼鈍時間
は5分以上5時間以内で優れた磁気特性が得られている
ことがわかる。連続焼鈍による熱延板焼鈍時間が5時間
以上の場合、酸洗不良が発生し、鉄損がかえって悪化し
ている。このように、仕上熱延時の平均摩擦係数の低減
とともに、熱延板焼鈍条件を適切に制御することによ
り、磁束密度の値が高く、鉄損値の低い磁気特性の優れ
た無方向性電磁鋼板を得ることが可能である。
As shown in Table 7, the self-annealing temperature was 7
When it is 50 ° C. or more and 1000 ° C. or less, it is possible to obtain a non-oriented electrical steel sheet having excellent characteristics. If the temperature is lower than 850 ° C., the improvement of the magnetic properties is insufficient, and if the winding temperature of the coil is raised to 1000 ° C. or higher, a winding deviation occurs, so that self-annealing was impossible. Further, it can be seen that excellent magnetic properties are obtained when the self-annealing time is 5 minutes or more and 5 hours or less. If the annealing time of the hot-rolled sheet by continuous annealing is 5 hours or more, poor pickling occurs, and iron loss is rather deteriorated. As described above, by reducing the average friction coefficient at the time of finishing hot rolling and appropriately controlling the annealing conditions of the hot rolled sheet, the value of the magnetic flux density is high, and the iron loss value is low. It is possible to obtain

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】(実施例4)表8に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み50mmの粗バーに仕上げ、その後、仕上熱
延機により2.5mmに仕上げた。仕上熱延機のロール冷
却水に油脂をエマルジョン状態で混入し、その混入量を
変えることより摩擦係数を調整した。平均摩擦係数は各
スタンドにおける実測の先進率より計算し、その平均値
により求めた。この時、仕上熱延終了温度は950℃と
し、850℃で巻取り、コイルを直ちに保熱炉に装入
し、850℃で1時間の自己焼鈍を施した。
(Example 4) A slab for non-oriented electromagnetic steel having the components shown in Table 8 was heated by a usual method, and was finished into a rough bar having a thickness of 50 mm by a rough rolling mill. To 2.5 mm. Oil and fat were mixed in an emulsion state into the cooling water of the roll of the finishing hot rolling machine, and the friction coefficient was adjusted by changing the mixing amount. The average coefficient of friction was calculated from the measured advanced rate at each stand, and the average value was determined. At this time, the finish hot rolling end temperature was 950 ° C., the film was wound at 850 ° C., the coil was immediately charged into a heat retaining furnace, and self-annealing was performed at 850 ° C. for 1 hour.

【0040】その後、酸洗を施し、冷間圧延により0.
50mmに仕上げた。これを連続焼鈍炉にて850℃で3
0秒間焼鈍した。その後、エプスタイン試料に切断し、
磁気特性を測定した。表9に本発明と比較例の成分と磁
気測定結果をあわせて示す。このように仕上熱延時の平
均摩擦係数を0.25以下に低減すれば、磁束密度の値
が高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼
板を得ることが可能である。
After that, it is pickled and then cold-rolled to a thickness of 0.1 mm.
Finished to 50mm. This is heated at 850 ° C in a continuous annealing furnace for 3 hours.
Annealed for 0 seconds. Then, cut into Epstein samples,
The magnetic properties were measured. Table 9 also shows the components of the present invention and comparative examples and the results of magnetic measurement. If the average friction coefficient at the time of finishing hot rolling is reduced to 0.25 or less, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss value and excellent magnetic properties.

【0041】[0041]

【表8】 [Table 8]

【0042】[0042]

【表9】 [Table 9]

【0043】[0043]

【発明の効果】このように本願発明によれば、従来の熱
延板焼鈍法よりも安価なコストで、かつ、従来の自己焼
鈍法よりも磁束密度が高く鉄損の低い、磁気特性の優れ
た無方向性電磁鋼板を製造することが可能である。
As described above, according to the present invention, the cost is lower than that of the conventional hot-rolled sheet annealing method, the magnetic flux density is higher than the conventional self-annealing method, the iron loss is lower, and the magnetic properties are excellent. It is possible to manufacture a non-oriented electrical steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上熱延時の平均摩擦係数と成品磁束密度の関
係を示す図である。
FIG. 1 is a diagram showing a relationship between an average coefficient of friction during finished hot rolling and a product magnetic flux density.

フロントページの続き (72)発明者 妹尾 聖一 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 半澤 和文 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Continuing on the front page (72) Inventor Seichi Senoo 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Kazufumi Hanzawa 1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1 New Nippon Steel Corporation Yawata Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼中に重量%で、 0.10%≦Si≦4.00%、 0.10%≦Mn≦1.00%、 C≦0.0050%、 N≦0.0050%、 S≦0.0050% を含有し、残部がFeおよび不可避的不純物からなる成
分のスラブを用い、熱間圧延し熱延板とし、酸洗し、1
回の冷間圧延を施し、次いで仕上焼鈍を施す無方向性電
磁鋼板の製造方法において、仕上熱間圧延時の熱延ロー
ルと鋼板との平均摩擦係数が0.25以下であり、仕上
熱延終了後、750℃以上1000℃以下の温度でコイ
ルを巻取り、5分以上5時間以下コイル自身の保有熱で
自己焼鈍することを特徴とする無方向性電磁鋼板の製造
方法。
1% by weight in steel 0.10% ≦ Si ≦ 4.00%, 0.10% ≦ Mn ≦ 1.00%, C ≦ 0.0050%, N ≦ 0.0050%, Using a slab containing S ≦ 0.0050% and the balance being Fe and unavoidable impurities, hot-rolled into a hot-rolled sheet, pickled,
In the method for producing a non-oriented electrical steel sheet that is subjected to cold rolling twice and then subjected to finish annealing, the average coefficient of friction between the hot-rolled roll and the steel sheet at the time of finish hot rolling is 0.25 or less; A method for producing a non-oriented electrical steel sheet, comprising: winding a coil at a temperature of 750 ° C. or more and 1000 ° C. or less, and performing self-annealing with heat held by the coil itself for 5 minutes or more and 5 hours or less.
【請求項2】 1回目の冷間圧延後、仕上焼鈍を施し、
さらに2〜20%のスキンパス圧延を施す事を特徴とす
る請求項1記載の無方向性電磁鋼板の製造方法。
2. After the first cold rolling, a finish annealing is performed,
2. The method for producing a non-oriented electrical steel sheet according to claim 1, further comprising subjecting skin pass rolling to 2 to 20%.
【請求項3】 鋼中に重量%で、更に 0.10%≦Al≦2.00% を含有することを特徴とする請求項1あるいは2記載の
無方向性電磁鋼板の製造方法。
3. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the steel further contains 0.10% ≦ Al ≦ 2.00% by weight in the steel.
【請求項4】 仕上熱延時に潤滑剤として熱延ロール冷
却水に0.5〜20%の油脂をエマルジョン状態で混入
することを特徴とする請求項1,2あるいは3の何れか
一つに記載の無方向性電磁鋼板の製造方法。
4. The method according to claim 1, wherein 0.5 to 20% of fats and oils is mixed in a hot-roll roll cooling water in the form of an emulsion as a lubricant during hot-rolling for finishing. The method for producing a non-oriented electrical steel sheet according to the above.
【請求項5】 粗圧延後のシートバーを仕上熱延前に先
行するシートバーに接合し、当該シートバーを連続して
仕上熱延に供することを特徴とする請求項1,2,3あ
るいは4の何れか一つに記載の無方向性電磁鋼の製造方
法。
5. The method according to claim 1, wherein the sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling, and the sheet bar is continuously subjected to the hot rolling. 5. The method for producing a non-oriented electrical steel according to any one of the above items 4.
JP19507596A 1996-07-24 1996-07-24 Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss Withdrawn JPH1036912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19507596A JPH1036912A (en) 1996-07-24 1996-07-24 Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19507596A JPH1036912A (en) 1996-07-24 1996-07-24 Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss

Publications (1)

Publication Number Publication Date
JPH1036912A true JPH1036912A (en) 1998-02-10

Family

ID=16335142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19507596A Withdrawn JPH1036912A (en) 1996-07-24 1996-07-24 Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JPH1036912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188940A1 (en) 2018-03-26 2019-10-03 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
WO2020166718A1 (en) 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022196800A1 (en) 2021-03-19 2022-09-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188940A1 (en) 2018-03-26 2019-10-03 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
US11111567B2 (en) 2018-03-26 2021-09-07 Nippon Steel Corporation Non-oriented electrical steel sheet
WO2020166718A1 (en) 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
WO2022196800A1 (en) 2021-03-19 2022-09-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR19990071916A (en) A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
JP3388119B2 (en) Method of manufacturing low-grade non-oriented electrical steel sheet with high magnetic flux density
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP4616427B2 (en) Silicon-containing hot-rolled sheet
JP4091673B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JPH11229096A (en) Nonoriented silicon steel sheet and its production
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JP3379622B2 (en) Manufacturing method of hot final non-oriented electrical steel sheet with high magnetic flux density
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP2001181743A (en) Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH1060530A (en) Production of nonoriented silicon steel sheet high in magnetic flux density
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH10298649A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density and low iron loss and minimal in anisotropy
JPH1046246A (en) Manufacture of nonoriented magnetic steel sheet with high magnetic flux density
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JP2001098325A (en) Method of producing nonoriented silicon steel sheet high in magnetic flux density
JPH10140239A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH1046244A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP2001172719A (en) Method for producing nonoriented silicon steel sheet excellent in magnetic property
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JPH10140241A (en) Production of nonriented silicon steel sheet with high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007