JPH1046246A - Manufacture of nonoriented magnetic steel sheet with high magnetic flux density - Google Patents

Manufacture of nonoriented magnetic steel sheet with high magnetic flux density

Info

Publication number
JPH1046246A
JPH1046246A JP8206816A JP20681696A JPH1046246A JP H1046246 A JPH1046246 A JP H1046246A JP 8206816 A JP8206816 A JP 8206816A JP 20681696 A JP20681696 A JP 20681696A JP H1046246 A JPH1046246 A JP H1046246A
Authority
JP
Japan
Prior art keywords
hot
rolling
sheet
annealing
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8206816A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8206816A priority Critical patent/JPH1046246A/en
Publication of JPH1046246A publication Critical patent/JPH1046246A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a nonoriented silicon steel sheet advantageous to the miniaturization of iron core and having high magnetic flux density. SOLUTION: This nonoriented silicon steel sheet can be produced by hot- rolling a steel having a composition consisting of, by weight, >0.10-4.00% Si, 0.1-1.0% Mn, 0.10-2.00% Al, <=0.0050% C, <=0.0050% N, <=0.0050% S, and the balance Fe with inevitable impurities, subjecting the resultant hot rolled plate to hot rolled plate annealing, performing a single cold rolling, stage, and then applying finish annealing or applying skin pass rolling after finish annealing to the resultant cold rolled sheet. In this case, at the time of finish hot rolling, finish hot rolling is carried out under the conditions of >=150s<-1> strain rate at least one pass and >=1.5kgf/mm<2> tension between at least a set of stands, and moreover, cold rolling rate is regulated to <=75%. Further, roughed sheet bars are joined by hot rolling and subjected, continuously, to finish hot rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高い無方向性電磁鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which is used as a core material of electric equipment.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。ところで、無方向性電磁鋼板において
は、従来、低鉄損化の手段として一般に、電気抵抗増大
による渦電流損低減の観点からSiあるいはAl等の含
有量を高める方法がとられてきた。しかし、この方法で
は反面、磁束密度の低下は避け得ないという課題があっ
た。このような課題の克服のために、熱延板結晶粒径を
粗大化することで磁束密度と鉄損の両方を改善させる方
法が行われてきた。
2. Description of the Related Art In recent years, in the fields of electric machines, especially rotating machines and medium-sized and small-sized transformers in which non-oriented electrical steel sheets are used as iron core materials, worldwide electric power and energy savings, as well as chlorofluorocarbon gas regulations. Among the movements for global environmental conservation, such as the above, the movement for higher efficiency is rapidly spreading. Therefore, there is an increasing demand for non-oriented electrical steel sheets to have improved properties, that is, high magnetic flux density and low iron loss. By the way, in the non-oriented electrical steel sheet, conventionally, as a means of reducing iron loss, a method of increasing the content of Si or Al or the like has been generally adopted from the viewpoint of reducing eddy current loss due to an increase in electric resistance. However, in this method, on the other hand, there is a problem that a decrease in magnetic flux density cannot be avoided. In order to overcome such problems, a method of improving both the magnetic flux density and the iron loss by increasing the crystal grain size of the hot-rolled sheet has been performed.

【0003】このため、仕上熱延終了後、箱焼鈍あるい
は連続焼鈍による熱延板焼鈍を施すことが行われてき
た。このような無方向性電磁鋼板の冷延前結晶組織を安
価に粗大化する技術として、仕上熱延後の熱延板を70
0℃から1000℃の高温で巻取り、これをコイルの保
有熱で焼鈍する自己焼鈍法が特開昭54−76422号
公報に、また特公昭62−61644号公報には、熱延
終了温度を1000℃以上の高温として無注水時間を設
定し、いわゆるランアウトテーブル上で巻取前に熱延組
織を再結晶・粒成長を図る方法が開示されている。
For this reason, after the finish hot rolling, hot strip annealing by box annealing or continuous annealing has been performed. As a technique for inexpensively coarsening the crystal structure before cold rolling of such a non-oriented electrical steel sheet, a hot rolled sheet after finish hot rolling is used.
Japanese Patent Application Laid-Open No. 54-76422 discloses a self-annealing method of winding at a high temperature of 0 ° C. to 1000 ° C. and annealing the coil by the retained heat of the coil. A method is disclosed in which a non-water injection time is set as a high temperature of 1000 ° C. or more, and a hot-rolled structure is recrystallized and grown on a so-called run-out table before winding.

【0004】さらに、再結晶および粒成長の進行の緩慢
な高Si系成分のハイグレード無方向性電磁鋼板の磁気
特性を制御熱延により改善する技術として、特開昭59
−74222号公報には、仕上熱延最終スタンドの圧下
率を20%以上として、熱延板の巻取温度を700℃以
上とする技術が開示されている。この場合においては、
最終スタンド圧下率を高めて巻取温度を上昇させること
により熱延終了後の熱延組織の再結晶および粒成長を促
進し、結果として磁気特性を改善することを狙ってい
る。しかしながら鋼板中のSi含有量が高い場合、この
技術では熱延板の再結晶は促進されるものの、その後の
粒成長が不十分であり、磁束密度の改善が不十分であっ
た。
Further, as a technique for improving the magnetic characteristics of a high-grade non-oriented electrical steel sheet having a high Si-based component in which recrystallization and grain growth progress slowly, by controlling hot rolling, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 74222/1990 discloses a technique in which the rolling reduction temperature of a hot-rolled sheet is set to 700 ° C. or higher by setting the rolling reduction of the final hot-rolling final stand to 20% or more. In this case,
The aim is to increase the final stand draft and raise the winding temperature to promote the recrystallization and grain growth of the hot-rolled structure after the hot-rolling, and as a result, to improve the magnetic properties. However, when the Si content in the steel sheet is high, although recrystallization of the hot-rolled sheet is promoted by this technique, the subsequent grain growth is insufficient, and the improvement of the magnetic flux density is insufficient.

【0005】一方で、鉄損低減とともに熱延板焼鈍を併
用することにより磁束密度を高める技術として、Si含
有量が2.5%〜4.0%である鋼において、特開昭5
9−74258号公報にはS≦15ppm、O≦20p
pm、N≦25ppmの高純度鋼化を図る方法が、特開
昭59−74257号公報にはS≦15ppm、O≦2
0ppm、N≦25ppmに加えてTi+Zr+Ce+
Ca≦150ppmとする方法が、特開昭59−742
23号公報にはS≦15ppm、O≦20ppm、N≦
25ppmに加えて仕上焼鈍時の昇温速度を300℃/S
以上とする技術が、特開昭59−74224号公報には
一回冷延法においてS≦15ppm、O≦20ppm、
N≦25ppmに制限する規定に加えて熱延板焼鈍条件
を規定しかつ冷間圧延率を65%以上に規定する技術
が、特開昭59−74225号公報には二回冷延法にお
いてS≦15ppm、O≦20ppm、N≦25ppm
の規定に加えて中間焼鈍条件を規定しかつ二回目の冷間
圧延率を70%以上に規定する技術がそれぞれ開示され
ている。
On the other hand, as a technique for increasing the magnetic flux density by using the hot rolled sheet annealing together with the iron loss reduction, a steel having a Si content of 2.5% to 4.0% is disclosed in
No. 9-74258 discloses that S ≦ 15 ppm, O ≦ 20p
JP-A-59-74257 discloses a method of producing high-purity steel having a pm and N ≦ 25 ppm.
0 ppm, N ≦ 25 ppm and Ti + Zr + Ce +
Japanese Patent Application Laid-Open No. 59-742 discloses a method of setting Ca ≦ 150 ppm.
No. 23 discloses S ≦ 15 ppm, O ≦ 20 ppm, N ≦
In addition to 25 ppm, the rate of temperature rise during finish annealing is 300 ° C / S
The technique described above is disclosed in Japanese Patent Application Laid-Open No. Sho 59-74224, where S ≦ 15 ppm, O ≦ 20 ppm,
Japanese Patent Application Laid-Open No. 59-74225 discloses a technique for defining the annealing conditions for hot-rolled sheets and defining the cold-rolling rate to be 65% or more in addition to the regulation of N ≦ 25 ppm. ≦ 15ppm, O ≦ 20ppm, N ≦ 25ppm
In addition to the above, there are disclosed techniques for defining intermediate annealing conditions and defining a second cold rolling reduction of 70% or more.

【0006】このような従来技術により提供される高磁
束密度低鉄損無方向性電磁鋼板に対して、需要家からは
回転機の鉄心を小型化して効率を向上させるためにさら
に高い磁束密度を有する無方向性電磁鋼板の提供が強く
求められていた。発明者らはこのような無方向性電磁鋼
板に対する需要家の要請に応える方策を見出すため、仕
上げ熱延技術に注目して検討を行った。無方向性電磁鋼
板の仕上熱延においては、自動車の外板等のプレス成型
や缶等の深絞り成形を行う薄鋼板に比べて、高い成品板
厚の精度が要求される。なぜなら、無方向性電磁鋼板は
鉄心として積層して使用に供されるため、成品板厚のわ
ずかな偏差が鉄心としての寸法精度に大きな影響を及ぼ
すからである。
With respect to the high magnetic flux density and low iron loss non-oriented electrical steel sheets provided by the prior art, consumers have demanded a higher magnetic flux density to reduce the size of the core of the rotating machine and improve the efficiency. There has been a strong demand for the provision of non-oriented electrical steel sheets. The inventors paid attention to the finishing hot-rolling technology in order to find a way to meet the demands of consumers for such non-oriented electrical steel sheets, and studied. In the finishing hot rolling of non-oriented electrical steel sheets, higher precision of the product thickness is required as compared with thin steel sheets which are subjected to press forming of outer plates of automobiles and deep drawing of cans and the like. This is because the non-oriented electrical steel sheet is used as being laminated as an iron core, so that a slight deviation in the product thickness greatly affects the dimensional accuracy of the iron core.

【0007】このため成品の板厚精度には厳しい管理が
要求され、この目的のために冷延のみならず熱延板にお
いても厳しい板厚管理を行っている。そのため、仕上げ
熱延最終パス付近では形状調整のために圧下率を下げて
軽圧下とし、その歪み速度も小さいのが通常であり、磁
気特性向上の観点から仕上げ熱延の条件を検討する試み
は従来ほとんどなされなかった。また、冷間圧延率を下
げると、熱延板の板厚偏差、板幅方向のクラウン等の形
状の不均一性を冷間圧延により矯正する余地が少なくな
るため、従来、仕上圧延時の歪み速度等と関連させて冷
間圧延率の制御を行うことについても検討はなされなか
った。
For this reason, strict control is required for the thickness accuracy of the product. For this purpose, strict control of the thickness is performed not only for cold rolling but also for hot rolling. Therefore, in the vicinity of the final pass of the finishing hot rolling, the rolling reduction is reduced to a light reduction for shape adjustment, and the strain rate is usually small.Therefore, there is no attempt to examine the conditions of the finishing hot rolling from the viewpoint of improving magnetic properties. Traditionally hardly ever. Further, when the cold rolling reduction is reduced, there is less room for correcting the thickness non-uniformity of the hot-rolled sheet, and the unevenness of the shape such as the crown in the sheet width direction by cold rolling. No consideration was given to controlling the cold rolling reduction in relation to the speed or the like.

【0008】発明者等は従来技術のこのような熱間圧延
および冷間圧延操業条件管理に対する考え方について見
直しを行い、成品の磁気特性向上の観点からその条件を
検討した結果、各種の熱延板焼鈍を実施する無方向性電
磁鋼板製造プロセス、あるいは自己焼鈍を施す無方向性
電磁鋼板製造プロセスにおいて、第1に、仕上熱間圧延
時に、少なくとも1パスにおいて、歪み速度と張力を高
めることにより、成品の磁束密度が増加する、第2に、
少なくとも1組のスタンド間の張力を高めることによ
り、成品の磁束密度が増加するとともに高歪み速度変形
下での熱延板の板厚精度低下という課題を解決しうる、
第3に、第1および第2の様な熱延条件を採った材料に
おいて冷間圧延率を下げることにより磁束密度が向上す
る、第4に、粗圧延後のシートバーを仕上熱延前に先行
するシートバーに接合し、該シートバーを連続して仕上
熱延に供することで高歪み速度下かつ高張力下での仕上
熱延を安定して実施しうること等を見いだし、発明の完
成に至った。
[0008] The inventors reviewed the concept of the prior art regarding the management of operating conditions for hot rolling and cold rolling, and examined the conditions from the viewpoint of improving the magnetic properties of the product. In the non-oriented electrical steel sheet manufacturing process of performing annealing, or in the non-oriented electrical steel sheet manufacturing process of performing self-annealing, first, at the time of finish hot rolling, by increasing the strain rate and tension in at least one pass, Second, the magnetic flux density of the product increases.
By increasing the tension between at least one set of stands, it is possible to solve the problem that the magnetic flux density of the product increases and the thickness accuracy of the hot-rolled sheet decreases under high strain rate deformation.
Third, the magnetic flux density is improved by lowering the cold rolling reduction in a material that adopts the first and second hot rolling conditions. Fourth, the sheet bar after the rough rolling is removed before the finish hot rolling. By joining the preceding sheet bar and continuously subjecting the sheet bar to finish hot rolling, it was found that finishing hot rolling under a high strain rate and high tension can be stably performed, and the like. Reached.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
無方向性電磁鋼板の磁気特性に対する需要家の高磁束密
度低鉄損化の強い要請に応え、鉄心の小型化に有利な高
磁束密度無方向性電磁鋼板の製造法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention addresses the strong demands of customers for high magnetic flux density and low iron loss on the magnetic characteristics of such non-oriented electrical steel sheets, and provides a high magnetic flux which is advantageous for downsizing the iron core. It is intended to provide a method for producing a non-oriented electrical steel sheet.

【0010】[0010]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。 (1)鋼中に重量%で 0.10%<Si≦4.00% 0.10%≦Mn≦1.00% C≦0.0050% N≦0.0050% S≦0.0050% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを用い、熱間圧延し熱延板とし、熱延板焼鈍を施
し、1回の冷間圧延を行い、次いで仕上げ焼鈍を施す無
方向性電磁鋼板の製造方法において、仕上熱間圧延時
に、少なくとも1パスを歪み速度150s-1以上でか
つ、少なくとも1組のスタンド間の張力が1.5kgf
/mm2 以上で仕上げ熱延を実施し、冷間圧延率が75
%以下であることを特徴とする磁束密度の高い無方向性
電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) 0.10% <Si ≦ 4.00% 0.10% ≦ Mn ≦ 1.00% C ≦ 0.0050% N ≦ 0.0050% S ≦ 0.0050% by weight% in steel A non-directional electromagnetic steel containing a slab containing Fe and inevitable impurities, hot-rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing, cold-rolled once, and then finish-annealed. In the method for manufacturing a steel sheet, at the time of finishing hot rolling, at least one pass has a strain rate of 150 s -1 or more and a tension between at least one set of stands is 1.5 kgf.
/ Mm 2 or more, hot rolling is performed, and the cold rolling rate is 75
% Or less, a method for producing a non-oriented electrical steel sheet having a high magnetic flux density.

【0011】(2)鋼中に重量%で、更に0.10%≦
Al≦2.00%を含有することを特徴とする前記
(1)記載の磁束密度の高い無方向性電磁鋼板の製造方
法。 (3)仕上げ熱延後の熱延板に850℃以上1100℃
以下の温度で、20秒以上5分以下の連続焼鈍を施すこ
とを特徴とする前記(1)または(2)記載の磁束密度
の高い無方向性電磁鋼板の製造方法。 (4)仕上げ熱延後の熱延板に700℃以上850℃以
下の温度で、5分以上30時間以下の箱焼鈍を施すこと
を特徴とする前記(1)または(2)記載の磁束密度の
高い無方向性電磁鋼板の製造方法。
(2) By weight% in steel, 0.10% ≦
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to the above (1), characterized by containing Al ≦ 2.00%. (3) 850 ° C or higher and 1100 ° C for hot rolled sheet after finishing hot rolling
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to the above (1) or (2), wherein continuous annealing is performed at the following temperature for 20 seconds or more and 5 minutes or less. (4) The magnetic flux density according to (1) or (2), wherein the hot-rolled sheet after the finish hot-rolling is subjected to box annealing for 5 minutes to 30 hours at a temperature of 700 ° C to 850 ° C. Method for manufacturing non-oriented electrical steel sheets with high quality.

【0012】(5)仕上げ熱延後の熱延板を750℃以
上1050℃以下の温度で巻取り、5分以上5時間以
下、コイル自身の保有熱で自己焼鈍を施すことを特徴と
する前記(1)または(2)記載の磁束密度の高い無方
向性電磁鋼板の製造方法。 (6)1回目の冷間圧延後、仕上げ焼鈍を施し、さらに
2%以上20%以下のスキンパス圧延を施す前記(1)
〜(5)記載の磁束密度の高い無方向性電磁鋼板の製造
方法。 (7)粗圧延後のシートバーを仕上熱延前に先行するシ
ートバーに接合し、該シートバーを連続して仕上熱延に
供することを特徴とする前記(1)〜(6)記載の磁束
密度の高い無方向性電磁鋼板の製造方法。
(5) The hot rolled sheet after the finish hot rolling is wound at a temperature of 750 ° C. or more and 1050 ° C. or less, and self-annealed by the heat retained by the coil itself for 5 minutes to 5 hours. The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to (1) or (2). (6) After the first cold rolling, a finish annealing is performed, and further a skin pass rolling of 2% or more and 20% or less is performed (1).
(5) The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to (5). (7) The sheet bar according to any one of (1) to (6), wherein the sheet bar after the rough rolling is joined to a preceding sheet bar before the finish hot rolling, and the sheet bar is continuously subjected to the finish hot rolling. A method for manufacturing non-oriented electrical steel sheets with high magnetic flux density.

【0013】[0013]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。無方向性電磁鋼板の磁気特性は冷延前結晶組織を粗
大化することで改善することが可能である。従来無方向
性電磁鋼板では熱延終了後、連続焼鈍炉もしくは箱焼鈍
炉において熱延板焼鈍を施し冷延前結晶組織の粗大化を
図ることが一般に行われてきた。しかしながら昨今の需
要家からはさらに磁気特性の優れた無方向性電磁鋼板の
供給が求められているのが現状である。また、従来技術
では高磁束密度無方向性電磁鋼板の製造コストを低減す
るために熱延板焼鈍を施さず冷延、焼鈍を行うプロセス
においては、熱延終了後の再結晶 、粒成長を促進させ
るために、熱延終了温度を高めに維持しなければなら
ず、スラブ加熱温度を上げる必要があった。しかしなが
らスラブ加熱温度を上昇させることは、加熱中にMn
S、AlN等の析出物の鋼中への再固溶を促進し、これ
が熱延時に微細に析出するため、熱延板焼鈍、仕上焼鈍
時の結晶粒成長を妨げ、鉄損が悪化するという課題があ
った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The magnetic properties of the non-oriented electrical steel sheet can be improved by increasing the crystal structure before cold rolling. Conventionally, in non-oriented electrical steel sheets, after hot-rolling, it has been generally performed to perform hot-rolled sheet annealing in a continuous annealing furnace or box annealing furnace to increase the crystal structure before cold rolling. However, at present, there is a demand from recent consumers for the supply of non-oriented electrical steel sheets having even better magnetic properties. In addition, in the conventional technology, in order to reduce the manufacturing cost of high magnetic flux density non-oriented electrical steel sheets, in the process of performing cold rolling and annealing without performing hot rolled sheet annealing, recrystallization and grain growth after completion of hot rolling are promoted. For this purpose, the hot rolling end temperature had to be kept high, and the slab heating temperature had to be raised. Raising the slab heating temperature, however, requires Mn during heating.
It promotes re-solid solution of precipitates such as S and AlN in steel, and this precipitates finely at the time of hot rolling, which hinders the growth of crystal grains at the time of hot-rolled sheet annealing and finish annealing, and deteriorates iron loss. There were challenges.

【0014】発明者等は従来技術のこのような限界を打
破すべく無方向性電磁鋼板の熱延について着目し検討を
行った結果、Siを0.10%を上回り4.00%以
下、Mnを0.10%以上1.00%以下、Alを0.
10%以上2.00%以下含有する鋼にあって、仕上熱
間圧延時に、少なくとも1パスにおいて、歪み速度を高
め、少なくとも1組のスタンド間の張力をも高めて熱延
板を製造し、これを特定の圧延率で冷延することによ
り、成品における磁束密度が高い無方向性電磁鋼板を製
造することが可能であることを見出した。また、本発明
の様な高歪み速度かつ高張力下での仕上げ熱間圧延を安
定的に行うために、粗圧延後のシートバーを、先行する
シートバーに接合し、仕上熱間圧延を連続的に行うこと
が有効であることも見いだした。
The inventors of the present invention focused on hot rolling of non-oriented electrical steel sheets to overcome such limitations of the prior art, and as a result, found that Si exceeded 0.10% and was 4.00% or less. 0.10% or more and 1.00% or less;
In a steel containing 10% or more and 2.00% or less, at the time of finish hot rolling, in at least one pass, the strain rate is increased, and the tension between at least one set of stands is also increased to produce a hot-rolled sheet; By cold rolling this at a specific rolling reduction, it has been found that a non-oriented electrical steel sheet having a high magnetic flux density in a product can be manufactured. Further, in order to stably perform finishing hot rolling under a high strain rate and high tension as in the present invention, the sheet bar after the rough rolling is joined to the preceding sheet bar, and the finishing hot rolling is continuously performed. It was also found that it was effective to do it in a holistic way.

【0015】まず、成分について説明すると、Siは鋼
板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改
善するために添加される。Si含有量が0.10%以下
であると本発明が目的とする低鉄損無方向性電磁鋼板に
必要な固有抵抗が十分に得られないので0.10%を上
回る量を添加する必要がある。一方、Si含有量が4.
00%を越えると圧延時の耳割れが著しく増加し、圧延
が困難になるので4.00%以下とする必要がある。A
lも、Siと同様に、鋼板の固有抵抗を増大させ渦電流
損を低減させる効果を有する。本発明が目的とする低鉄
損高磁束密度無方向性電磁鋼板を得るためには、0.1
0%以上添加する必要がある。一方、Al含有量が2.
00%を越えると、磁束密度が低下し、コスト高ともな
るので2.00%以下とする。また、鋼中のAl含有量
が0.10%未満であっても本発明の効果はなんら損な
われるものではない。
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is 0.10% or less, the specific resistance required for the low iron loss non-oriented electrical steel sheet aimed at by the present invention cannot be sufficiently obtained, so it is necessary to add an amount exceeding 0.10%. is there. On the other hand, the Si content is 4.
If it exceeds 00%, ear cracks during rolling increase remarkably, and rolling becomes difficult. Therefore, it is necessary to be 4.00% or less. A
1 also has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss, similarly to Si. In order to obtain a low iron loss high magnetic flux density non-oriented electrical steel sheet intended by the present invention, 0.1
It is necessary to add 0% or more. On the other hand, when the Al content is 2.
If it exceeds 00%, the magnetic flux density decreases and the cost increases, so it is set to 2.00% or less. Further, even if the Al content in the steel is less than 0.10%, the effect of the present invention is not impaired at all.

【0016】Mnは、Al、Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
目的のため、Mn含有量は0.10%以上とする必要が
ある。一方、Mn含有量が1.00%を越えると熱延時
の変形抵抗が増加し熱延が困難となるとともに、熱延後
の結晶組織が微細化しやすくなり、製品の磁気特性が悪
化するので、Mn含有量は1.00%以下とする必要が
ある。また、Mn添加量は仕上げ熱延前の高温のシート
バー接合部の強度確保の点からもきわめて重要である。
なぜなら、低融点の硫化物が結晶粒界に存在することに
よるシートバー接合部の熱間脆化を防止するために、M
nとSとの重量濃度の比であるMn/Sの値を20以上
とすることが必要であるからである。本発明に規定する
成分範囲では、Mn含有量が0.1%以上であり、S含
有量は0.0050%以下であるので、Mn/Sの値は
20以上に保たれ、この観点からは問題がない。
Mn, like Al and Si, has the effect of increasing the specific resistance of a steel sheet and reducing eddy current loss. For this purpose, the Mn content needs to be 0.10% or more. On the other hand, if the Mn content exceeds 1.00%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer, which deteriorates the magnetic properties of the product. The Mn content needs to be 1.00% or less. Further, the amount of Mn addition is extremely important from the viewpoint of securing the strength of the high temperature sheet bar joint before the hot rolling.
The reason for this is that in order to prevent hot embrittlement of the sheet bar joint due to the presence of the low-melting sulfide at the crystal grain boundaries, M
This is because it is necessary to set the value of Mn / S, which is the ratio of the weight concentrations of n and S, to 20 or more. In the component range defined in the present invention, since the Mn content is 0.1% or more and the S content is 0.0050% or less, the value of Mn / S is maintained at 20 or more. there is no problem.

【0017】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P、
B、Ni、Cr、Sb、Sn、Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
C含有量が0.0050%を越えると使用中の磁気時効
により鉄損が悪化して使用時のエネルギーロスが増加す
るため、0.0050%以下に制御することが必要であ
る。S、Nは熱間圧延工程におけるスラブ加熱中に一部
再固溶し、熱間圧延中にMnS等の硫化物、AlN等の
窒化物を形成する。これらが存在することにより熱延組
織の粒成長を妨げるとともに仕上げ焼鈍時の結晶粒成長
を妨げ鉄損が悪化するのでSは0.0050%、Nは
0.0050%以下にする必要がある。
In order to improve the mechanical properties, magnetic properties, and rust resistance of the product or for other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in steel, the effect of the present invention is not impaired.
When the C content exceeds 0.0050%, iron loss is deteriorated due to magnetic aging during use and energy loss during use is increased. Therefore, it is necessary to control the content to 0.0050% or less. S and N partially re-dissolve during slab heating in the hot rolling step, and form sulfides such as MnS and nitrides such as AlN during hot rolling. The presence of these elements hinders the grain growth of the hot-rolled structure and hinders the crystal grain growth during the finish annealing, resulting in deterioration of iron loss. Therefore, S must be 0.0050% or less and N must be 0.0050% or less.

【0018】次に本発明のプロセス条件について説明す
る。仕上熱延時のパスの歪み速度とスタンド間張力の成
品磁気特性に対する影響を調査するため下記の様な実験
を行った。表1に示す成分の鋼を溶製し仕上げ熱延を実
施した。仕上熱延時の最終パスの歪み速度と最終2パス
のスタンド間張力を変えるためパススケジュールを変更
して試験を行った。仕上熱延終了温度は900℃で1.
5mm厚に仕上げ水冷して650℃で巻き取った。その
後連続焼鈍炉により鋼Aは850℃2分、鋼Bは950
℃2分の熱延板焼鈍を施した。これを酸洗、冷延し0.
50mm厚とし、脱脂した後、鋼Aは750℃、30秒
焼鈍し、鋼Bは950℃、30秒焼鈍しエプスタイン試
料を切断して磁気特性を測定した。
Next, the process conditions of the present invention will be described. The following experiment was conducted to investigate the influence of the strain rate of the pass during finishing hot rolling and the tension between stands on the product magnetic properties. Steel having the components shown in Table 1 was melted and subjected to finish hot rolling. The test was performed by changing the pass schedule in order to change the strain rate of the final pass at the time of finishing hot rolling and the tension between stands of the final two passes. Finish hot rolling end temperature is 900 ° C.
After finishing to a thickness of 5 mm and cooling with water, the film was wound at 650 ° C. Thereafter, steel A was heated at 850 ° C. for 2 minutes and steel B was heated at 950 ° C. in a continuous annealing furnace.
The sheet was annealed at 2 ° C. for 2 minutes. This is pickled and cold rolled.
After degreasing to a thickness of 50 mm, steel A was annealed at 750 ° C. for 30 seconds, and steel B was annealed at 950 ° C. for 30 seconds, and the Epstein sample was cut to measure magnetic properties.

【0019】[0019]

【表1】 [Table 1]

【0020】仕上熱延時の最終パスの歪み速度に対する
製品磁束密度の依存性を図1に示した。このときの最終
2スタンド間張力は3.3kgf/mm2 とした。図1
によれば歪み速度150s-1以上で成品磁束密度が上昇
することがわかる。なお、歪み速度の計算は下記の式に
よって行う。ここで、rは圧下率%/100、nはロー
ルの回転数(rpm)、Rは圧延ロール半径(mm)、
0 は圧延前の板厚(mm)である。 歪み速度=〔2πn/(60r0.5 )〕(R/H0
0.5 ln〔1/(1−r)〕 次に、仕上熱延の最終スタンド歪み速度を325s-1
して、最終2スタンド間の張力を変え、他の条件は同一
で実験を行った。仕上熱延時の最終2スタンド間の張力
と製品磁束密度の関係を図2に示した。図2に示される
とおり、仕上熱延の最終2スタンド間の張力が1.5k
gf/mm2 以上で成品磁束密度が上昇することがわか
る。
FIG. 1 shows the dependence of the product magnetic flux density on the strain rate of the final pass during hot rolling in finishing. At this time, the tension between the last two stands was 3.3 kgf / mm 2 . FIG.
According to the figure, it is understood that the product magnetic flux density increases at a strain rate of 150 s -1 or more. The calculation of the strain rate is performed by the following equation. Here, r is the rolling reduction% / 100, n is the number of rotations of the roll (rpm), R is the rolling roll radius (mm),
H 0 is the thickness (mm) before rolling. Strain rate = [2πn / (60r 0.5 )] (R / H 0 )
0.5 ln [1 / (1-r)] Next, the final stand strain rate of the hot-rolled finish was set to 325 s −1 , and the tension was changed between the last two stands. FIG. 2 shows the relationship between the tension between the last two stands and the magnetic flux density of the product during hot rolling. As shown in FIG. 2, the tension between the last two stands of the finish hot rolling is 1.5 k.
It can be seen that the product magnetic flux density increases with gf / mm 2 or more.

【0021】次に、冷間圧延率の磁気特性への影響を調
査するために、下記の実験を行った。鋼Bを仕上熱延終
了温度は900℃で仕上げ板厚をかえて熱延し、水冷し
て650℃で巻き取った。この時、最終パスの歪み速度
を320s-1、最終2スタンド間張力は3.3kgf/
mm2 とした。その後連続焼鈍炉により950℃2分の
熱延板焼鈍を施した。これを酸洗、冷延し0.50mm
厚とし、脱脂した後、950℃、30秒焼鈍しエプスタ
イン試料を切断して磁気特性を測定した。磁束密度の冷
間圧延率に対する依存性を図3に示した。図3によれば
冷間圧延率が75%以下で成品磁束密度が上昇すること
がわかる。
Next, the following experiment was conducted to investigate the effect of the cold rolling reduction on the magnetic properties. Steel B was hot rolled at a finish hot rolling end temperature of 900 ° C. with a different thickness of the finished plate, cooled with water and wound at 650 ° C. At this time, the strain rate of the last pass was 320 s −1 , and the tension between the last two stands was 3.3 kgf /
It was mm 2. Thereafter, hot rolled sheet annealing was performed at 950 ° C. for 2 minutes using a continuous annealing furnace. This is pickled and cold rolled to 0.50 mm
After degreasing, the sample was annealed at 950 ° C. for 30 seconds, and the Epstein sample was cut to measure magnetic properties. FIG. 3 shows the dependence of the magnetic flux density on the cold rolling reduction. FIG. 3 shows that the product magnetic flux density increases when the cold rolling reduction is 75% or less.

【0022】以上の実験から示されるように、仕上熱延
において少なくとも1パスの歪み速度は150s-1以上
で、少なくとも1組のスタンド間の張力が1.5kgf
/mm2 以上、冷間圧延率は75%以下であればよい。
歪み速度の上限は特に設けない。これは、熱延機の設備
能力および熱延板の形状制御性から、歪み速度の上限は
自ずから決まるからである。すなわち、歪み速度は圧延
速度、熱延ロール径、圧下量により決まり、圧延速度、
圧下量を大きくすれば歪み速度は増大するが、熱延鋼板
の形状制御は困難となる。無方向性電磁鋼板は積層して
使用に供されるため、その形状に対しては厳しい管理が
必要であるので、歪み速度を増加させることにはおのず
から限界がある。この観点からは歪み速度は600s-1
程度が限界である。
As shown in the above experiments, the strain rate of at least one pass in the finish hot rolling is 150 s -1 or more, and the tension between at least one set of stands is 1.5 kgf.
/ Mm 2 or more, and the cold rolling reduction may be 75% or less.
There is no particular upper limit on the strain rate. This is because the upper limit of the strain rate is naturally determined from the equipment capacity of the hot rolling mill and the shape controllability of the hot rolled sheet. That is, the strain rate is determined by the rolling speed, hot-roll roll diameter, the amount of reduction, rolling speed,
Increasing the rolling reduction increases the strain rate, but makes it difficult to control the shape of the hot-rolled steel sheet. Since non-oriented electrical steel sheets are used in a laminated state, strict control is required for their shapes, and there is naturally a limit in increasing the strain rate. From this viewpoint, the strain rate is 600 s -1.
Degree is the limit.

【0023】また、最終2スタンド間の張力についても
上限は設けないが、スタンド間張力が大きくなると通板
時に変形が生じ板幅が狭くなるので、これを補償するた
めにスラブ幅を広める必要がある。この観点からの張力
の限界は10kgf/mm2程度である。また、本発明
の様な高歪み速度かつ高張力下での仕上げ熱間圧延を安
定的に行うために、粗圧延後のシートバーを、先行する
シートバーに接合し、仕上熱間圧延を連続的に行うこと
が特に有効である。前記成分からなる鋼スラブは、転炉
で溶製され連続鋳造あるいは造塊−分塊圧延により製造
される。鋼スラブは公知の方法にて加熱される。このス
ラブに熱間圧延を施し所定の厚みとする。
There is no upper limit on the tension between the last two stands. However, if the tension between the stands becomes large, deformation occurs at the time of passing the plate, and the plate width becomes narrow. Therefore, it is necessary to increase the slab width to compensate for this. is there. The limit of the tension from this viewpoint is about 10 kgf / mm 2 . Further, in order to stably perform finishing hot rolling under a high strain rate and high tension as in the present invention, the sheet bar after the rough rolling is joined to the preceding sheet bar, and the finishing hot rolling is continuously performed. This is particularly effective. The steel slab composed of the above components is produced by melting in a converter and being manufactured by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. This slab is subjected to hot rolling to a predetermined thickness.

【0024】本発明では仕上熱延終了後の熱延板を連続
焼鈍、箱焼鈍、自己焼鈍の何れかの方法で結晶粒成長を
促進し成品の磁気特性の改善を図る。連続焼鈍の場合、
熱延板焼鈍温度は1100℃以下とする。熱延板焼鈍温
度が1100℃を上まわると、雰囲気を注意深く制御し
たとしても鋼板の酸化を防止することが出来ず、成品の
鉄損が著しく悪化する。このため連続焼鈍の場合、熱延
板焼鈍温度は1100℃以下に定める。また、850℃
未満では結晶粒成長が不十分となるので、850℃以上
とする。熱延板焼鈍時間は連続焼鈍では20秒以上5分
以下に定める。焼鈍時間が20秒未満では磁気特性の改
善が不十分であり、5分超であるとその効果が飽和する
とともに不経済ともなるので5分以下とする。
In the present invention, the hot rolled sheet after finishing hot rolling is promoted by any of continuous annealing, box annealing and self-annealing to promote crystal grain growth to improve the magnetic properties of the product. In the case of continuous annealing,
The hot-rolled sheet annealing temperature is 1100 ° C. or less. If the hot-rolled sheet annealing temperature exceeds 1100 ° C., even if the atmosphere is carefully controlled, oxidation of the steel sheet cannot be prevented, and the iron loss of the product is significantly deteriorated. Therefore, in the case of continuous annealing, the hot-rolled sheet annealing temperature is set to 1100 ° C. or less. 850 ° C
If it is less than 850 ° C., the crystal grain growth becomes insufficient, so the temperature is set to 850 ° C. or more. The hot-rolled sheet annealing time is set to 20 seconds or more and 5 minutes or less in continuous annealing. If the annealing time is less than 20 seconds, the improvement of the magnetic properties is insufficient, and if it exceeds 5 minutes, the effect is saturated and it becomes uneconomical.

【0025】また、箱焼鈍による熱延板焼鈍ではその温
度が700℃未満では結晶粒成長が不十分となるので、
700℃以上とする。また、850℃超であると箱焼鈍
炉の設備が著しく高価になるとともに磁気特性の改善も
飽和するので、850℃以下とする。熱延板焼鈍時間は
箱焼鈍では5分以上30時間以下であり、好ましくは1
時間以上20時間以下である。5分未満では焼鈍の効果
は不十分であり、30時間超では高温焼鈍中に生じるコ
イルの自重による変形が激しくなり、歩留まりが著しく
低下するため30時間以下とする。
In the case of hot-rolled sheet annealing by box annealing, if the temperature is lower than 700 ° C., crystal grain growth becomes insufficient.
700 ° C or higher. If the temperature is higher than 850 ° C., the equipment of the box annealing furnace becomes extremely expensive and the improvement of the magnetic properties is saturated. The hot-rolled sheet annealing time is 5 minutes or more and 30 hours or less in box annealing, and preferably 1 hour.
It is longer than or equal to 20 hours. If the heating time is less than 5 minutes, the effect of annealing is insufficient. If the heating time is more than 30 hours, the deformation due to the weight of the coil generated during the high-temperature annealing becomes severe, and the yield is remarkably reduced.

【0026】本発明では、熱延板焼鈍を仕上焼鈍後のコ
イル自身の保有熱で行う自己焼鈍も有効である。その
際、熱延コイルの巻取温度が750℃未満であると自己
焼鈍中の結晶粒成長が不十分となり、磁気特性の改善が
不十分であるので750℃以上とする。また、巻取温度
が1050℃を上回ると高温の自己焼鈍中の鋼板の酸化
を防止することが出来ず、成品の鉄損が著しく悪化す
る。このため自己焼鈍の場合、巻取り温度は1050℃
以下に定める。
In the present invention, self-annealing, in which hot-rolled sheet annealing is performed using the heat retained by the coil itself after finish annealing, is also effective. At that time, if the coiling temperature of the hot-rolled coil is lower than 750 ° C., the crystal grain growth during the self-annealing becomes insufficient, and the improvement of the magnetic properties is insufficient. On the other hand, when the winding temperature is higher than 1050 ° C., oxidation of the steel sheet during the high-temperature self-annealing cannot be prevented, and the iron loss of the product is remarkably deteriorated. Therefore, in the case of self-annealing, the winding temperature is 1050 ° C.
Determined below.

【0027】自己焼鈍時間は5分以上5時間以下であ
り、好ましくは30分以上3時間以下である。5分未満
では焼鈍の効果は不十分であり、5時間超では鋼板の酸
化により成品の鉄損が著しく悪化するので5時間以下と
する。このように熱延板焼鈍を施して得られた熱延板は
一回の冷間圧延と連続焼鈍により製品とする。またさら
にスキンパス圧延を付加して製品としてもよい。スキン
パス圧延率は2%未満ではその効果が得られず、20%
超では磁気特性が悪化するため2%以上から20%以下
とする。
The self-annealing time is from 5 minutes to 5 hours, preferably from 30 minutes to 3 hours. If it is less than 5 minutes, the effect of annealing is insufficient, and if it exceeds 5 hours, the iron loss of the product is significantly deteriorated due to oxidation of the steel sheet. The hot-rolled sheet obtained by performing the hot-rolled sheet annealing in this manner is made into a product by one cold rolling and continuous annealing. Further, a product may be obtained by further adding skin pass rolling. If the skin pass rolling ratio is less than 2%, the effect cannot be obtained, and 20%
If it is more than 2%, the magnetic properties deteriorate, so the content is set to 2% to 20%.

【0028】[0028]

【実施例】次に、本発明の実施例について述べる。 (実施例1)表2に示した成分を有する無方向性電磁鋼
用スラブを通常の方法にて加熱し、粗圧延機により厚み
50mmの粗バーに仕上げ、その後、仕上げ熱延機によ
り1.8mmに仕上げた。仕上げ熱延最終パスの歪み速
度をコイル全長にわたり300〜320s-1に制御し
た。また、仕上熱間圧延時に鋼板とワークロール間にス
リップが生じ鋼板の表面に疵が形成さ れることを防止
するために、粗圧延後のシートバーを先行するシートバ
ーに溶接し、仕上熱間圧延を連続して行った。この時、
熱延仕上げ温度は900℃とした。熱延後、連続焼鈍炉
により850℃2分の熱延板焼鈍を施した。その後、酸
洗を施し、冷間圧延により0.50mmに仕上げた。こ
れを連続焼鈍炉にて750℃で30秒間焼鈍した。その
後、エプスタイン試料に切断し、磁気特 性を測定し
た。表3に本発明と比較例の成分と磁気測定結果をあわ
せて示す。このように仕上げ熱延時の最終2スタンド間
の張力を1.5kgf/mm2以上に高めたことによ
り、磁束密度の値が高く、鉄損値の低い磁気特性の優れ
た無方向性電磁鋼板を得ることが可能である。また、最
終2スタンド間の張力が1.5kgf/mm2 以下であ
った比較例では熱延板のエッジから20mmとセンターと
の間の板厚偏差のコイル全長の平均が50μmを超えて
いたのに対し、最終2スタンド間の張力が1.5kgf
/mm 2 以上であった本発明例ではいずれも50μm以
下におさまり、最終2スタンド間の張力を制御すること
により、熱延板の板厚精度の向上がみられた。
Next, an embodiment of the present invention will be described. (Example 1) Non-oriented electrical steel having the components shown in Table 2
The slab for heating by the usual method,
Finished to a 50 mm coarse bar, then
It was finished to 1.8 mm. Strain speed of final pass of finishing hot rolling
300-320s over the entire length of the coil-1To control
Was. In addition, during finishing hot rolling, a gap
Prevents lip formation and flaw formation on steel sheet surface
In order to achieve this, the sheet bar after rough rolling
And finish hot rolling was continuously performed. This time,
The hot rolling finishing temperature was 900 ° C. After hot rolling, continuous annealing furnace
At 850 ° C. for 2 minutes. Then the acid
It was washed and finished to 0.50 mm by cold rolling. This
This was annealed at 750 ° C. for 30 seconds in a continuous annealing furnace. That
After that, cut into Epstein samples and measure the magnetic properties.
Was. Table 3 shows the components of the present invention and the comparative examples and the results of magnetic measurement.
I will show you. Thus, between the last two stands during finishing hot rolling
1.5kgf / mmTwoBy raising it above
High magnetic flux density and low core loss
It is possible to obtain a non-oriented electrical steel sheet. Also,
The tension between the last two stands is 1.5kgf / mmTwoBelow
In the comparative example, 20 mm from the edge of the hot rolled sheet and the center
The average of the total coil length of the sheet thickness deviation between
The tension between the last two stands is 1.5kgf
/ Mm TwoIn the examples of the present invention as described above, the
Settle down and control the tension between the last two stands
As a result, the thickness accuracy of the hot-rolled sheet was improved.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例2)表4に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により1.7mmに仕上げた。仕上げ熱延最終
2スタンド間の張力を3.0kgf/mm 2 から3.2
kgf/mm2 に保って圧延を行った。また、仕上熱間
圧延時に鋼板とワークロール間にスリップが生じ鋼板の
表面に疵が形成されることを防止するために、粗圧延後
のシートバーを先行するシートバーに溶接し、仕上熱間
圧延を連続して行った。この時、熱延仕上げ温度は90
0℃とし、直ちに水冷して650℃にて巻き取った。そ
の後、連続焼鈍炉により950℃2分の熱延板焼鈍を施
し、酸洗を施し、冷間圧延により0.50mmに仕上げ
た。これを連続焼鈍炉にて940℃で30秒間焼鈍し
た。その後、エプスタイン試料に切断し、磁気特性を測
定した。表5に本発明と比較例の成分と磁気測定結果を
あわせて示す。このように仕上げ熱延時の最終パスの歪
み速度を150s-1以上に高めれば、磁束密度の値が高
く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板を
得ることが可能である。
(Example 2)
Heat the slab for grain-oriented electrical steel in the usual way
Machine to make a 50mm thick rough bar, then finish
And finished to 1.7 mm with a hot rolling mill. Finish hot rolling final
3.0 kgf / mm tension between two stands TwoFrom 3.2
kgf / mmTwoAnd rolled. Also, finish hot
During rolling, slip occurs between the steel sheet and the work roll
After rough rolling to prevent flaws from forming on the surface
Sheet bar to the preceding sheet bar and finish hot
Rolling was performed continuously. At this time, the hot rolling finish temperature is 90
The temperature was adjusted to 0 ° C, immediately cooled with water, and wound at 650 ° C. So
After that, hot rolled sheet annealing was performed at 950 ° C for 2 minutes using a continuous annealing furnace.
And then pickled and finished to 0.50mm by cold rolling
Was. This is annealed at 940 ° C. for 30 seconds in a continuous annealing furnace.
Was. After that, it is cut into Epstein samples and the magnetic properties are measured.
Specified. Table 5 shows the components and magnetic measurement results of the present invention and comparative examples.
Also shown. Thus, the distortion of the final pass during finishing hot rolling
150s speed-1If it is increased above, the value of magnetic flux density will be high
And non-oriented electrical steel sheets with excellent magnetic properties and low iron loss
It is possible to get.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】(実施例3)表6に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により1.5mmに仕上げた。仕上げ熱延最終
2スタンド間の張力を3.1kgf/mm 2 から3.3
kgf/mm2 に保って圧延を行った。また、仕上熱間
圧延時に鋼板とワークロール間にストリップが生じ鋼板の表面
に疵が形成されることを防止するために、粗圧延後のシ
ートバーを先行するシートバーに溶接し、仕上熱間圧延
を連続して行った。この時、熱延仕上げ温度は900℃
とし、直ちに水冷して650℃にて巻き取った。その
後、連続焼鈍炉により980℃2分の熱延板焼鈍を施
し、酸洗を施し、冷間圧延により0.50mmに仕上げ
た。これを連続焼鈍炉にて950℃で30秒間焼鈍し
た。その後、エプスタイン試料に切断し、磁気特性を測
定した。表7に本発明と比較例の成分と磁気測定結果を
あわせて示す。このように仕上げ熱延時の最終パスの歪
み速度を150s-1以上に高めれば、磁束密度の値が高
く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板を
得ることが可能である。
(Example 3) A sample having the components shown in Table 6
Heat the slab for grain-oriented electrical steel in the usual way
Machine to make a 50mm thick rough bar, then finish
And finished to 1.5 mm with a hot rolling mill. Finish hot rolling final
3.1 kgf / mm tension between two stands TwoFrom 3.3
kgf / mmTwoAnd rolled. Also, finish hot
Strip occurs between the steel sheet and the work roll during rolling and the surface of the steel sheet
In order to prevent the formation of flaws in the
Weld the heat bar to the preceding sheet bar and finish hot roll
Was performed continuously. At this time, hot rolling finish temperature is 900 ℃
And immediately cooled with water and wound up at 650 ° C. That
Then, hot rolled sheet annealing was performed at 980 ° C for 2 minutes using a continuous annealing furnace.
And then pickled and finished to 0.50mm by cold rolling
Was. This is annealed at 950 ° C. for 30 seconds in a continuous annealing furnace.
Was. After that, it is cut into Epstein samples and the magnetic properties are measured.
Specified. Table 7 shows the components and magnetic measurement results of the present invention and comparative examples.
Also shown. Thus, the distortion of the final pass during finishing hot rolling
150s speed-1If it is increased above, the value of magnetic flux density will be high
And non-oriented electrical steel sheets with excellent magnetic properties and low iron loss
It is possible to get.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【表7】 [Table 7]

【0037】(実施例4)表8に示した成分を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧延
機により厚み50mmの粗バーに仕上げ、その後、仕上
げ熱延機により1.7mmに仕上げた。仕上げ熱延最終
2スタンド間の張力は2.5kgf/mm 2 から2.7
kgf/mm2 に保って圧延を行った。また、仕上熱間
圧延時に鋼板とワークロール間にストリップが生じ鋼板
の表面に疵が形成されることを防止するために、粗圧延
後のシートバーを先行するシートバーに溶接し、仕上熱
間圧延を連続して行った。この時、熱延仕上げ温度は9
50℃とし、直ちに水冷して650℃にて巻き取った。
その後、箱焼鈍炉により800℃5時間の熱延板焼鈍を
施し、酸洗を施し、冷間圧延により0.50mmに仕上
げた。これを連続焼鈍炉にて800℃で30秒間焼鈍し
た。その後、エプスタイン試料に切断し、750℃2時
間の需要家焼鈍相当 の歪取り焼鈍を行い、磁気特性を
測定した。表9に本発明と比較例の成分と磁気測定結果
をあわせて示す。このように仕上げ熱延時の最終パスの
歪み速度を150s-1以上に高めれば、磁束密度の値が
高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板
を得ることが可能である。
(Example 4)
Heat the slab for grain-oriented electrical steel in the usual way
Machine to make a 50mm thick rough bar, then finish
And finished to 1.7 mm with a hot rolling mill. Finish hot rolling final
The tension between the two stands is 2.5kgf / mm TwoFrom 2.7
kgf / mmTwoAnd rolled. Also, finish hot
Strip occurs between the steel sheet and the work roll during rolling
Rough rolling to prevent flaws from being formed on the surface of
The subsequent sheet bar is welded to the preceding sheet bar to finish heat
Cold rolling was performed continuously. At this time, the hot rolling finish temperature was 9
The temperature was adjusted to 50 ° C, immediately cooled with water, and wound at 650 ° C.
Thereafter, hot rolled sheet annealing at 800 ° C. for 5 hours was performed in a box annealing furnace.
, Pickling, cold rolling to a finish of 0.50mm
I got it. This is annealed at 800 ° C. for 30 seconds in a continuous annealing furnace.
Was. Then, cut into Epstein samples, 750 ° C for 2 hours
Between the annealing of the customer and the magnetic properties
It was measured. Table 9 shows the components and magnetic measurement results of the present invention and comparative examples.
Are also shown. In this way, the final pass at the time of finishing hot rolling
150s strain rate-1If it is raised above, the value of magnetic flux density
Non-oriented electrical steel sheet with high magnetic properties and low iron loss
It is possible to obtain

【0038】[0038]

【表8】 [Table 8]

【0039】[0039]

【表9】 [Table 9]

【0040】(実施例5)表10に示した成分を有する
無方向性電磁鋼用スラブを通常の方法にて加熱し、粗圧
延機により厚み50mmの粗バーに仕上げ、その後、仕
上げ熱延機により1.9mmに仕上げた。仕上熱延機の
最終2スタンド間の張力を2.9kgf/mm2 で一定
とした。この時、熱延仕上げ温度は950℃とし、86
0℃にて巻き取り、コイルを保熱カバー内に装入しコイ
ル自身の保有熱により830℃1時間の自己焼鈍を行っ
た。その後、酸洗し、冷間圧延により0.50mmに仕
上げ、連続焼鈍炉により850℃2分の熱延板焼鈍し
た。その後、エプスタイン試料に切断し、750℃2時
間の需要家焼鈍相当の歪取り焼鈍を行い、磁気特性を測
定した。表11に本発明と比較例の成分と磁気測定結果
をあわせて示す。このように仕上げ熱延時の最終パスの
歪み速度を150s-1以上に高めれば、磁束密度の値が
高く、鉄損値の低い磁気特性の優れた無方向性電磁鋼板
を得ることが可能である。
Example 5 A slab for non-oriented electromagnetic steel having the components shown in Table 10 was heated by a conventional method, and finished into a 50 mm-thick coarse bar by a rough rolling mill. To 1.9 mm. The tension between the last two stands of the finishing hot rolling mill was kept constant at 2.9 kgf / mm 2 . At this time, the hot rolling finishing temperature was 950 ° C.
The coil was wound at 0 ° C., the coil was placed in a heat retaining cover, and self-annealing was performed at 830 ° C. for 1 hour by the heat retained by the coil itself. Then, it was pickled, finished to 0.50 mm by cold rolling, and annealed at 850 ° C. for 2 minutes in a continuous annealing furnace. Thereafter, the specimen was cut into Epstein samples, and subjected to strain relief annealing corresponding to customer annealing at 750 ° C. for 2 hours, and the magnetic properties were measured. Table 11 also shows the components of the present invention and comparative examples and the results of magnetic measurement. By increasing the strain rate of the final pass at the time of finishing hot rolling to 150 s -1 or more, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density and an excellent magnetic property with a low iron loss value. .

【0041】[0041]

【表10】 [Table 10]

【0042】[0042]

【表11】 [Table 11]

【0043】[0043]

【発明の効果】このように本願発明によれば、磁束密度
が高い無方向性電磁鋼板を製造することが可能である。
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上熱延時の最終パスの歪み速度と成品磁束密
度の関係を示す図、
FIG. 1 is a diagram showing the relationship between the strain rate of the final pass during finish hot rolling and the product magnetic flux density;

【図2】仕上げ熱延時の最終2スタンド間の張力と成品
磁束密度の関係を示す図、
FIG. 2 is a diagram showing the relationship between the tension between the last two stands during final hot rolling and the magnetic flux density of a product;

【図3】冷延圧下率と磁束密度の関係を示す図である。FIG. 3 is a diagram showing a relationship between a cold rolling reduction and a magnetic flux density.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鋼中に重量%で 0.10%<Si≦4.00% 0.10%≦Mn≦1.00% C≦0.0050% N≦0.0050% S≦0.0050% を含有し、残部がFeおよび不可避的不純物からなるス
ラブを用い、熱間圧延し熱延板とし、熱延板焼鈍を施
し、1回の冷間圧延を行い、次いで仕上げ焼鈍を施す無
方向性電磁鋼板の製造方法において、仕上熱間圧延時
に、少なくとも1パスを歪み速度150s-1以上でか
つ、少なくとも1組のスタンド間の張力が1.5kgf
/mm2 以上で仕上げ熱延を実施し、冷間圧延率が75
%以下であることを特徴とする磁束密度の高い無方向性
電磁鋼板の製造方法。
1. 0.10% <Si ≦ 4.00% 0.10% ≦ Mn ≦ 1.00% C ≦ 0.0050% N ≦ 0.0050% S ≦ 0.0050% by weight in steel %, With the balance being Fe and inevitable impurities, hot-rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing, cold-rolled once, and then subjected to finish annealing. In the method for producing a conductive electrical steel sheet, at the time of finishing hot rolling, at least one pass has a strain rate of 150 s -1 or more and a tension between at least one set of stands is 1.5 kgf.
/ Mm 2 or more, hot rolling is performed, and the cold rolling rate is 75
% Or less, a method for producing a non-oriented electrical steel sheet having a high magnetic flux density.
【請求項2】 鋼中に重量%で、更に0.10%≦Al
≦2.00%を含有することを特徴とする請求項1記載
の磁束密度の高い無方向性電磁鋼板の製造方法。
2. The composition according to claim 1, wherein the weight percentage in steel is 0.10% ≦ Al
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to claim 1, characterized by containing ≤ 2.00%.
【請求項3】 仕上げ熱延後の熱延板に850℃以上1
100℃以下の温度で、20秒以上5分以下の連続焼鈍
により熱延板焼鈍を施すことを特徴とする請求項1また
は2記載の磁束密度の高い無方向性電磁鋼板の製造方
法。
3. The hot-rolled sheet after finishing hot-rolling has a temperature of 850 ° C. or higher.
The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to claim 1 or 2, wherein the hot-rolled sheet is subjected to continuous annealing at a temperature of 100 ° C or less for 20 seconds or more and 5 minutes or less.
【請求項4】 仕上上げ熱延後の熱延板に700℃以上
850℃以下の温度で、5分以上30時間以下の箱焼鈍
により熱延板焼鈍を施すことを特徴とする請求項1また
は2記載の磁束密度の高い無方向性電磁鋼板の製造方
法。
4. The hot-rolled sheet after finishing hot-rolling is subjected to box-roll annealing at a temperature of 700 ° C. to 850 ° C. for 5 minutes to 30 hours. 2. The method for producing a non-oriented electrical steel sheet having a high magnetic flux density according to 2.
【請求項5】 仕上げ熱延後の熱延板を750℃以上1
050℃以下の温度で巻取り、5分以上5時間以下、コ
イル自身の保有熱で自己焼鈍により熱延板焼鈍を施すこ
とを特徴とする請求項1または2記載の磁束密度の高い
無方向性電磁鋼板の製造方法。
5. The hot rolled sheet after the finish hot rolling is 750 ° C. or higher.
3. The non-directional sheet having a high magnetic flux density according to claim 1, wherein the coil is wound at a temperature of 050 [deg.] C. or less, and the hot rolled sheet is annealed by self-annealing with the heat of the coil itself for 5 minutes to 5 hours. Manufacturing method of electrical steel sheet.
【請求項6】 1回目の冷間圧延後、仕上げ焼鈍を施
し、さらに2%以上20%以下のスキンパス圧延を施す
ことを特徴とする請求項1〜5記載の磁束密度の高い無
方向性電磁鋼板の製造方法。
6. The non-directional electromagnetic member having a high magnetic flux density according to claim 1, wherein after the first cold rolling, finish annealing is performed, and further, skin pass rolling of 2% or more and 20% or less is performed. Steel plate manufacturing method.
【請求項7】 粗圧延後のシートバーを仕上熱延前に先
行するシートバーに接合し、該シートバーを連続して仕
上熱延に供することを特徴とする請求項1〜6記載の磁
束密度の高い無方向性電磁鋼板の製造方法。
7. The magnetic flux according to claim 1, wherein the sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling, and the sheet bar is continuously subjected to the hot rolling. A method for manufacturing non-oriented electrical steel sheets with high density.
JP8206816A 1996-08-06 1996-08-06 Manufacture of nonoriented magnetic steel sheet with high magnetic flux density Withdrawn JPH1046246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8206816A JPH1046246A (en) 1996-08-06 1996-08-06 Manufacture of nonoriented magnetic steel sheet with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8206816A JPH1046246A (en) 1996-08-06 1996-08-06 Manufacture of nonoriented magnetic steel sheet with high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH1046246A true JPH1046246A (en) 1998-02-17

Family

ID=16529571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206816A Withdrawn JPH1046246A (en) 1996-08-06 1996-08-06 Manufacture of nonoriented magnetic steel sheet with high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH1046246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
KR101703071B1 (en) * 2015-12-10 2017-02-06 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248559A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Nonoriented electrical steel sheet
KR101703071B1 (en) * 2015-12-10 2017-02-06 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JPH0463228A (en) Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
KR19990071916A (en) A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
JPH1046246A (en) Manufacture of nonoriented magnetic steel sheet with high magnetic flux density
JP3350351B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent shape and magnetic properties
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH1046247A (en) Manufacture of nonoriented magnetic steel sheet with high magnetic flux density
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH0617548B2 (en) Non-oriented electrical steel sheet with excellent rust resistance
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH1036913A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH10140239A (en) Production of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH1060530A (en) Production of nonoriented silicon steel sheet high in magnetic flux density
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007