JP4616427B2 - Silicon-containing hot-rolled sheet - Google Patents

Silicon-containing hot-rolled sheet Download PDF

Info

Publication number
JP4616427B2
JP4616427B2 JP22214098A JP22214098A JP4616427B2 JP 4616427 B2 JP4616427 B2 JP 4616427B2 JP 22214098 A JP22214098 A JP 22214098A JP 22214098 A JP22214098 A JP 22214098A JP 4616427 B2 JP4616427 B2 JP 4616427B2
Authority
JP
Japan
Prior art keywords
rolling
hot
sheet
steel sheet
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22214098A
Other languages
Japanese (ja)
Other versions
JP2000054084A (en
Inventor
竜太郎 川又
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22214098A priority Critical patent/JP4616427B2/en
Publication of JP2000054084A publication Critical patent/JP2000054084A/en
Application granted granted Critical
Publication of JP4616427B2 publication Critical patent/JP4616427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の鉄心材料として用いられる、磁束密度が高く、鉄損が低い優れた磁気特性を有する無方向性電磁鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、無方向性電磁鋼板がその鉄心材料として使用される回転機においては、世界的な電力、エネルギー節減、環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため、無方向性電磁鋼板に対しても、その特性向上、すなわち、高磁束密度かつ低鉄損化への要請がますます強まってきている。また、世界的大競争時代に突入しつつある中、需要家からは低コストで磁気特性の優れた無方向性電磁鋼板の提供を強く求められている。
【0003】
ところで、無方向性電磁鋼板においては、従来、低鉄損化の手段として一般に、電気抵抗増大による渦電流損低減の観点からSiあるいはAl等の含有量を高める方法がとられてきた。しかし、この方法では反面、磁束密度の低下は避け得ないという問題点があった。このような問題点の克服のために、熱延板結晶粒径を粗大化することで磁束密度と鉄損の両方を改善させる方法が行われてきた。
【0004】
従来技術による無方向性電磁鋼板の冷延前結晶組織を安価に粗大化する技術として、再結晶および粒成長の進行の緩慢な高Si系成分のハイグレード無方向性電磁鋼板の磁気特性を制御熱延により改善する技術として、特開昭59−74222号公報には、仕上熱延最終スタンドの圧下率を20%以上として、熱延板の巻取温度を700℃以上とする技術が開示されている。この出願においては、最終スタンド圧下率を高めて巻取温度を上昇させることにより熱延終了後の熱延組織の再結晶および粒成長を促進し、結果として磁気特性を改善することを狙っている。しかしながら鋼板中のSi含有量が高い場合、この技術では熱延板の再結晶は促進されるものの、その後の粒成長が不十分であり、粒成長を十分に進行させるためには巻取後のコイルを長時間高温で保持する必要があり、この高温での保持中に内部酸化が進行し鉄損が悪化する。このため従来の技術ではSi含有量の高いハイグレード無方向性電磁鋼板における高磁束密度と低鉄損の両立は困難であった。
【0005】
また、特開昭54−76422号公報には仕上熱延後の熱延板を700℃から1000℃の高温で巻取り、これをコイルの保有熱で焼鈍する自己焼鈍法が開示されている。
【0006】
しかしながらこの技術においてはコイルを高温で巻き取ることによるコイル内温度不均一によるコイル長手方向の磁気特性の変動、また長時間の自己焼鈍中に生じる内部酸化層の発生により仕上焼鈍時の結晶粒成長が不十分となり、結果として鉄損が悪化するという問題点があった。
【0007】
このほかにも、冷間圧延を一回施すことにより最終板厚に仕上げる一回法では、熱延板焼鈍、二回法では一回目と二回目の冷延の間に中間焼鈍を実施し、冷延前結晶粒径の粗大化をはかる方法が公知である。しかし、これらの方法では冷延前結晶粒径を粗大化するために熱延板焼鈍を施す必要があるが、これが製品コストの上昇を招き、需要家の素材への低コスト化要求に応えることが出来なかった。
【0008】
また従来技術による高磁束密度化方法によると、製品のL方向の磁束密度の値は高くなるが、他の方向の磁束密度は冷延前結晶粒径を粗大化しない場合とほとんど変化せず、無方向性電磁鋼板としての磁気特性の異方性が増大する。
【0009】
その結果として、この様な従来技術による高磁束密度無方向性電磁鋼板を、特に回転機として使用に供する場合、モーターの回転むらであるコギング発生を防止するためにロータ、ステータの鉄心を回し積みにしなければならず、需要家での作業コストの上昇を招くという問題があった。
【0010】
この様な従来技術による高磁束密度無方向性電磁鋼板における課題に対処するには、鉄の磁化容易軸である<100>方向を板面内に有する結晶粒をより多く含有する無方向性電磁鋼板の開発が待たれていた。また、昨今のメガコンペティションの時代においては、磁気特性に優れるだけでなく、安価な製造方法の開発が待たれていた。
【0011】
一方で、鉄損低減の為に、単にSiあるいはAl等の含有量を高めるのみではなく、鋼を高純度化する技術として、Si含有量が2.5%〜4.0%である鋼において、特開昭59−74258号公報にはS≦15ppm、O≦20ppm、N≦25ppmの高純度鋼化を図る方法が、特開昭59−74257号公報にはS≦15ppm、O≦20ppm、N≦25ppmに加えてTi+Zr+Ce+Ca≦150ppmとする方法が、特開昭59−74223号公報にはS≦15ppm、O≦20ppm、N≦25ppmに加えて仕上焼鈍時の昇温速度を300℃/S以上とする技術が、特開昭59−74224号公報には一回冷延法においてS≦15ppm、O≦20ppm、N≦25ppmに制限する規定に加えて熱延板焼鈍条件を規定しかつ冷間圧延率を65%以上に規定する技術が、特開昭59−74225号公報には二回冷延法においてS≦15ppm、O≦20ppm、N≦25ppmの規定に加えて中間焼鈍条件を規定しかつ二回目の冷間圧延率を70%以上に規定する技術がそれぞれ開示されている。
【0012】
これらのS、O、Nの低減を中心とした技術では、Si含有量の高いハイグレード無方向性電磁鋼板の制御熱延による冷延前結晶組織粗大化が不十分であるという課題があった。このため、これらの技術においては一回法では熱延板焼鈍、二回法では一回目と二回目の冷延の間に中間焼鈍を実施し、冷延前結晶粒径の粗大化をはかる必要があった。このため製造コストの増大を招く問題があった。さらに、介在物制御、ならびにS、O、N等の不純物を低減するために製鋼のコストが増大するという難点があり、需要家からの低コスト材提供の要求に応えることが出来なかった。
【0013】
また、低コスト無方向性電磁鋼板を提供する手段として、特開平9−194939号公報には、粗熱間圧延後、シートバーを巻取り均熱処理を施した後、板厚1mm以下のホットファイナル無方向性電磁鋼板を製造する技術が開示されている。しかしながらシートバーの巻取りによるシートバー自身の均熱化のみで薄手熱延板を安定製造することには限界があり、薄手材を製造した場合に、仕上熱延の圧下率が増大することからシートバー噛み込み時にスタンド間で上反りが生じやすく、結果として圧延を停止せざるを得なかった。また、仕上熱延の圧下率低減のためにシートバーを薄手化すると、シートバー巻取りを行ったとしても、シートバーの温度むら生じるため、成品の特性がコイル採取位置に対して安定せず、限界があった。この様に、薄手ホットファイナル無方向性電磁鋼板の製造には大きな課題を残していた。
【0014】
【発明が解決しようとする課題】
本発明は、従来のコスト増を招く高磁束密度無方向性電磁鋼板製造法の問題点を解決し、安価で磁気特性に優れた珪素含有熱延板及びその鋼板を安定して製造する方法を提供することを主目的とするものである。
【0015】
【課題を解決するための手段】
本発明の要旨とするところは、以下のとおりである。
(1) 重量%で、
0.31%≦Si≦4.0%、
0.05%≦Mn≦1.5%
酸可溶性Alを0.001%以上0.0020%以下
を含有し、残部がFeおよび不可避的不純物からなる熱延板において、板厚が0.8mm以下であり、圧延方向に対し45°、135°方向の磁束密度が、他の方向に比べ高いことを特徴とする珪素含有熱延板。
【0016】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
本発明の請求項1においては、圧延方向に対し45°、135°の方向の励磁電流5000A/mにおける磁束密度B50の値が他の方向に対し高いことを特徴としている。その測定方法としては、圧延方向に対しそれぞれ0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°、180°の方向にJISC2550に定められたエプスタイン試験片を切り出し、それぞれの方向のみの試料を用いて測定したエプスタインデータを用いて発明の範囲に適合するかどうかの判定を行う。また、その測定は圧延方向に対しそれぞれ0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°、180°の方向に切り出した試料を用いてシングルシートテスター、略称SSTを用いて行う簡便法によっても判定しても良い。
【0017】
発明者らは、低鉄損と高磁束密度を同時に達成すべく従来技術における問題点を鋭意検討を重ねた結果、重量%でSiを0.31%以上4.0%以下、Mnを0.05%以上1.5%以下、Alを0.001%以上0.002%以下含有する鋼にあって、仕上熱間圧延時の熱延ロールと鋼板との平均摩擦係数を0.25以下とすることにより、薄手ホットファイナル無方向性電磁鋼板の圧延を安定して行うことができることを見出すと共に、板面内の磁束密度の高い方向を4方向有し、特に回転機にとり極めて好ましい磁束密度の異方性を有するホットファイナル無方向性電磁鋼板ならびにその製造法を見出し、発明の完成に至った。また、本発明の様な低摩擦率の仕上熱間圧延を安定的に行うために、粗圧延後のシートバーを、先行するシートバーに接合し、仕上熱間圧延を連続的に行うことで、低摩擦圧延時のロールのスリップを防止し、スリップ疵等のない表面性状の優れた鋼板を製造することが可能であることも見いだした。
また、この無方向性電磁鋼板の鉄損のグレード作り分けには、仕上熱延の終了温度を制御することが最も有効であることをも見出した。
【0018】
以下に、本発明の詳細について説明する。
まず、成分について説明すると、Siは鋼板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改善するために添加される。Si含有量が0.31%未満であると本発明が目的とする低鉄損無方向性電磁鋼板に必要な固有抵抗が十分に得られないので0.31%以上の量を添加する必要がある。一方、Si含有量が4.0%を超えると圧延時の耳割れが著しく増加し、圧延が困難になるので4.0%以下とする必要がある。
【0019】
鋼中のAlは不純物レベルであってもなんら問題はないが、AlはSiと同様に鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有するので、特に低鉄損を得たい場合には0.001%以上0.002%以下添加するのが好ましい。多量にAl添加した場合には、磁束密度が低下し、コスト高ともなるので1.5%以下とする。
【0020】
Mnは、Al、Siと同様に鋼板の固有抵抗を増大させ渦電流損を低減させる効果を有する。この目的のため、Mn含有量は0.05%以上とする必要がある。一方、Mn含有量が1.5%を超えると熱延時の変形抵抗が増加し熱延が困難となるとともに、熱延後の結晶組織が微細化しやすくなり、製品の磁気特性が悪化するので、Mn含有量は1.5%以下とする必要がある。
【0021】
また、Mn添加量は仕上げ熱延前の高温のシートバー接合部の強度確保の点からもきわめて重要である。なぜなら、低融点の硫化物が結晶粒界に存在することによるシートバー接合部の熱間脆化を防止するために、MnとSとの重量濃度の比であるMn/Sの値を20以上とすることが必要であるからである。本発明に規定する成分範囲では、Mn含有量が0.05%以上であり、S含有量は0.005%以下とすれば、Mn/Sの値は20以上に保たれ、この観点からは問題がない。
【0022】
また、製品の機械的特性の向上、磁気的特性、耐錆性の向上あるいはその他の目的のために、P、B、Ni、Cr、Sb、Sn、Cuの1種または2種以上を鋼中に含有させても本発明の効果は損なわれない。
【0023】
C含有量が0.005%を超えると使用中の磁気時効により鉄損が悪化して使用時のエネルギーロスが増加するため、0.005%以下に制御することが好ましい。
【0024】
S、Nは熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS等の硫化物、AlN等の窒化物を形成する。これらが存在することにより熱延組織の粒成長を妨げるとともに仕上げ焼鈍時の結晶粒成長を妨げ鉄損が悪化するのでSは0.005%、Nは0.005%以下にすることが好ましい。
【0025】
次に本発明のプロセス条件について説明する
【0026】
削除
【0027】
削除
【0028】
削除
【0029】
削除
【0030】
削除
【0031】
削除
【0032】
削除
【0033】
削除
【0034】
削除
【0035】
削除
【0036】
削除
【0037】
本発明のごとく仕上熱間圧延で薄手仕上げする場合、仕上熱延機へのシートバーの噛み込み時に、スタンド間におけるシートバーの上ぞりによるシートバーの噛み込み不良の発生や、仕上熱延中にロールと鋼板の間にスリップが生じ、圧延ロールの寿命を著しく縮めるとともに、鋼板表層に深い圧延疵を生じせしめる場合があるという問題が明らかになった。この様な薄手材の仕上熱間圧延における問題点を解決し、安定的に操業を行う方法として、粗圧延後のシートバーを、仕上熱間圧延前に先行するシートバーに接合し、当該シートバーを連続して仕上熱間圧延に供することが有効である。この方法は、潤滑油中の油脂濃度を上昇させて摩擦係数を低減させた場合に、ロールのスリップを防ぎ、圧延疵を防止することに対して特に効果的である。
【0038】
削除
【0039】
削除
【0040】
削除
【0041】
図1に仕上げ熱延終了温度と鉄損W15/50 ROUND との関係を示す。図1から、ホットファイナル無方向性電磁鋼板の鉄損の値が、仕上げ熱延終了温度を制御することによりコントロールすることが出来る。金属組織観察の結果、800℃未満の低温側では圧延組織の歪の解放が不十分で鉄損が悪化することが判明した。また、875℃超の高温側では、熱延終了後冷却過程でγ相からα相への変態が進行した結果、得られたホットファイナル無方向性電磁鋼板の結晶組織が微細化してしまい、鉄損が悪化したことが判明した。800℃以上875℃以下の範囲においては、仕上げ熱延終了温度を上昇させることにより、鉄損の値の制御が可能である。この様に、ホットファイナル無方向性電磁鋼板製造においては、仕上げ熱延の終了温度を変化させることにより、鉄損の改善が可能であるばかりでなく、鉄損のグレードそのものの造り分けも可能であることが図1よりわかる。
【0042】
仕上熱延時にロール冷却水に混入する油脂の量は体積比で0.5%以上20%以下とする。油脂と冷却水が分離することを防止するために必要に応じ界面活性剤を加えてもよい。ロール冷却水中の油脂量が0.5%未満ではその効果が得られず、20%超ではその効果が飽和し、不経済であるので20%以下とする。
【0043】
このようにして得られた熱延板は酸洗後、さらにスキンパス圧延工程を付加して製品としてもよい。スキンパス圧延率は2%未満ではその効果が得られず、20%超では磁気特性が悪化するため2%から20%とする。
【0044】
【実施例】
次に、本発明の実施例について述べる。
[実施例1]
本発明の最たる特徴である、回転機として優れた磁気特性の異方性について実施例を示す。表4に示す成分の鋼を溶製し仕上げ熱延を実施した。比較例では仕上熱延の板厚を2.5mmとし、冷間圧延により0.65mmに仕上げ、950℃、30秒の仕上げ焼鈍を施した。本発明例では、仕上げ熱間圧延により0.65mmの薄手に仕上げ、酸洗を施した。仕上げ熱間圧延の終了温度は850℃とした。両者の試料から、それぞれ圧延方向に対し0°、22.5°、45°、67.5°、90°、112.5°、135°、157.5°、180°方向のエプスタイン試料を切り出し、それぞれの磁束密度を測定した。測定結果を表5に示す。
【0045】
【表4】

Figure 0004616427
【0046】
【表5】
Figure 0004616427
【0047】
表5より、本発明のホットファイナル無方向性電磁鋼板では45°、135°方向の磁束密度が比較材のL方向の磁束密度よりも高いことが分かる。また、比較材では圧延方向に対して0°方向と、その逆方向である180°方向の磁束密度が最も高いが、本発明のホットファイナル無方向性電磁鋼板では圧延方向に45°方向、135°方向の磁束密度が最も高くなっている。これにより、本発明のホットファイナル無方向性電磁鋼板は、圧延方向から一周回転していってみた場合に、磁束密度の高い方向を4方向有することになる。これに対し、比較材では、磁束密度の高い方向は、圧延方向とその逆方向である180°の2方向のみに限られる。また、その値も本発明に比べて劣っていることが分かる。
【0048】
この様に、本発明によれば、磁束密度の値が圧延方向に対して4方向高いホットファイナル無方向性電磁鋼板を提供できるだけでなく、その値も従来の冷延電磁鋼板と比較して高磁束密度であることが分かる。
【0049】
[実施例2]
製品板厚と磁束密度の関係について明らかにするため、下記の実験を行った。表6の成分の鋼にて、ホットファイナル無方向性電磁鋼板を板厚を変えて製造し、内径20mm、外径40mmのリング試料を採取し、磁束密度を測定し、板厚との関係を調査した。また、本実験では仕上げ熱延のロール冷却水に50℃での動粘性係数が400cSt(センチストークス)の潤滑油を体積にて3%混入して仕上げ熱延を行った。潤滑油を混入した冷却水の温度は50℃とした。仕上げ熱延時の鋼板とロールの摩擦係数は0.20〜0.23であった。
【0050】
【表6】
Figure 0004616427
【0051】
その後、酸洗を施し、0°から180°まで22.5°おきにエプスタイン試料に切断し、各方向でのエプスタイン測定値から、下記の式に従ってB50ROUND を測定した。表7に本発明と比較例の板厚と磁気測定結果をあわせて示す。
B50ROUND={B50+(B5022.5+B5045+B5067.5+B5090
+B50112.5+B50135+B50157.5)×2 +B50180 }/16
【表7】
Figure 0004616427
【0052】
表7より、板厚1.20mm以下では高い磁束密度が得られることが分かる。また、板厚0.80mm以下では更に高い磁束密度を得ることが可能であることが分かる。
【0053】
削除
【0055】
削除
【0056】
削除
【0057】
削除
【0058】
削除
【0059】
[実施例4]
表10に示した成分を有するスラブを通常の方法にて加熱し、粗圧延機により厚み30mmの粗バーに仕上げ、その後、仕上げ熱延機により1.0mmに仕上げた。仕上げ熱延機のロール冷却水に油脂をエマルジョン状態で混入し、その混入量を変えることにより摩擦係数を調整した。摩擦係数は各スタンドにおける実測の先進率より計算した。また、仕上熱間圧延時に鋼板とワークロール間にスリップが生じ鋼板の表面に疵が形成されることを防止するために、粗圧延後のシートバーを先行するシートバーに溶接し、仕上熱間圧延を連続して行った。この時、熱延仕上げ温度は860℃とした。
【0060】
【表10】
Figure 0004616427
【0061】
その後、酸洗を施し、0°から180°まで22.5°おきにエプスタイン試料に切断し、各試料でのエプスタイン測定値から、下記の式に従ってB50ROUND を測定した。表11に本発明と比較例の成分と磁気測定結果をあわせて示す。
B50ROUND ={B50+(B5022.5+B5045+B5067.5+B5090
+B50112.5+B50135 +B50157.5)×2+B50180}/16
【表11】
Figure 0004616427
【0062】
このように仕上げ熱延時に少なくとも1パスの圧延ロールと鋼板との間の摩擦係数を0.25以下に低減すれば、磁束密度の値が高い磁気特性の優れた無方向性電磁鋼板を得ることが可能である。
【0063】
【発明の効果】
本発明によれば、磁気特性の優れた珪素含有熱延板を供することが可能となる。
【図面の簡単な説明】
【図】 熱間圧延仕上温度と鉄損との関係を示す図表である。[0001]
BACKGROUND OF THE INVENTION
The present invention is used as the core materials of the electrical device, the magnetic flux density is high, a method for manufacturing a non-oriented electrical steel sheet and its iron loss has a low excellent magnetic properties.
[0002]
[Prior art]
In recent years, in a rotating machine in which a non-oriented electrical steel sheet is used as an iron core material, a trend toward high efficiency is rapidly spreading in the world in the movement of electric power, energy saving and environmental conservation. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their characteristics, that is, to achieve high magnetic flux density and low iron loss. In addition, while entering the era of global competition, customers are strongly demanded to provide non-oriented electrical steel sheets with excellent magnetic properties at low cost.
[0003]
By the way, in a non-oriented electrical steel sheet, conventionally, as a means for reducing iron loss, a method of increasing the content of Si, Al, or the like from the viewpoint of reducing eddy current loss due to increased electrical resistance has been taken. However, this method has a problem that a decrease in magnetic flux density is inevitable. In order to overcome such problems, methods for improving both the magnetic flux density and the iron loss have been performed by increasing the crystal grain size of the hot rolled sheet.
[0004]
Controls the magnetic properties of high-grade non-oriented electrical steel sheets with high Si content, which is slow in the progress of recrystallization and grain growth, as a technology to coarsen the crystal structure before cold rolling of non-oriented electrical steel sheets by conventional technology at low cost. As a technique to improve by hot rolling, Japanese Patent Application Laid-Open No. 59-74222 discloses a technique in which the rolling reduction of the final hot rolling final stand is set to 20% or more and the winding temperature of the hot rolled sheet is set to 700 ° C. or higher. ing. In this application, the final stand reduction ratio is increased to raise the coiling temperature, thereby promoting the recrystallization and grain growth of the hot-rolled structure after the hot rolling is completed, and as a result, improving the magnetic properties. . However, when the Si content in the steel sheet is high, this technique promotes recrystallization of hot-rolled sheets, but the subsequent grain growth is insufficient. It is necessary to hold the coil at a high temperature for a long time, and internal oxidation proceeds during the holding at this high temperature, resulting in deterioration of iron loss. For this reason, it has been difficult for the conventional technology to achieve both high magnetic flux density and low iron loss in a high-grade non-oriented electrical steel sheet having a high Si content.
[0005]
Japanese Patent Application Laid-Open No. 54-76422 discloses a self-annealing method in which a hot-rolled sheet after finish hot rolling is wound at a high temperature of 700 ° C. to 1000 ° C., and this is annealed with the retained heat of the coil.
[0006]
However, in this technique, the grain growth during finish annealing is caused by the fluctuation of the magnetic characteristics in the longitudinal direction of the coil due to the non-uniform temperature inside the coil due to the coil being wound at a high temperature, and the generation of an internal oxide layer that occurs during long-time self-annealing As a result, the iron loss deteriorated.
[0007]
In addition to this, in the one-time method of finishing to the final sheet thickness by performing cold rolling once, hot-rolled sheet annealing is performed, and in the second method, intermediate annealing is performed between the first and second cold rolling, A method for increasing the grain size before cold rolling is known. However, in these methods, it is necessary to perform hot-rolled sheet annealing in order to increase the crystal grain size before cold rolling, which leads to an increase in product cost and responds to the demand for cost reduction of the material of the customer. I couldn't.
[0008]
Further, according to the conventional magnetic flux density increasing method, the value of the magnetic flux density in the L direction of the product is increased, but the magnetic flux density in the other direction is hardly changed from the case where the crystal grain size before cold rolling is not coarsened. Anisotropy of magnetic properties as a non-oriented electrical steel sheet increases.
[0009]
As a result, when the magnetic flux density non-oriented electrical steel sheet according to the prior art is used as a rotating machine, the rotor and stator iron cores are rotated and stacked in order to prevent the occurrence of cogging, which is uneven rotation of the motor. There was a problem that the work cost at the customer would increase.
[0010]
In order to cope with the problem in the high magnetic flux density non-oriented electrical steel sheet according to the conventional technology, the non-oriented electromagnetic containing more crystal grains having the <100> direction which is the easy axis of iron in the plate surface. The development of steel sheets was awaited. Moreover, in the recent mega competition era, development of an inexpensive manufacturing method has been awaited in addition to excellent magnetic properties.
[0011]
On the other hand, in order to reduce iron loss, not only simply increasing the content of Si or Al, but also as a technique for purifying steel, in steels with a Si content of 2.5% to 4.0%. JP-A-59-74258 discloses a method of achieving high purity steel with S ≦ 15 ppm, O ≦ 20 ppm, N ≦ 25 ppm, and JP-A-59-74257 discloses S ≦ 15 ppm, O ≦ 20 ppm, In addition to N ≦ 25 ppm, a method of Ti + Zr + Ce + Ca ≦ 150 ppm is disclosed in JP-A-59-74223 in which S ≦ 15 ppm, O ≦ 20 ppm, N ≦ 25 ppm, and the rate of temperature increase during finish annealing is 300 ° C./S In the technique described above, Japanese Patent Application Laid-Open No. 59-74224 specifies hot-rolled sheet annealing conditions in addition to the restrictions of S ≦ 15 ppm, O ≦ 20 ppm, and N ≦ 25 ppm in the single cold rolling method. In addition, a technique for regulating the cold rolling rate to 65% or more is disclosed in Japanese Patent Application Laid-Open No. 59-74225 in addition to the provisions of S ≦ 15 ppm, O ≦ 20 ppm and N ≦ 25 ppm in the double cold rolling method. And a technique for defining the second cold rolling ratio to 70% or more is disclosed.
[0012]
In the technology centering on the reduction of these S, O, and N, there is a problem that the crystal structure coarsening before cold rolling by the controlled hot rolling of the high grade non-oriented electrical steel sheet having a high Si content is insufficient. . For this reason, in these techniques, it is necessary to perform hot rolling sheet annealing in the first method and intermediate annealing between the first and second cold rolling in the second method to increase the grain size before cold rolling. was there. For this reason, there was a problem that caused an increase in manufacturing cost. Furthermore, there is a problem that the cost of steelmaking increases in order to control inclusions and to reduce impurities such as S, O, and N, and it has not been possible to meet the demand for providing low-cost materials from customers.
[0013]
In addition, as a means for providing a low-cost non-oriented electrical steel sheet, Japanese Patent Application Laid-Open No. 9-194939 discloses a hot final sheet having a thickness of 1 mm or less after rolling hot and then rolling a sheet bar and performing a uniform heat treatment. A technique for manufacturing a non-oriented electrical steel sheet is disclosed. However, there is a limit to the stable production of thin hot-rolled plates by just equalizing the temperature of the sheet bar itself by winding the sheet bar. When thin materials are produced, the reduction ratio of finish hot rolling increases. When the sheet bar is bitten, warping tends to occur between the stands, and as a result, rolling has to be stopped. Also, if the sheet bar is made thin to reduce the rolling reduction of the finish hot rolling, even if the sheet bar is rolled up, the temperature of the sheet bar will be uneven, and the product characteristics will not be stable with respect to the coil sampling position. There was a limit. As described above, the manufacturing of the thin hot final non-oriented electrical steel sheet has left a big problem.
[0014]
[Problems to be solved by the invention]
The present invention solves the problems of conventional high magnetic flux density non-oriented electrical steel sheet manufacturing methods that lead to an increase in cost, and provides a silicon-containing hot rolled sheet that is inexpensive and excellent in magnetic properties and a method for stably manufacturing the steel sheet. The main purpose is to provide.
[0015]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) By weight%
0.31% ≦ Si ≦ 4.0%,
0.05% ≦ Mn ≦ 1.5%
In a hot-rolled sheet containing 0.001% or more and 0.0020% or less of acid-soluble Al, with the balance being Fe and inevitable impurities, the sheet thickness is 0.8 mm or less, 45 ° to the rolling direction, 135 A silicon-containing hot-rolled sheet characterized in that the magnetic flux density in the ° direction is higher than in other directions.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The first aspect of the present invention is characterized in that the value of the magnetic flux density B50 at an excitation current of 5000 A / m in the directions of 45 ° and 135 ° with respect to the rolling direction is higher than in the other directions. The measurement method is JISC2550 in the direction of 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °, 157.5 °, and 180 ° with respect to the rolling direction, respectively. A predetermined Epstein test piece is cut out, and it is determined whether or not it conforms to the scope of the invention using Epstein data measured using a sample in only each direction. In addition, the samples were cut in directions of 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °, 157.5 °, and 180 ° with respect to the rolling direction, respectively. It may be determined by a simple method using a single sheet tester, abbreviated SST.
[0017]
The inventors have intensively studied the problems in the prior art to simultaneously achieve a low iron loss and a high magnetic flux density. As a result, the Si content is 0.31% or more and 4.0% or less and the Mn is 0.00% by weight . In steel containing 05 % or more and 1.5% or less and Al 0.001 % or more and 0.002 % or less, the average friction coefficient between the hot-rolling roll and the steel sheet during finish hot rolling is 0.25 or less. As a result, it is found that the thin hot final non-oriented electrical steel sheet can be stably rolled, and has four directions with high magnetic flux density in the plate surface, and is particularly preferable for a rotating machine. The inventors have found a hot final non-oriented electrical steel sheet having anisotropy and a manufacturing method thereof, and have completed the invention. In addition, in order to stably perform finish hot rolling with a low friction coefficient as in the present invention, the sheet bar after rough rolling is joined to the preceding sheet bar, and finish hot rolling is continuously performed. It has also been found that it is possible to prevent the slip of the roll during low friction rolling and to produce a steel sheet with excellent surface properties free from slip wrinkles.
It has also been found that controlling the finishing hot rolling end temperature is most effective for making the grade of iron loss of this non-oriented electrical steel sheet.
[0018]
Details of the present invention will be described below.
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is less than 0.31% , the specific resistance necessary for the low iron loss non-oriented electrical steel sheet intended by the present invention cannot be obtained sufficiently, so it is necessary to add an amount of 0.31% or more. is there. On the other hand, if the Si content exceeds 4.0%, the ear cracks during rolling increase remarkably and rolling becomes difficult, so 4.0% or less is necessary.
[0019]
There is no problem even if the Al content in the steel is at the impurity level, but Al has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss in the same way as Si. Is preferably added in an amount of 0.001 % to 0.002 %. When a large amount of Al is added, the magnetic flux density is lowered and the cost is increased.
[0020]
Mn, like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this purpose, the Mn content needs to be 0.05 % or more. On the other hand, when the Mn content exceeds 1.5%, deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling is easily refined, and the magnetic properties of the product deteriorate. The Mn content needs to be 1.5% or less.
[0021]
The amount of Mn added is also extremely important from the viewpoint of securing the strength of the high-temperature sheet bar joint before hot rolling. This is because the value of Mn / S, which is the ratio of the weight concentration of Mn and S, is 20 or more in order to prevent hot embrittlement of the sheet bar joint due to the presence of low melting point sulfides at the grain boundaries. This is because it is necessary. In the component range defined in the present invention, if the Mn content is 0.05 % or more and the S content is 0.005% or less, the value of Mn / S is kept at 20 or more. there is no problem.
[0022]
In addition, one or more of P, B, Ni, Cr, Sb, Sn, and Cu are contained in steel for the purpose of improving the mechanical properties, magnetic properties, rust resistance of products, and other purposes. Even if it is made to contain, the effect of this invention is not impaired.
[0023]
If the C content exceeds 0.005%, the iron loss deteriorates due to magnetic aging during use and the energy loss during use increases, so it is preferable to control it to 0.005% or less.
[0024]
S and N partly re-dissolve during slab heating in the hot rolling process, and form sulfides such as MnS and nitrides such as AlN during hot rolling. The presence of these hinders the grain growth of the hot-rolled structure and hinders the crystal grain growth during finish annealing and deteriorates the iron loss. Therefore, S is preferably 0.005% and N is 0.005% or less.
[0025]
Next, the process conditions of the present invention will be described .
[0026]
Delete [0027]
Delete [0028]
Delete [0029]
Delete [0030]
Delete [0031]
Delete [0032]
Delete [0033]
Delete [0034]
Delete [0035]
Delete [0036]
Delete [0037]
When thin finishing is performed by finish hot rolling as in the present invention, when the sheet bar is bitten into the finish hot rolling machine, the occurrence of poor biting of the sheet bar due to the sliding of the sheet bar between the stands, and the finish hot rolling A slip was generated between the roll and the steel sheet, and the problem that the life of the rolling roll was remarkably shortened and deep rolling wrinkles were sometimes formed on the steel sheet surface layer was revealed. As a method of solving the problems in finish hot rolling of such thin materials and performing stable operation, the sheet bar after rough rolling is joined to the preceding sheet bar before finish hot rolling, and the sheet It is effective to subject the bar to continuous hot rolling. This method is particularly effective for preventing roll slip and preventing rolling wrinkles when the oil and fat concentration in the lubricating oil is increased to reduce the friction coefficient.
[0038]
Delete [0039]
Delete [0040]
Delete [0041]
FIG. 1 shows the relationship between the finish hot rolling finish temperature and the iron loss W15 / 50 ROUND . From FIG. 1 , the iron loss value of the hot final non-oriented electrical steel sheet can be controlled by controlling the finishing hot rolling finish temperature. As a result of the observation of the metal structure, it was found that the low-temperature side of less than 800 ° C. is insufficient in releasing the strain of the rolled structure and the iron loss is worsened. On the high temperature side exceeding 875 ° C., the transformation from the γ phase to the α phase progressed in the cooling process after the end of hot rolling, resulting in a refined crystal structure of the obtained hot final non-oriented electrical steel sheet, It turned out that the loss was worse. In the range of 800 ° C. or higher and 875 ° C. or lower, the iron loss value can be controlled by increasing the finish hot rolling finish temperature. In this way, in the production of hot final non-oriented electrical steel sheets, it is possible not only to improve iron loss by changing the finish hot rolling end temperature, but also to make different grades of iron loss itself. It can be seen from FIG .
[0042]
The amount of fats and oils mixed in the roll cooling water during finish hot rolling is 0.5% to 20% by volume. A surfactant may be added as necessary in order to prevent the oil and fat and cooling water from separating. If the amount of fats and oils in the roll cooling water is less than 0.5%, the effect cannot be obtained, and if it exceeds 20%, the effect is saturated and uneconomical.
[0043]
The hot-rolled sheet obtained in this way may be made into a product by adding a skin pass rolling process after pickling. If the skin pass rolling rate is less than 2%, the effect cannot be obtained. If the skin pass rolling rate exceeds 20%, the magnetic properties deteriorate, so the range is set from 2% to 20%.
[0044]
【Example】
Next, examples of the present invention will be described.
[Example 1]
Examples of the anisotropy of magnetic characteristics excellent as a rotating machine, which is the most characteristic of the present invention, will be described. Steel of the components shown in Table 4 was melted and finished hot rolling. In the comparative example, the thickness of the finished hot rolled sheet was 2.5 mm, finished to 0.65 mm by cold rolling, and subjected to finish annealing at 950 ° C. for 30 seconds. In the example of the present invention, it was finished to a thin thickness of 0.65 mm by finish hot rolling and pickled. The finish hot rolling finish temperature was 850 ° C. From both samples, Epstein samples were cut in directions of 0 °, 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °, 157.5 °, and 180 ° with respect to the rolling direction, respectively. Each magnetic flux density was measured. Table 5 shows the measurement results.
[0045]
[Table 4]
Figure 0004616427
[0046]
[Table 5]
Figure 0004616427
[0047]
From Table 5, it can be seen that in the hot final non-oriented electrical steel sheet of the present invention, the magnetic flux density in the 45 ° and 135 ° directions is higher than the magnetic flux density in the L direction of the comparative material. Further, the comparative material has the highest magnetic flux density in the 0 ° direction with respect to the rolling direction and the 180 ° direction, which is the opposite direction, but the hot final non-oriented electrical steel sheet of the present invention has a 45 ° direction and 135 ° in the rolling direction. The magnetic flux density in the ° direction is the highest. Thereby, the hot final non-oriented electrical steel sheet according to the present invention has four directions with high magnetic flux density when it is rotated around the rolling direction. On the other hand, in the comparative material, the direction in which the magnetic flux density is high is limited to only two directions of 180 ° which are the rolling direction and the opposite direction. Moreover, it turns out that the value is also inferior compared with this invention.
[0048]
Thus, according to the present invention, not only can a hot final non-oriented electrical steel sheet having a magnetic flux density value four directions higher than the rolling direction be provided, but the value is also higher than that of a conventional cold-rolled electrical steel sheet. It turns out that it is magnetic flux density.
[0049]
[Example 2]
In order to clarify the relationship between product plate thickness and magnetic flux density, the following experiment was conducted. Using the steels in Table 6, hot final non-oriented electrical steel sheets are manufactured with different thicknesses, ring samples with an inner diameter of 20 mm and an outer diameter of 40 mm are collected, the magnetic flux density is measured, and the relationship with the plate thickness is measured. investigated. In this experiment, finishing hot rolling was performed by mixing 3% by volume of lubricating oil having a kinematic viscosity coefficient of 400 cSt (centistokes) at 50 ° C. into roll cooling water for finishing hot rolling. The temperature of the cooling water mixed with the lubricating oil was 50 ° C. The friction coefficient between the steel sheet and the roll during finish hot rolling was 0.20 to 0.23.
[0050]
[Table 6]
Figure 0004616427
[0051]
Then, pickling was performed and cut into Epstein samples every 22.5 ° from 0 ° to 180 °, and B50 ROUND was measured from the Epstein measurement values in each direction according to the following formula. Table 7 shows the plate thickness and magnetic measurement results of the present invention and the comparative example.
B50 ROUND = {B50 0 + (B50 22.5 + B50 45 + B50 67.5 + B50 90
+ B50 112.5 + B50 135 + B50 157.5 ) × 2 + B50 180 } / 16
[Table 7]
Figure 0004616427
[0052]
From Table 7, it can be seen that a high magnetic flux density can be obtained when the plate thickness is 1.20 mm or less. It can also be seen that a higher magnetic flux density can be obtained when the plate thickness is 0.80 mm or less.
[0053]
Delete [0055]
Delete [0056]
Delete [0057]
Delete [0058]
Delete [0059]
[Example 4]
A slab having the components shown in Table 10 was heated by a normal method, finished to a rough bar with a thickness of 30 mm by a roughing mill, and then finished to 1.0 mm by a finishing hot rolling machine. Oils and fats were mixed into the roll cooling water of the finishing hot rolling machine in an emulsion state, and the friction coefficient was adjusted by changing the mixing amount. The coefficient of friction was calculated from the measured advanced rate at each stand. Also, in order to prevent slippage between the steel sheet and the work roll during finish hot rolling and the formation of wrinkles on the surface of the steel sheet, the sheet bar after rough rolling is welded to the preceding sheet bar, Rolling was performed continuously. At this time, the hot rolling finishing temperature was 860 ° C.
[0060]
[Table 10]
Figure 0004616427
[0061]
Then, pickling was performed and cut into Epstein samples at intervals of 22.5 ° from 0 ° to 180 °, and B50 ROUND was measured from the Epstein measurement value of each sample according to the following formula. Table 11 shows the components of the present invention and comparative examples and the magnetic measurement results.
B50 ROUND = {B50 0 + (B50 22.5 + B50 45 + B50 67.5 + B50 90
+ B50 112.5 + B50 135 + B50 157.5 ) × 2 + B50 180 } / 16
[Table 11]
Figure 0004616427
[0062]
Thus, if the friction coefficient between at least one pass of the rolling roll and the steel sheet is reduced to 0.25 or less during finish hot rolling, a non-oriented electrical steel sheet having a high magnetic flux density value and excellent magnetic properties can be obtained. Is possible.
[0063]
【The invention's effect】
According to the present invention, it is possible to provide a silicon-containing hot-rolled sheet having excellent magnetic properties.
[Brief description of the drawings]
FIG. 1 is a chart showing the relationship between hot rolling finishing temperature and iron loss.

Claims (1)

重量%で、
0.31%≦Si≦4.0%、
0.05%≦Mn≦1.5%
酸可溶性Alを0.001%以上0.0020%以下
を含有し、残部がFeおよび不可避的不純物からなる熱延板において、板厚が0.8mm以下であり、圧延方向に対し45°、135°方向の磁束密度が、他の方向に比べ高いことを特徴とする珪素含有熱延板。
% By weight
0.31% ≦ Si ≦ 4.0%,
0.05% ≦ Mn ≦ 1.5%
In a hot-rolled sheet containing 0.001% or more and 0.0020% or less of acid-soluble Al, with the balance being Fe and inevitable impurities, the sheet thickness is 0.8 mm or less, 45 ° to the rolling direction, 135 A silicon-containing hot-rolled sheet characterized in that the magnetic flux density in the ° direction is higher than in other directions.
JP22214098A 1998-08-05 1998-08-05 Silicon-containing hot-rolled sheet Expired - Fee Related JP4616427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22214098A JP4616427B2 (en) 1998-08-05 1998-08-05 Silicon-containing hot-rolled sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22214098A JP4616427B2 (en) 1998-08-05 1998-08-05 Silicon-containing hot-rolled sheet

Publications (2)

Publication Number Publication Date
JP2000054084A JP2000054084A (en) 2000-02-22
JP4616427B2 true JP4616427B2 (en) 2011-01-19

Family

ID=16777811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22214098A Expired - Fee Related JP4616427B2 (en) 1998-08-05 1998-08-05 Silicon-containing hot-rolled sheet

Country Status (1)

Country Link
JP (1) JP4616427B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554805B2 (en) * 2015-02-05 2019-08-07 日本製鉄株式会社 Electromagnetic steel sheet, manufacturing method thereof and claw pole motor
CN108781003A (en) * 2016-03-23 2018-11-09 新日铁住金株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method and Lundell motor
JP6977436B2 (en) * 2017-09-19 2021-12-08 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP7147340B2 (en) * 2018-08-01 2022-10-05 日本製鉄株式会社 Method for manufacturing non-oriented electrical steel sheet
CN113198866B (en) * 2021-05-07 2023-03-17 新余钢铁股份有限公司 Thin-gauge middle-high-grade non-oriented silicon steel acid rolling production process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194939A (en) * 1996-01-16 1997-07-29 Kawasaki Steel Corp Production of hot rolled silicon steel sheet excellent in magnetic property
JPH10158738A (en) * 1996-12-04 1998-06-16 Nippon Steel Corp Manufacture of low grade nonoriented silicon steel sheet with high magnetic flux density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194939A (en) * 1996-01-16 1997-07-29 Kawasaki Steel Corp Production of hot rolled silicon steel sheet excellent in magnetic property
JPH10158738A (en) * 1996-12-04 1998-06-16 Nippon Steel Corp Manufacture of low grade nonoriented silicon steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
JP2000054084A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
TW201211270A (en) Process for producing non-oriented electromagnetic steel sheet
JPWO2019188940A1 (en) Non-oriented electrical steel sheet
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP7401729B2 (en) Non-oriented electrical steel sheet
JP4616427B2 (en) Silicon-containing hot-rolled sheet
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4730981B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2000219916A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP3388119B2 (en) Method of manufacturing low-grade non-oriented electrical steel sheet with high magnetic flux density
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2009102739A (en) Method for producing non-oriented magnetic steel sheet
JP2001181743A (en) Method for producing hot rolled silicon steel sheet excellent in magnetism
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JP3379622B2 (en) Manufacturing method of hot final non-oriented electrical steel sheet with high magnetic flux density
JPH1046248A (en) Production of nonoriented magnetic steel sheet high in magnetic flux density and low in core loss
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH1036912A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JP2001098325A (en) Method of producing nonoriented silicon steel sheet high in magnetic flux density
JPH1060530A (en) Production of nonoriented silicon steel sheet high in magnetic flux density
JPH10298649A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density and low iron loss and minimal in anisotropy
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees