JPH10340934A - Bonding tool - Google Patents

Bonding tool

Info

Publication number
JPH10340934A
JPH10340934A JP9165018A JP16501897A JPH10340934A JP H10340934 A JPH10340934 A JP H10340934A JP 9165018 A JP9165018 A JP 9165018A JP 16501897 A JP16501897 A JP 16501897A JP H10340934 A JPH10340934 A JP H10340934A
Authority
JP
Japan
Prior art keywords
tool
shank
thermal expansion
tip
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9165018A
Other languages
Japanese (ja)
Other versions
JP3862815B2 (en
Inventor
Tomoyuki Takeuchi
友幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP16501897A priority Critical patent/JP3862815B2/en
Publication of JPH10340934A publication Critical patent/JPH10340934A/en
Application granted granted Critical
Publication of JP3862815B2 publication Critical patent/JP3862815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure excellent flatness and abrasion resistance of tool working face and a sufficient bonding strength between the tip of a tool and a shank by brazing the tip of a tool, obtained by depositing polycrystalline diamond on a sintered substrate, to the shank made of an austenite based low thermal expansion cast iron thereby facilitating the machining. SOLUTION: The tip 14 of a tool, obtained by depositing polycrystalline diamond on a sintered substrate, is brazed to a shank made of an austenite based low thermal expansion cast iron to obtain a tool for enhancing machinability of the shank, flatness of the working face of the tool, and the positional accuracy with respect to an apparatus fixing part 11. Strain at the joint due to difference of thermal expansion is relaxed at the time of brazing the shank and the tip 14 of the tool and flatness is sustained at the tip 14 of the tool even if heating and cooling are repeated. Furthermore, a high bonding strength is attained because the austenite based low thermal expansion cast iron exhibits a good wettability to many brazing filter metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボンディングツー
ルに関する。さらに詳しくは、本発明は、ツール作用面
の平坦性に優れ、ツール作用面材の摩耗が少なく、ツー
ル作用面の変形が少ないTAB(Tape Autom
ated Bonding)工程用のボンディングツー
ルに関する。
[0001] The present invention relates to a bonding tool. More specifically, the present invention provides a TAB (Tape Automated) that is excellent in flatness of the tool working surface, has little wear of the tool working surface material, and has little deformation of the tool working surface.
The present invention relates to a bonding tool for an applied bonding process.

【0002】[0002]

【従来の技術】TAB工程においては、LSIチップの
電極とフィルムキャリヤのリードが接続される。図1
は、TAB工程の説明図である。加熱ステージ1上の熱
絶縁体2の上に、チップガイド3により位置決めされた
チップ4に対して、インナーリード5を有するフィルム
キャリヤ6が、テープガイド7を経由して、インナーリ
ードの位置と電極8の位置が一致するよう運ばれる。こ
の状態で、加熱されたボンディングツール9が加圧シリ
ンダ10によって押し下げられてインナーリードを電極
に押し付け、インナーリードと電極の間にAu−Sn共
晶合金を形成することにより、あるいは、Au−Auの
熱圧着により、チップをインナーリードに接合する。電
極とリードの良好な接合を行うためには、電極の高さの
均一性を保つとともに、ボンディングツール作用面の平
坦性と、耐摩耗性と、均一な温度分布が重要である。ボ
ンディングツール作用面の材料として、耐摩耗性に優
れ、熱伝導率の大きい多結晶ダイヤモンドが開発されて
いる。多結晶ダイヤモンドは線膨張率が小さいので、多
結晶ダイヤモンド膜を形成する基板も低熱膨張性の材料
が選ばれる。さらに、ボンディングツールのシャンクに
も、熱膨張率の小さい多結晶ダイヤモンドと焼結体基板
からなるツール先端部とシャンクの接合部において、た
がいの熱膨張率の差による接合強度の低下や剥離の発生
を防ぐために、低熱膨張率を有する材料の使用が試みら
れている。例えば、特許第2520971号公報には、
室温から600℃までの線膨張率が7.5×10-6/℃
以下である金属又は合金製シャンクが提案されている。
このような熱膨張率の小さい金属又は合金としては、例
えば、コバール、インバー合金、モリブデン、タングス
テン、W−Cu合金、超硬合金などが挙げられる。しか
し、このような金属及び合金は、ボンディングツール作
用面となる多結晶ダイヤモンドやSiC基板などとシャ
ンクの接合に用いるろう材に対する濡れ性が悪く、ボン
ディングツールを長期間にわたって使用すると、接合部
の境界面にクラックが発生しやすい。また、このような
金属及び合金は、加工性が悪く、複雑な形状への加工が
必要なボンディングツールのシャンクの加工には困難が
伴い、経済的に有利に製造できないという問題がある。
さらに、このような金属及び合金は、材料自体も高価で
あり、加工性の問題に加えて、コスト高の原因となる。
このために、SiC基板などとの濡れ性が良好で、複雑
な形状への加工を容易に行うことができ、経済的に有利
に製造することができるボンディングツールが求められ
ている。
2. Description of the Related Art In a TAB process, electrodes of an LSI chip and leads of a film carrier are connected. FIG.
FIG. 4 is an explanatory view of a TAB step. On the thermal insulator 2 on the heating stage 1, the film carrier 6 having the inner lead 5 is moved via the tape guide 7 to the chip 4 positioned by the chip guide 3, and the position of the inner lead and the electrode 8 are brought to coincide. In this state, the heated bonding tool 9 is pressed down by the pressing cylinder 10 to press the inner lead against the electrode, and to form an Au-Sn eutectic alloy between the inner lead and the electrode, or Is bonded to the inner lead by thermocompression bonding. In order to perform good bonding between the electrode and the lead, it is important to maintain the uniformity of the height of the electrode, the flatness of the working surface of the bonding tool, the wear resistance, and the uniform temperature distribution. Polycrystalline diamond having excellent wear resistance and high thermal conductivity has been developed as a material for the working surface of a bonding tool. Since polycrystalline diamond has a small coefficient of linear expansion, a low thermal expansion material is selected for the substrate on which the polycrystalline diamond film is formed. Furthermore, in the shank of the bonding tool, at the joint between the tool tip and the shank, which consist of polycrystalline diamond with a low coefficient of thermal expansion and a sintered substrate, the difference in the coefficient of thermal expansion between the two parts causes a decrease in bonding strength and the occurrence of peeling. In order to prevent this, the use of materials having a low coefficient of thermal expansion has been attempted. For example, Japanese Patent No. 2520971 discloses that
The coefficient of linear expansion from room temperature to 600 ° C. is 7.5 × 10 −6 / ° C.
The following metal or alloy shanks have been proposed.
Examples of such a metal or alloy having a low coefficient of thermal expansion include Kovar, Invar alloy, molybdenum, tungsten, W-Cu alloy, and cemented carbide. However, such metals and alloys have poor wettability to a brazing material used for joining a shank to polycrystalline diamond or a SiC substrate or the like, which serves as a bonding tool working surface. Cracks easily occur on the surface. Further, such metals and alloys have poor workability, and there is a problem that shank processing of a bonding tool which requires processing into a complicated shape is difficult and cannot be produced economically advantageously.
Further, such metals and alloys are also expensive in materials themselves, and cause high cost in addition to the problem of workability.
Therefore, there is a demand for a bonding tool that has good wettability with a SiC substrate or the like, can easily be processed into a complicated shape, and can be manufactured economically and advantageously.

【0003】[0003]

【発明が解決しようとする課題】本発明は、容易に製作
することができ、しかもツール作用面の平坦性に優れ、
ツール作用面材の摩耗が少なく、ツール作用面の変形が
少なく、ツール先端部とシャンクが強固に接合されたT
AB工程用のボンディングツールを提供することを目的
としてなされたものである。
SUMMARY OF THE INVENTION The present invention can be easily manufactured, and has excellent flatness of a tool working surface.
T with less wear of the tool working surface material, less deformation of the tool working surface, and a strong connection between the tool tip and the shank
The purpose of the present invention is to provide a bonding tool for the AB process.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意研究を重ねた結果、焼結体基板に多結
晶ダイヤモンド膜を析出させたツール先端部を、オース
テナイト系低熱膨張鋳鉄からなるシャンクにろう付けす
ることにより、シャンクを容易に加工することができ、
しかも、ツール作用面の平坦性、耐摩耗性に優れ、ツー
ル先端部とシャンクの接合強度の大きいボンディングツ
ールが得られることを見いだし、この知見に基づいて本
発明を完成するに至った。すなわち、本発明は、(1)
焼結体基板に多結晶ダイヤモンド膜を析出させたツール
先端部をシャンクにろう付けしてなるボンディングツー
ルにおいて、シャンクの材質がオーステナイト系低熱膨
張鋳鉄であることを特徴とするボンディングツール、
(2)オーステナイト系低熱膨張鋳鉄の線膨張率が、室
温〜600℃において8〜12×10-6-1である第
(1)項記載のボンディングツール、及び、(3)オース
テナイト系低熱膨張鋳鉄が、炭素0.8〜3.0重量%、
ケイ素1.0〜3.0重量%、ニッケル30.0〜34.0
重量%及びコバルト4.0〜6.0重量%を含有する第
(1)項又は第(2)項記載のボンディングツール、を提供
するものである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the tip of a tool in which a polycrystalline diamond film has been deposited on a sintered body substrate has an austenitic low thermal expansion. By brazing to a cast iron shank, the shank can be easily processed,
In addition, it has been found that a bonding tool having excellent flatness and wear resistance of the working surface of the tool and having a large joining strength between the tool tip and the shank can be obtained. Based on this finding, the present invention has been completed. That is, the present invention provides (1)
A bonding tool in which a tool tip obtained by depositing a polycrystalline diamond film on a sintered substrate is brazed to a shank, wherein the material of the shank is austenitic low thermal expansion cast iron,
(2) The austenitic low thermal expansion cast iron has a linear expansion coefficient of 8 to 12 × 10 −6 K −1 at room temperature to 600 ° C.
(1) The bonding tool according to (1), and (3) the austenitic low thermal expansion cast iron contains 0.8 to 3.0% by weight of carbon,
1.0 to 3.0% by weight of silicon, 30.0 to 34.0% of nickel
Weight percent and 4.0 to 6.0 weight percent cobalt.
A bonding tool according to the above mode (1) or (2).

【0005】[0005]

【発明の実施の形態】本発明のボンディングツールは、
焼結体基板に多結晶ダイヤモンド膜を析出させたツール
先端部を、材質がオーステナイト系低熱膨張鋳鉄である
シャンクにろう付けしてなるものである。図2は、ボン
ディングツールの説明図であり、図2(a)は正面図、図
2(b)は側面図、図2(c)は底面図である。ボンディン
グツールのシャンクには、加圧シリンダへの取り付け部
11、ヒーター取り付け穴12、熱電対取り付け穴13
などの複雑な加工が施され、先端にツール先端部14が
ろう付けされている。本発明において、ツール先端部の
焼結体基板の材質には特に制限はなく、例えば、Si
C、Si34、AlNなどを挙げることができる。これ
らの中で、SiCは耐熱性、高温下での強度、低熱膨張
性、高熱伝導性を兼ね備えているので、特に好適に使用
することができる。本発明において、焼結体基板に多結
晶ダイヤモンド膜を析出させる方法には特に制限はな
く、例えば、熱フィラメント法、マイクロ波プラズマ
法、高周波プラズマ法、直流放電プラズマ法、アーク放
電プラズマジェット法、燃焼炎法などを挙げることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The bonding tool of the present invention
A tool tip obtained by depositing a polycrystalline diamond film on a sintered substrate is brazed to a shank made of austenitic low thermal expansion cast iron. 2A and 2B are explanatory views of the bonding tool. FIG. 2A is a front view, FIG. 2B is a side view, and FIG. 2C is a bottom view. In the shank of the bonding tool, the mounting portion 11 for the pressurized cylinder, the heater mounting hole 12, the thermocouple mounting hole 13
The tool tip 14 is brazed to the tip. In the present invention, the material of the sintered body substrate at the tip of the tool is not particularly limited.
C, Si 3 N 4 , AlN and the like can be mentioned. Among them, SiC can be particularly preferably used because it has both heat resistance, strength at high temperatures, low thermal expansion, and high thermal conductivity. In the present invention, the method of depositing the polycrystalline diamond film on the sintered substrate is not particularly limited, for example, a hot filament method, a microwave plasma method, a high-frequency plasma method, a DC discharge plasma method, an arc discharge plasma jet method, A combustion flame method and the like can be mentioned.

【0006】本発明においては、材質がオーステナイト
系低熱膨張鋳鉄であるシャンクを使用する。オーステナ
イト系低熱膨張鋳鉄は、従来より用いられたきた低熱膨
張合金と比べて加工性が良好であるので、シャンクの加
工精度を上げて、ツール作用面の平坦性と、装置取付け
部分(図2−11)に対する位置精度を向上させること
ができる。また、オーステナイト系低熱膨張鋳鉄からな
るシャンクを用いることにより、シャンクとツール先端
部をろう付けするとき、熱膨張率の差により発生する接
合部の歪みが緩和され、加熱と冷却を繰り返しても、ツ
ール先端部の平坦性が維持される。また、オーステナイ
ト系低熱膨張鋳鉄は、多くのろう材に対して良好な濡れ
性を有するので、大きい接合強度が得られる。さらに、
オーステナイト系低熱膨張鋳鉄は、マトリックス中に分
散する黒鉛の作用により、ろう付け時のシャンクとツー
ル先端部の間の歪みが緩和される。本発明において、シ
ャンクとツール先端部をろう付けするためのろう材には
特に制限はなく、例えば、金ろう、銀ろう、パラジウム
ろう、銅ろう、黄銅ろう、りん銅ろう、ニッケルろう、
アルミニウム合金ろうなどを挙げることができる。これ
らの中で、銀ベースのろう材にTi、Ta等を添加した
活性銀ろうを特に好適に使用することができる。
In the present invention, a shank made of austenitic low thermal expansion cast iron is used. Austenitic low-thermal-expansion cast iron has better workability than low-thermal-expansion alloys that have been used in the past. Therefore, the working accuracy of the shank is improved, and the flatness of the tool working surface and the device mounting portion (Fig. 2- Position accuracy with respect to 11) can be improved. Also, by using a shank made of austenitic low thermal expansion cast iron, when brazing the shank and the tool tip, the distortion of the joint generated due to the difference in the coefficient of thermal expansion is reduced, and even if heating and cooling are repeated, The flatness of the tool tip is maintained. In addition, austenitic low thermal expansion cast iron has good wettability to many brazing materials, so that a large bonding strength can be obtained. further,
In the austenitic low thermal expansion cast iron, the strain between the shank and the tool tip during brazing is reduced by the action of graphite dispersed in the matrix. In the present invention, there is no particular limitation on the brazing material for brazing the shank and the tool tip, for example, gold brazing, silver brazing, palladium brazing, copper brazing, brass brazing, phosphor copper brazing, nickel brazing,
Aluminum alloy brazing and the like can be mentioned. Among them, an active silver braze in which Ti, Ta, or the like is added to a silver-based brazing material can be particularly preferably used.

【0007】本発明において、シャンクの材料として用
いるオーステナイト系低熱膨張鋳鉄の線膨張率は、常温
〜600℃において、8〜12×10-6-1であること
が好ましい。多結晶ダイヤモンドの線膨張率は非常に小
さいので、従来より、多結晶ダイヤモンド膜を析出させ
る焼結体基板に低熱膨張性の材料を選び、ツール先端部
を接合するシャンクも、可能な限り線膨張率の小さいも
のを使用することにより、接合部の破壊を防ぐととも
に、ツール作用面の平坦性を実現しようとする考え方が
支配的であった。しかし、ツール先端部の多結晶ダイヤ
モンドは低熱膨張の物質であるが、そこに使用される基
板はその多結晶ダイヤモンドより熱膨張率が大きい。ま
た、ボンディングツールを駆動する加圧シリンダなど、
ボンダの他の部分は通常の工作機械用鋼材で構成されて
いるので、ボンディングツールのシャンクを低熱膨張性
の材料とすることは、必ずしもボンダ全体としての精度
を向上する結果とはならない。本発明のボンディングツ
ールにおいては、ボンダ本体を構成する材料の線膨張率
から徐々にシャンク材、多結晶ダイヤモンドと線膨張率
を小さくすることにより、ツール先端部に接合された低
熱膨張性の多結晶ダイヤモンドとボンダ本体の線膨張率
の差による変形の差を緩和し、ボンダ全体としての精度
を向上し、ツール作用面の平坦性を維持することができ
る。本発明において、オーステナイト系低熱膨張鋳鉄の
線膨張率が、室温〜600℃において8×10-6-1
満であると、シャンクとボンダ本体の接合したときの精
度が低下するおそれがある。オーステナイト系低熱膨張
鋳鉄の線膨張率が12×10-6-1を超えると、加熱と
冷却の繰り返しにより、シャンクとツール先端部の接合
部において、クラックが発生しやすくなるおそれがあ
る。
In the present invention, the austenitic low thermal expansion cast iron used as a material for the shank preferably has a linear expansion coefficient of from 8 to 12 × 10 -6 K -1 at room temperature to 600 ° C. Since the linear expansion coefficient of polycrystalline diamond is very small, a material with low thermal expansion has been conventionally selected for the sintered substrate on which the polycrystalline diamond film is deposited, and the shank that joins the tip of the tool has been expanded as much as possible. The idea of using a material with a small rate to prevent the destruction of the joint and to realize the flatness of the tool working surface was dominant. However, although the polycrystalline diamond at the tip of the tool is a substance having a low thermal expansion, the substrate used therein has a larger coefficient of thermal expansion than the polycrystalline diamond. Also, such as a pressurized cylinder that drives the bonding tool
Since the other part of the bonder is made of a normal steel material for machine tools, using a low thermal expansion material for the shank of the bonding tool does not necessarily improve the accuracy of the entire bonder. In the bonding tool of the present invention, the low thermal expansion polycrystalline joined to the tool tip by gradually reducing the linear expansion coefficient with the shank material and polycrystalline diamond from the linear expansion coefficient of the material forming the bonder body. The difference in deformation caused by the difference in the coefficient of linear expansion between the diamond and the bonder body is reduced, the accuracy of the bonder as a whole is improved, and the flatness of the tool working surface can be maintained. In the present invention, if the linear expansion coefficient of the austenitic low-thermal expansion cast iron is less than 8 × 10 −6 K −1 at room temperature to 600 ° C., the accuracy when the shank and the bonder body are joined may be reduced. If the coefficient of linear expansion of the austenitic low thermal expansion cast iron exceeds 12 × 10 −6 K −1 , cracks may easily occur at the joint between the shank and the tool tip due to repeated heating and cooling.

【0008】本発明において、オーステナイト系低熱膨
張鋳鉄は、炭素0.8〜3.0重量%、ケイ素1.0〜3.
0重量%、ニッケル30.0〜34.0重量%及びコバル
ト4.0〜6.0重量%を含有することが好ましい。炭素
0.8〜3.0重量%及びケイ素1.0〜3.0重量%を含
有することにより、鋳鉄中に炭素が適量の片状黒鉛又は
球状黒鉛として析出し、良好な鋳造性及び加工性が維持
される。炭素の含有量が0.8重量%未満であると、炭
素は炭化物となり黒鉛として析出しないので、鋳造性が
損なわれるおそれがある。炭素の含有量が3.0重量%
を超えると、黒鉛の析出量が過剰となって、鋳造性が損
なわれるおそれがある。ニッケルの含有量が、30.0
重量%未満であっても、34.0重量%を超えても、線
膨張率が高くなりすぎるおそれがある。コバルトの含有
量が4.0重量%未満であっても、6.0重量%を超えて
も、線膨張率が高くなりすぎるおそれがある。本発明の
ボンディングツールは、耐摩耗性に優れた多結晶ダイヤ
モンド膜を有するツール先端部を、加工性が良好で適度
な線膨張率を有するオーステナイト系低熱膨張鋳鉄から
なるシャンクにろう付けしているので、ツール作用面の
平坦性に優れた高精度のボンダを得ることができる。
In the present invention, the austenitic low thermal expansion cast iron has a carbon content of 0.8 to 3.0% by weight and a silicon content of 1.0 to 3.0%.
It is preferable to contain 0% by weight, 30.0% to 34.0% by weight of nickel and 4.0% to 6.0% by weight of cobalt. By containing 0.8 to 3.0% by weight of carbon and 1.0 to 3.0% by weight of silicon, carbon precipitates in cast iron as an appropriate amount of flake graphite or spheroidal graphite, and has good castability and workability. Sex is maintained. If the carbon content is less than 0.8% by weight, the carbon becomes carbide and does not precipitate as graphite, so that castability may be impaired. 3.0% by weight carbon
If it exceeds 300, the amount of graphite deposited will be excessive and castability may be impaired. When the content of nickel is 30.0
If the amount is less than 3% by weight or exceeds 34.0% by weight, the coefficient of linear expansion may be too high. If the cobalt content is less than 4.0% by weight or exceeds 6.0% by weight, the coefficient of linear expansion may be too high. In the bonding tool of the present invention, a tool tip having a polycrystalline diamond film having excellent wear resistance is brazed to a shank made of austenitic low thermal expansion cast iron having good workability and an appropriate linear expansion coefficient. Therefore, it is possible to obtain a high-precision bonder excellent in flatness of the tool working surface.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 厚み4mm、寸法10mm×10mmのSiC基板に、マイク
ロ波プラズマ法により厚さ40μmのSiC中間層を形
成した。次いで、SiC基板を900℃に加熱し、50
Torrの減圧下にメタン0.8容量%。水素99.2容量%
の混合気体を導入し、熱フィラメント法により20時間
ダイヤモンドの気相合成を行い、SiC中間層の上に厚
み80μmの多結晶ダイヤモンド膜を形成し、鏡面にラ
ップ加工することによりツール先端部を得た。室温〜6
00℃の線膨張率が8.7×10-6-1であるオーステ
ナイト系低熱膨張鋳鉄[(株)榎本鋳工所、CN−5]を
用いて、図2に示す形状を有するシャンクを作製した。
シャンクの加工は、容易であった。このシャンクに、ツ
ール先端部を活性銀ろうを用いてろう付けし、ボンディ
ングツールを得た。このツール作用面の平坦度は、50
0℃に加熱した状態で、0.8μm凹であった。このボ
ンディングツールをボンダに取り付け、ツール作用面の
温度を500℃に保ち、加熱ステージに対して、ツール
荷重5kg、加圧サイクル30回/分で、28日間ショッ
トテストを継続した。テスト終了後のツール作用面の平
坦度は、500℃に加熱した状態で、1.3μm凹であ
り、テスト前後の平坦度の変化は0.5μmであった。
テスト終了後のツール先端部とシャンクの接合部の境界
面を、走査型電子顕微鏡を用いて観察したところ、変化
は認められなかった。 実施例2 シャンクの材質を、室温〜600℃の線膨張率が11.
1×10-6-1であるオーステナイト系低熱膨張鋳鉄
[(株)榎本鋳工所、CS−5]とした以外は、実施例1
と同じ操作を繰り返した。ショットテスト前のツール作
用面の平坦度は、500℃に加熱した状態で、1.2μ
m凸、ショットテスト後のツール作用面の平坦度は、5
00℃に加熱した状態で、0.5μm凹であり、テスト
前後の平坦度の変化は1.7μmであった。テスト終了後
のツール先端部とシャンクの接合部の境界面を、走査型
電子顕微鏡を用いて観察したところ、変化は認められな
かった。 比較例1 シャンクの材質を、室温〜600℃の線膨張率が7.0
×10-6-1である54wt%Fe−28Ni−Co合金
とした以外は、実施例1と同じ操作を繰り返した。ショ
ットテスト前のツール作用面の平坦度は、500℃に加
熱した状態で、2.0μm凹であり、ショットテスト後
のツール作用面の平坦度は、500℃に加熱した状態
で、1.0μm凹であり、テスト前後の平坦度の変化は
1.0μmであった。テスト終了後のツール先端部とシ
ャンクの接合部の境界面を、走査型電子顕微鏡を用いて
観察したところ、変化は認められなかった。 比較例2 シャンクの材質を、室温〜600℃の線膨張率が7.6
×10-6-1であるJIS規格K10種の超硬合金とし
た以外は、実施例1と同じ操作を繰り返した。ショット
テスト前のツール作用面の平坦度は、500℃に加熱し
た状態で、1.5μm凹であり、ショットテスト後のツ
ール作用面の平坦度は、500℃に加熱した状態で、
1.5μm凸であり、テスト前後の平坦度の変化は3.0
μmであった。テスト終了後のツール先端部とシャンク
の接合部の境界面を、走査型電子顕微鏡を用いて観察し
たところ、クラックの発生が認められた。また、シャン
クの表面はCoが抜けて、緑色に変色し、脆くなってい
た。 比較例3 シャンクの材質を、室温〜600℃の線膨張率が5.1
×10-6-1であるモリブデンとした以外は、実施例1
と同じ操作を繰り返した。ショットテスト前のツール作
用面の平坦度は、500℃に加熱した状態で、0.5μ
m凹であり、ショットテスト後のツール作用面の平坦度
は、500℃に加熱した状態で、2.7μm凸であり、
テスト前後の平坦度の変化は3.2μmであった。テス
ト終了後のツール先端部とシャンクの接合部の境界面
を、走査型電子顕微鏡を用いて観察したところ、クラッ
クの発生が認められた。また、シャンク表面は、黄色に
変色し、脆くなっていた。実施例1〜2及び比較例1〜
3の結果を、第1表に示す。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 An SiC intermediate layer having a thickness of 40 μm was formed on a SiC substrate having a thickness of 4 mm and a size of 10 mm × 10 mm by a microwave plasma method. Next, the SiC substrate is heated to 900 ° C.
0.8% by volume of methane under reduced pressure of Torr. 99.2% by volume of hydrogen
Gas mixture is introduced for 20 hours by the hot filament method, a polycrystalline diamond film having a thickness of 80 μm is formed on the SiC intermediate layer, and a mirror-finished surface is lapped to obtain a tool tip. Was. Room temperature to 6
Using an austenitic low-thermal-expansion cast iron [Enomoto Casting Co., Ltd., CN-5] having a linear expansion coefficient of 8.7 × 10 −6 K −1 at 00 ° C., a shank having a shape shown in FIG. Produced.
Processing of the shank was easy. The tool tip was brazed to this shank using an active silver braze to obtain a bonding tool. The flatness of the tool working surface is 50
When heated to 0 ° C., the concave was 0.8 μm. The bonding tool was attached to a bonder, the temperature of the tool working surface was maintained at 500 ° C., and a shot test was continued for 28 days at a heating stage with a tool load of 5 kg and a pressure cycle of 30 times / min. After the test, the flatness of the tool working surface was 1.3 μm concave when heated to 500 ° C., and the change in flatness before and after the test was 0.5 μm.
When the interface between the tool tip and the shank after the test was completed was observed using a scanning electron microscope, no change was observed. Example 2 The material of the shank has a linear expansion coefficient from room temperature to 600 ° C. of 11.
Example 1 except that austenitic low thermal expansion cast iron of 1 × 10 −6 K −1 [Enomoto Casting Co., Ltd., CS-5] was used.
The same operation was repeated. The flatness of the tool working surface before the shot test was 1.2 μm in a state where the tool was heated to 500 ° C.
m convex, flatness of tool working surface after shot test is 5
When heated to 00 ° C., the concave was 0.5 μm, and the change in flatness before and after the test was 1.7 μm. When the interface between the tool tip and the shank after the test was completed was observed using a scanning electron microscope, no change was observed. Comparative Example 1 The material of the shank was changed so that the linear expansion coefficient from room temperature to 600 ° C. was 7.0.
The same operation as in Example 1 was repeated except that a 54 wt% Fe-28Ni-Co alloy of × 10 -6 K -1 was used. The flatness of the tool working surface before the shot test was 2.0 μm concave when heated to 500 ° C., and the flatness of the tool working surface after the shot test was 1.0 μm heated to 500 ° C. It was concave and the change in flatness before and after the test was 1.0 μm. When the interface between the tool tip and the shank after the test was completed was observed using a scanning electron microscope, no change was observed. Comparative Example 2 The material of the shank was changed from room temperature to 600 ° C. with a linear expansion coefficient of 7.6.
The same operation as in Example 1 was repeated, except that a cemented carbide of JIS K10 class of 10-6 K -1 was used. The flatness of the tool working surface before the shot test was 1.5 μm concave when heated to 500 ° C., and the flatness of the tool working surface after the shot test was heated to 500 ° C.
The convexity was 1.5 μm, and the change in flatness before and after the test was 3.0.
μm. When the interface between the tool tip and the shank after the test was completed was observed using a scanning electron microscope, cracks were observed. In addition, the surface of the shank was discolored to green due to the loss of Co and became brittle. Comparative Example 3 The material of the shank was changed from room temperature to 600 ° C. with a linear expansion coefficient of 5.1.
Example 1 except that molybdenum which was × 10 −6 K −1 was used.
The same operation was repeated. The flatness of the working surface of the tool before the shot test was 0.5 μm when heated to 500 ° C.
m concave, the flatness of the tool working surface after the shot test is 2.7 μm convex when heated to 500 ° C.,
The change in flatness before and after the test was 3.2 μm. When the interface between the tool tip and the shank after the test was completed was observed using a scanning electron microscope, cracks were observed. Further, the shank surface turned yellow and became brittle. Examples 1-2 and Comparative Examples 1
Table 3 shows the results of No. 3.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表の結果から、実施例1〜2の、シャ
ンクの材質がオーステナイト系低熱膨張鋳鉄である本発
明のボンディングツールは、28日間のショットテスト
後もツール作用面の平坦度の変化が少なく、ツール先端
部とシャンクの接合部の境界面にも異常を生じていな
い。また、実施例1〜2に用いたシャンクは、加工が容
易であった。これに対して、シャンクの材質がFe−N
i−Co合金である比較例1においては、ツール作用面
の平坦度の変化量と、ツール先端部とシャンクの接合部
の境界面に異常を生じていない点は、実施例と同様であ
るが、このシャンクの加工は、実施例のシャンクの加工
に比べて、著しく困難であった。超硬合金をシャンクの
材料に用いた比較例2においては、ツール作用面の平坦
度の変化量は大きく、ツール先端部とシャンクの接合部
の境界面にはクラックが発生した。また、線膨張率がF
e−Ni−Co合金よりもさらに小さいモリブデンをシ
ャンクの材料に用いた比較例3においては、ツール作用
面の平坦度の変化量は比較例1よりも多く、また、ツー
ル先端部とシャンクの接合部の境界面にクラックが発生
したことから、シャンクの材料の線膨張率が小さいほど
良好な結果が得られるわけではないことが分かる。
From the results shown in Table 1, it can be seen that the bonding tools of Examples 1 and 2, in which the material of the shank is austenitic low thermal expansion cast iron, showed a change in the flatness of the tool working surface even after a 28-day shot test. And there is no abnormality at the interface between the tool tip and the joint of the shank. The shank used in Examples 1 and 2 was easy to process. On the other hand, the material of the shank is Fe-N
In Comparative Example 1, which is an i-Co alloy, the amount of change in the flatness of the working surface of the tool and the point that no abnormality occurs at the interface between the tool tip and the junction of the shank are the same as in the example, but Processing of this shank was significantly more difficult than the processing of the shank of the example. In Comparative Example 2 in which the cemented carbide was used as the material for the shank, the change in the flatness of the tool working surface was large, and cracks occurred at the interface between the tool tip and the joint of the shank. In addition, the coefficient of linear expansion is F
In Comparative Example 3 in which molybdenum smaller than the e-Ni-Co alloy was used as the material for the shank, the amount of change in the flatness of the tool working surface was larger than in Comparative Example 1, and the tool tip was joined to the shank. From the occurrence of cracks at the boundary surfaces of the portions, it can be seen that the smaller the coefficient of linear expansion of the material of the shank, the better the result.

【0012】[0012]

【発明の効果】本発明のボンディングツールは、シャン
クの加工性が良好で容易に製作することができ、しかも
ツール作用面の平坦性に優れ、ツール作用面材の摩耗が
少なく、ツール作用面の変形が少なく、ツール先端部と
シャンクの結合が強固であり、TAB工程に好適に使用
することができる。
The bonding tool of the present invention has good workability of the shank, can be easily manufactured, has excellent flatness of the working surface of the tool, has little wear on the working surface of the tool, and has a small working surface of the tool. The deformation is small, the connection between the tool tip and the shank is strong, and it can be suitably used in the TAB process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、TAB工程の説明図である。FIG. 1 is an explanatory diagram of a TAB step.

【図2】図2は、ボンディングツールの説明図である。FIG. 2 is an explanatory diagram of a bonding tool.

【符号の説明】[Explanation of symbols]

1 加熱ステージ 2 熱絶縁体 3 チップガイド 4 チップ 5 インナーリード 6 フィルムキャリヤ 7 テープガイド 8 電極 9 ボンディングツール 10 加圧シリンダ 11 加圧シリンダへの取り付け部 12 ヒーター取り付け穴 13 熱電対取り付け穴 14 ツール先端部 DESCRIPTION OF SYMBOLS 1 Heating stage 2 Thermal insulator 3 Chip guide 4 Chip 5 Inner lead 6 Film carrier 7 Tape guide 8 Electrode 9 Bonding tool 10 Pressure cylinder 11 Mounting part to pressure cylinder 12 Heater mounting hole 13 Thermocouple mounting hole 14 Tool tip Department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】焼結体基板に多結晶ダイヤモンド膜を析出
させたツール先端部をシャンクにろう付けしてなるボン
ディングツールにおいて、シャンクの材質がオーステナ
イト系低熱膨張鋳鉄であることを特徴とするボンディン
グツール。
1. A bonding tool obtained by brazing a tool tip having a polycrystalline diamond film deposited on a sintered body substrate to a shank, wherein the material of the shank is austenitic low thermal expansion cast iron. tool.
【請求項2】オーステナイト系低熱膨張鋳鉄の線膨張率
が、室温〜600℃において8〜12×10-6-1であ
る請求項1記載のボンディングツール。
2. The bonding tool according to claim 1 , wherein the linear expansion coefficient of the austenitic low thermal expansion cast iron is 8 to 12 × 10 −6 K −1 at room temperature to 600 ° C.
【請求項3】オーステナイト系低熱膨張鋳鉄が、炭素
0.8〜3.0重量%、ケイ素1.0〜3.0重量%、ニッ
ケル30.0〜34.0重量%及びコバルト4.0〜6.0
重量%を含有する請求項1又は請求項2記載のボンディ
ングツール。
3. An austenitic low thermal expansion cast iron comprising 0.8 to 3.0% by weight of carbon, 1.0 to 3.0% by weight of silicon, 30.0 to 34.0% by weight of nickel and 4.0 to 3.0% by weight of cobalt. 6.0
The bonding tool according to claim 1, wherein the bonding tool contains a weight%.
JP16501897A 1997-06-06 1997-06-06 Bonding tool Expired - Fee Related JP3862815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16501897A JP3862815B2 (en) 1997-06-06 1997-06-06 Bonding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16501897A JP3862815B2 (en) 1997-06-06 1997-06-06 Bonding tool

Publications (2)

Publication Number Publication Date
JPH10340934A true JPH10340934A (en) 1998-12-22
JP3862815B2 JP3862815B2 (en) 2006-12-27

Family

ID=15804285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16501897A Expired - Fee Related JP3862815B2 (en) 1997-06-06 1997-06-06 Bonding tool

Country Status (1)

Country Link
JP (1) JP3862815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194189B2 (en) 2011-09-19 2015-11-24 Baker Hughes Incorporated Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194189B2 (en) 2011-09-19 2015-11-24 Baker Hughes Incorporated Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element
US9771497B2 (en) 2011-09-19 2017-09-26 Baker Hughes, A Ge Company, Llc Methods of forming earth-boring tools

Also Published As

Publication number Publication date
JP3862815B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
US5653376A (en) High strength bonding tool and a process for the production of the same
KR100210900B1 (en) Bonding tool
JP2720762B2 (en) How to join graphite and metal
JPH10340934A (en) Bonding tool
JP2520971B2 (en) Bonding tools
JP3413942B2 (en) High strength bonding tool and manufacturing method thereof
JP3299694B2 (en) Bonding tool
JP3247636B2 (en) Bonding tool and manufacturing method thereof
JPH0516004A (en) Cutting tool and manufacture thereof
JPH0766930B2 (en) Bonding tools
JPH0551271A (en) Joined body constituted of metallic sheet and ceramic substrate
JP4556389B2 (en) Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body
JPH10242221A (en) Compression bonding tool for bonding ic chip leads
JP3275786B2 (en) Pressure welding tool for IC chip lead material bonding
JPH0725674A (en) Production of joined body of ceramics to metal
JPH05228623A (en) Soldering tool of diamond polycrystalline body
JPH1126514A (en) Pressure-welding tool for bonding lead member of ic chip
JP2522125B2 (en) Method for joining ceramics and metal or ceramics
JP2784695B2 (en) Manufacturing method of bonding tool
JP3523665B2 (en) Method of forming metal layer on ceramic surface
JPH05228624A (en) Soldering tool of diamond polycrystalline body
JPS6081070A (en) Bonded structure of sic sintered body and metal member
JPH05228625A (en) Soldering tool of diamond single crystal
JPS62171979A (en) Nonoxide type ceramics metallization and joining method
JPS60255680A (en) Diffusion bonding process of ceramic to metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees