JPH10329071A - Impedance control device for robot arm - Google Patents

Impedance control device for robot arm

Info

Publication number
JPH10329071A
JPH10329071A JP9158136A JP15813697A JPH10329071A JP H10329071 A JPH10329071 A JP H10329071A JP 9158136 A JP9158136 A JP 9158136A JP 15813697 A JP15813697 A JP 15813697A JP H10329071 A JPH10329071 A JP H10329071A
Authority
JP
Japan
Prior art keywords
arm
force
contact
robot arm
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9158136A
Other languages
Japanese (ja)
Other versions
JP3865158B2 (en
Inventor
Kenji Matsukuma
研司 松熊
Takeshi Sakamoto
武志 坂本
Toshiyuki Kono
寿之 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP15813697A priority Critical patent/JP3865158B2/en
Publication of JPH10329071A publication Critical patent/JPH10329071A/en
Application granted granted Critical
Publication of JP3865158B2 publication Critical patent/JP3865158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a restoration force when a high force is exerted on an arm and to ensure operation precision even by a slight external force by a method wherein a sensor to obtain contact force sense information with a object is stuck on the surface of an arm and based on the contact force sense information, a virtual mechanical impedance is changed. SOLUTION: When an arm 101 makes contact with a human being 102, reaction force torque information is inputted to a displacement angle calculating part 105. Further, a contact force sense sensor 106 is stuck on the surface of the arm 101, and a contact force sense with a human being 102 is converted into a voltage. The contact force sense information Fp is inputted to an impedance parameter calculating part 107 by a digital value. In the displacement angle calculating part 105, a displacement angle to be moved is calculated through an input, such as an elastic parameter (k), based on a mechanical impedance model, the displacement angle to be moved is calculated to generate an angle command for the arm 101. This constitution reduces a restoration force when a high force is exerted on the arm, improves safety, and ensures operation precision by increasing the restoration force during a slight force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハンドリング作業
等に好適なロボットアームのインピーダンス制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a robot arm impedance control apparatus suitable for handling work and the like.

【0002】[0002]

【従来の技術】従来の一般的な位置制御ベースのトルク
インピーダンス制御方式は図6のようになっている。ア
ーム601 が人間(あるいは物体)602 に接触したとき、
その反力トルクがトルクセンサ603 によって電圧に変換
される。このトルク情報はA/D変換器604 によってデジ
タル値に変換された後、変位角算出部605 に入力され
る。変位角算出部605 ではインピーダンス設定部606 で
設定された仮想の慣性・粘性・弾性パラメータ(固定
値)から、機械的インピーダンスモデルに基づき、アー
ム角度が平衡点から移動すべき変位角が算出される。変
位角は平衡角設定部607 の出力に加算され、アーム601
の角度指令となる。この角度指令は、回転角検出計608
により検出された電気信号を回転角変換回路609 により
変換したデジタル値と比較され、この差分にゲイン積算
器610 によりゲインをかけた出力値が求められる。この
出力値はD/A 回路611 によってアナログ化され、ドライ
バ612 によってモータ613 に出力されることによってア
ーム601 を駆動する。この状態で平衡角設定部607 の出
力を目標軌道にあわせ変化させることで、目標軌道に追
従しつつ人間(あるいは物体)からの反力に対しては滑
らかにならうような応答が実現できる。
2. Description of the Related Art FIG. 6 shows a conventional position control-based torque impedance control system. When the arm 601 comes into contact with a human (or object) 602,
The reaction torque is converted into a voltage by the torque sensor 603. This torque information is converted into a digital value by the A / D converter 604 and then input to the displacement angle calculation unit 605. The displacement angle calculation unit 605 calculates the displacement angle at which the arm angle should move from the equilibrium point based on the mechanical impedance model from the virtual inertia, viscosity, and elasticity parameters (fixed values) set by the impedance setting unit 606. . The displacement angle is added to the output of the balance angle setting unit 607, and the
Angle command. This angle command is output from the rotation angle detector 608
Is compared with the digital value converted by the rotation angle conversion circuit 609, and the gain is multiplied by a gain integrator 610 to obtain an output value. The output value is converted into an analog signal by the D / A circuit 611 and is output to the motor 613 by the driver 612 to drive the arm 601. In this state, by changing the output of the equilibrium angle setting unit 607 in accordance with the target trajectory, it is possible to realize a response that follows the target trajectory and smoothly responds to a reaction force from a human (or an object).

【0003】このようなアームを用いて、人間(あるい
は物体)と接触する可能性のある環境下で高精度の作業
を行わせようとした場合、2つの問題点が存在する。ひ
とつは仮想の機械的インピーダンスモデルとして用いて
いるバネ−ダンパ系の特性から、人間(あるいは物体)
から大きな力を受けてアームの変位角が大きくなるほ
ど、アームが人間(あるいは物体)に返す復元力も大き
くなることである。これでは人間(あるいは物体)がア
ームと接触し続けるような環境下では、アームから大き
な力を受ける可能性があり危険である。しかし一方で仮
想の機械的インピーダンスを小さく設定し、復元力を小
さく抑えようとすると、今度は人間(あるいは物体)か
らわずかの接触力しか受けていない場合でも目標軌道か
ら大きくずれてしまうことになる。これでは、目的の動
作を精度良く行うことが困難になる。もう一つは、関節
軸に配置したトルクセンサの測定値には、外力トルクの
他にアームの慣性や遠心力に基づく発生トルクあるいは
摩擦トルクも含まれるため、実際にアームと人間(ある
いは物体)との間で発生している力が判別できないこと
である。これを判別する方法としては、外乱オブザーバ
を用いる方法が提案されているが、モデルを用いること
から、その同定誤差等のため正確な値を知るのは困難で
ある。
There are two problems when attempting to perform a high-precision work in an environment where there is a possibility of contact with a human (or an object) using such an arm. One is the characteristic of the spring-damper system used as a virtual mechanical impedance model,
The greater the force applied from the arm, the greater the displacement angle of the arm, the greater the restoring force that the arm returns to a human (or object). This is dangerous because humans (or objects) may receive a large force from the arm in an environment where they continue to contact the arm. On the other hand, if the virtual mechanical impedance is set small and the restoring force is reduced, the target trajectory will greatly deviate even if only a slight contact force is received from a human (or object). . This makes it difficult to perform the intended operation with high accuracy. The other is that the measured value of the torque sensor arranged on the joint axis includes the generated torque or friction torque based on the inertia and centrifugal force of the arm in addition to the external force torque. And the force generated between them cannot be determined. As a method for determining this, a method using a disturbance observer has been proposed. However, since a model is used, it is difficult to know an accurate value due to an identification error or the like.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
のトルクインピーダンス制御方式では、下記の問題点が
あった。 (1)アームに大きな力を加えると復元力も大きくなり
危険である。 (2)微少な外力の範囲では精度が保たれない。 (3)関節軸のトルクセンサでは正確な接触力を知るこ
とができない。 そこで、本発明は、ロボットアームに加わった人間(あ
るいは物体)との接触力を直接検知するとともに、この
情報を用いることで、アームに大きな力が加わった時に
は復元力を小さくし安全性を高め、アームに微少な力が
加わっている時には復元力を大きくし動作精度を確保す
ることが可能な装置を提供することを目的とするもので
ある。
As described above, the conventional torque impedance control system has the following problems. (1) If a large force is applied to the arm, the restoring force increases, which is dangerous. (2) Accuracy cannot be maintained in a small external force range. (3) An accurate contact force cannot be obtained with a torque sensor for a joint shaft. Therefore, the present invention directly detects the contact force with a human (or an object) applied to the robot arm and uses this information to reduce the restoring force when a large force is applied to the arm, thereby improving safety. It is another object of the present invention to provide a device capable of increasing a restoring force when a small force is applied to an arm and ensuring operation accuracy.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ロボットアームの各関節に取り付けたト
ルクセンサの情報をもとに各関節モータを力制御するト
ルクインピーダンス制御装置において、アーム表面に対
象物との接触圧覚情報をアナログ的に取得できるセンサ
を貼り付け、この圧覚情報をもとに、仮想の機械的イン
ピーダンスを変化させることを特徴とするものである。
上記手段により、アーム表面の接触力を直接測定するこ
とができるため、より安全確実な動作が実現できる。ま
たこの接触力に応じてアームの逃げ量を調整することが
できるため、さまざまな接触力に対し常に最適な対応を
とることができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a torque impedance control device for force-controlling each joint motor based on information of a torque sensor attached to each joint of a robot arm. A sensor capable of acquiring contact pressure sense information with an object in an analog manner is attached to the surface, and a virtual mechanical impedance is changed based on the pressure sense information.
By the above means, the contact force on the arm surface can be directly measured, so that a safer and more reliable operation can be realized. Further, since the relief amount of the arm can be adjusted according to the contact force, it is possible to always optimally deal with various contact forces.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1において、アーム101 が人間
(あるいは物体)102 に接触したとき、その反力トルク
がトルクセンサ103 によって電圧に変換される。このト
ルク情報はA/D 変換器104 によってデジタル値に変換さ
れた後、変位角算出部105 に入力される。またアーム10
1 の表面にはシート状の圧覚センサ106 が貼られてお
り、人間(あるいは物体)102 からの接触力を電圧に変
換する。この圧覚情報はA/D 変換器104 によりデジタル
値に変換され、インピーダンスパラメータ算出部107 に
入力される。変位角算出部105 ではインピーダンスパラ
メータ算出部107 で圧覚情報をもとに算出された仮想の
慣性・粘性・弾性パラメータから、機械的インピーダン
スモデルに基づき、アーム角度が平衡点から移動すべき
変位角が算出される。変位角は平衡角設定部108 の出力
に加算され、アーム101 の角度指令となる。この角度指
令は、回転角検出計109 により検出された電気信号を回
転角変換回路110 により変換したデジタル値と比較さ
れ、この差分にゲイン積算器111 によりゲインをかけた
出力値が求められる。この出力値はD/A 回路112 によっ
てアナログ化され、ドライバ113 によってモータ114 に
出力されることによってアーム101 を駆動する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, when the arm 101 comes into contact with a human (or an object) 102, the reaction torque thereof is converted into a voltage by a torque sensor 103. This torque information is converted into a digital value by the A / D converter 104 and then input to the displacement angle calculation unit 105. Arm 10
A pressure sensor 106 in the form of a sheet is affixed to the surface of the device 1, and converts a contact force from a human (or an object) 102 into a voltage. This pressure sense information is converted into a digital value by the A / D converter 104 and input to the impedance parameter calculation unit 107. The displacement angle calculation unit 105 calculates the displacement angle at which the arm angle should move from the equilibrium point based on the mechanical impedance model from the virtual inertia, viscosity, and elasticity parameters calculated based on the pressure sense information in the impedance parameter calculation unit 107. Is calculated. The displacement angle is added to the output of the equilibrium angle setting unit 108, and becomes an angle command for the arm 101. The angle command is compared with a digital value obtained by converting an electric signal detected by the rotation angle detector 109 by the rotation angle conversion circuit 110, and an output value obtained by multiplying the difference by a gain by the gain integrator 111 is obtained. This output value is converted into an analog signal by the D / A circuit 112 and output to the motor 114 by the driver 113 to drive the arm 101.

【0009】インピーダンスパラメータ算出部における
変換の一例を図2に示す。図で横軸はA/D 変換器104 か
ら入力した圧覚情報Fp、縦軸は変位角算出部105 に出力
する仮想の機械的インピーダンスパラメータのうち弾性
パラメータk を示している。例えばアームが人間(ある
いは物体)と接触していない時(アーム動作時を含
む)、圧覚情報Fpはゼロとなるため弾性パラメータkは
最大値kmaxをとる。このためアーム加減速動作時の慣性
や遠心力に基づく発生トルクあるいは摩擦トルクの影響
を小さく抑え、高精度な位置決めを行うことができる。
FIG. 2 shows an example of the conversion in the impedance parameter calculator. In the figure, the horizontal axis represents the pressure sense information Fp input from the A / D converter 104, and the vertical axis represents the elasticity parameter k of the virtual mechanical impedance parameters output to the displacement angle calculation unit 105. For example, when the arm is not in contact with a human (or an object) (including when the arm is operating), the pressure parameter Fp becomes zero, and the elasticity parameter k takes the maximum value kmax. For this reason, the influence of generated torque or friction torque based on inertia or centrifugal force during arm acceleration / deceleration operation can be reduced, and highly accurate positioning can be performed.

【0010】次にアームが人間(あるいは物体)と接触
し、小さな接触力が発生している状態では、弾性パラメ
ータk はある程度大きな値を保ち続ける。このため人間
(あるいは物体)に危害を及ぼさないような小さな接触
力の範囲内では、できるだけ高精度を保ちつつ作業を続
行することが可能となる。さらに作業を続け、アームと
人間(あるいは物体)との間の接触力が大きくなってく
ると、圧覚情報Fpにつれて弾性パラメータk は減少して
いくため、アームは接触力を逃がす方向へ動きやすくな
る。またアームの復元力も小さくなるので、人間(ある
いは物体)がロボットから大きな力を受ける危険性がな
くなる。
Next, in a state where the arm comes into contact with a human (or an object) and a small contact force is generated, the elasticity parameter k keeps a relatively large value. Therefore, within a range of a small contact force that does not cause harm to a human (or an object), it is possible to continue the operation while keeping the accuracy as high as possible. When the work is further continued and the contact force between the arm and a person (or an object) increases, the elastic parameter k decreases in accordance with the pressure sense information Fp, so that the arm easily moves in a direction in which the contact force is released. . Also, since the restoring force of the arm is reduced, there is no danger that the human (or the object) receives a large force from the robot.

【0011】上記手段により、ロボットアームに加わっ
た人間(あるいは物体)との接触力を直接検知するとと
もに、この情報を用いることで、アームに大きな力が加
わった時には復元力を小さくし安全性を高め、アームに
微少な力が加わっている時には復元力を大きくし動作精
度を確保することが可能となる。インピーダンスパラメ
ータ算出部における変換の他の例を図3に示す。ここで
は圧覚情報Fpがあるしきい値Fmax以上になった時点で弾
性パラメータk を再び上昇させている。これは人間(あ
るいは物体)からの接触力に応じてアームをあまり急激
に逃がした場合、アームの逃げる空間内に存在する別の
人間(あるいは物体)に接触するおそれがあるからであ
る。
By the above means, the contact force with the human (or the object) applied to the robot arm is directly detected, and by using this information, when a large force is applied to the arm, the restoring force is reduced and the safety is reduced. When a small force is applied to the arm, the restoring force can be increased to ensure the operation accuracy. FIG. 3 shows another example of the conversion in the impedance parameter calculation unit. Here, the elasticity parameter k is increased again when the pressure sense information Fp exceeds a certain threshold value Fmax. This is because if the arm is released too rapidly in accordance with the contact force from a human (or an object), there is a possibility that the arm may come into contact with another human (or an object) existing in the space where the arm can escape.

【0012】別の例を図4に示す。ここでは連続的な圧
覚情報の変化に対して弾性パラメータが急激に変化する
ことによる接触時の違和感を避けるため、変換式が滑ら
かな曲線になっている。この装置では、ロボットアーム
と人間(あるいは物体)との接触をテープ状のスイッチ
によって検出する。この場合圧覚情報は2値となるの
で、インピーダンスパラメータ算出部における変換例は
図5のようになる。図において、Fsw はスイッチがON
になる圧覚しきい値を示す。
Another example is shown in FIG. Here, the conversion equation is a smooth curve in order to avoid a sense of discomfort at the time of contact due to a sudden change in the elasticity parameter with respect to a continuous change in pressure sense information. In this device, a contact between a robot arm and a human (or an object) is detected by a tape-shaped switch. In this case, since the pressure sense information is binary, a conversion example in the impedance parameter calculation unit is as shown in FIG. In the figure, Fsw is ON
The pressure sense threshold value becomes

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、ア
ームに大きな力を加えた場合にはアームが逃げやすくな
り、復元力も小さいため、安全である。また微少な外力
の範囲でも精度を保つことが可能となる。また、関節軸
のトルクセンサと併用する圧覚センサにより、正確な接
触力を知ることができる。
As described above, according to the present invention, when a large force is applied to the arm, the arm can easily escape and the restoring force is small, so that the present invention is safe. In addition, it is possible to maintain accuracy even in a small external force range. In addition, an accurate contact force can be obtained by a pressure sensor used in combination with the torque sensor of the joint shaft.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す制御の概念ブロック図FIG. 1 is a conceptual block diagram of control showing an embodiment of the present invention.

【図2】本発明におけるインピーダンスパラメータ算出
部の例(1)を示す図
FIG. 2 is a diagram showing an example (1) of an impedance parameter calculating unit according to the present invention.

【図3】本発明におけるインピーダンスパラメータ算出
部の例(2)を示す図
FIG. 3 is a diagram showing an example (2) of an impedance parameter calculator according to the present invention.

【図4】本発明におけるインピーダンスパラメータ算出
部の例(3)を示す図
FIG. 4 is a diagram illustrating an example (3) of an impedance parameter calculation unit according to the present invention.

【図5】本発明におけるインピーダンスパラメータ算出
部の例(4)を示す図
FIG. 5 is a diagram illustrating an example (4) of an impedance parameter calculation unit according to the present invention.

【図6】従来技術における制御の概念ブロック図FIG. 6 is a conceptual block diagram of control in the related art.

【符号の説明】[Explanation of symbols]

101 ロボットアーム 102 人間(あるいは物体) 103 トルクセンサ 104 A/D変換器 105 変位角算出部 106 圧覚センサ 107 インピーダンスパラメータ算出部 108 平衡角設定部 109 回転角検出計 110 回転角変換回路 111 ゲイン積算器 112 D/A変換器 113 ドライバ114 モータ 101 Robot arm 102 Human (or object) 103 Torque sensor 104 A / D converter 105 Displacement angle calculation unit 106 Pressure sensor 107 Impedance parameter calculation unit 108 Balance angle setting unit 109 Rotation angle detector 110 Rotation angle conversion circuit 111 Gain accumulator 112 D / A converter 113 Driver 114 Motor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ロボットアームの各関節に取り付けたト
ルクセンサの情報をもとに各関節モータを力制御するロ
ボットアームのインピーダンス制御装置において、 前記ロボットアーム表面に対象物との接触圧覚情報を検
知できるセンサを設け、このセンサの出力をもとに仮想
の機械的インピーダンスを変化させることを特徴とする
ロボットアームのインピーダンス制御装置。
1. A robot arm impedance control device for force-controlling each joint motor based on information of a torque sensor attached to each joint of the robot arm, wherein information on contact pressure sense with an object is detected on the surface of the robot arm. An impedance control apparatus for a robot arm, comprising: a sensor capable of changing a virtual mechanical impedance based on an output of the sensor.
【請求項2】 前記接触圧覚情報を検知できるセンサの
出力は連続値である請求項1記載のロボットアームのイ
ンピーダンス制御装置。
2. The impedance control device for a robot arm according to claim 1, wherein an output of a sensor capable of detecting the contact pressure sense information is a continuous value.
【請求項3】 前記接触圧覚情報を検知できるセンサの
出力は離散値である請求項1記載のロボットアームのイ
ンピーダンス制御装置。
3. The impedance control device for a robot arm according to claim 1, wherein an output of the sensor capable of detecting the contact pressure sense information is a discrete value.
JP15813697A 1997-05-30 1997-05-30 Impedance control device for robot arm Expired - Fee Related JP3865158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15813697A JP3865158B2 (en) 1997-05-30 1997-05-30 Impedance control device for robot arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15813697A JP3865158B2 (en) 1997-05-30 1997-05-30 Impedance control device for robot arm

Publications (2)

Publication Number Publication Date
JPH10329071A true JPH10329071A (en) 1998-12-15
JP3865158B2 JP3865158B2 (en) 2007-01-10

Family

ID=15665068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15813697A Expired - Fee Related JP3865158B2 (en) 1997-05-30 1997-05-30 Impedance control device for robot arm

Country Status (1)

Country Link
JP (1) JP3865158B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302496A (en) * 2006-07-04 2008-12-18 Panasonic Corp Device and method for controlling robot arm, robot, and control program of the robot arm
JP2009107110A (en) * 2007-10-10 2009-05-21 Panasonic Corp Structure, manipulator, and structure control system
US7558647B2 (en) 2006-01-13 2009-07-07 Panasonic Corporation Device and method for controlling robot arm, robot and program based on object-dependent impedance
JP2009220184A (en) * 2008-03-13 2009-10-01 Nachi Fujikoshi Corp Output torque limiting circuit of industrial robot
US7652446B2 (en) 2007-04-13 2010-01-26 Industrial Technology Research Institute Method for detecting and controlling output characteristics of a DC motor and a self-propelled apparatus using the same
US7747351B2 (en) 2007-06-27 2010-06-29 Panasonic Corporation Apparatus and method for controlling robot arm, and robot and program
JP2010162652A (en) * 2009-01-16 2010-07-29 Yaskawa Electric Corp Transfer system
WO2013027250A1 (en) * 2011-08-19 2013-02-28 株式会社安川電機 Robot system, robot, and robot control device
US8402860B2 (en) 2007-10-10 2013-03-26 Panasonic Corporation Structure, manipulator and structure control system
US8634955B2 (en) 2007-07-18 2014-01-21 Kabushiki Kaisha Toshiba Mobile robot and method for controlling mobile robot
JP2014133278A (en) * 2013-01-09 2014-07-24 Honda Motor Co Ltd Link mechanism
CN104602873A (en) * 2012-09-04 2015-05-06 株式会社安川电机 Method for adjusting robot control parameters, robot system, and robot control device
CN106393145A (en) * 2016-12-20 2017-02-15 自兴人工智能(深圳)有限公司 Virtual reality experience method and device based on mechanical arm control
CN110861097A (en) * 2019-12-24 2020-03-06 中国科学院宁波材料技术与工程研究所 Force control tail end actuating mechanism and force control method for reducing vibration of mechanical arm
CN112384336A (en) * 2018-06-29 2021-02-19 Cmr外科有限公司 Detecting collisions of a robot arm
JP2022122820A (en) * 2021-02-10 2022-08-23 キヤノン株式会社 System, manufacturing method, control method, program, and recording medium
CN116175648A (en) * 2023-04-25 2023-05-30 江西明天高科技股份有限公司 Force feedback mechanical arm moving resistance test board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391595A (en) * 1986-10-07 1988-04-22 三菱電機株式会社 Robot arm
JPS63139678A (en) * 1986-11-28 1988-06-11 富士通株式会社 Wrist mechanism of built-up robot
JPS63238502A (en) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The Proximity and tactile sensor
JPH04189484A (en) * 1990-11-22 1992-07-07 Toyota Motor Corp Grasping control method of robot hand
JPH04306712A (en) * 1991-04-04 1992-10-29 Kobe Steel Ltd Controller for manipulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391595A (en) * 1986-10-07 1988-04-22 三菱電機株式会社 Robot arm
JPS63139678A (en) * 1986-11-28 1988-06-11 富士通株式会社 Wrist mechanism of built-up robot
JPS63238502A (en) * 1987-03-27 1988-10-04 Yokohama Rubber Co Ltd:The Proximity and tactile sensor
JPH04189484A (en) * 1990-11-22 1992-07-07 Toyota Motor Corp Grasping control method of robot hand
JPH04306712A (en) * 1991-04-04 1992-10-29 Kobe Steel Ltd Controller for manipulator

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7558647B2 (en) 2006-01-13 2009-07-07 Panasonic Corporation Device and method for controlling robot arm, robot and program based on object-dependent impedance
US8676379B2 (en) 2006-07-04 2014-03-18 Panasonic Corporation Device and method for controlling robot arm, robot, and robot arm control program
JP2008302496A (en) * 2006-07-04 2008-12-18 Panasonic Corp Device and method for controlling robot arm, robot, and control program of the robot arm
US7652446B2 (en) 2007-04-13 2010-01-26 Industrial Technology Research Institute Method for detecting and controlling output characteristics of a DC motor and a self-propelled apparatus using the same
US7747351B2 (en) 2007-06-27 2010-06-29 Panasonic Corporation Apparatus and method for controlling robot arm, and robot and program
US8634955B2 (en) 2007-07-18 2014-01-21 Kabushiki Kaisha Toshiba Mobile robot and method for controlling mobile robot
US8402860B2 (en) 2007-10-10 2013-03-26 Panasonic Corporation Structure, manipulator and structure control system
JP2009107110A (en) * 2007-10-10 2009-05-21 Panasonic Corp Structure, manipulator, and structure control system
JP2009220184A (en) * 2008-03-13 2009-10-01 Nachi Fujikoshi Corp Output torque limiting circuit of industrial robot
JP2010162652A (en) * 2009-01-16 2010-07-29 Yaskawa Electric Corp Transfer system
WO2013027250A1 (en) * 2011-08-19 2013-02-28 株式会社安川電機 Robot system, robot, and robot control device
CN104602873A (en) * 2012-09-04 2015-05-06 株式会社安川电机 Method for adjusting robot control parameters, robot system, and robot control device
JP2014133278A (en) * 2013-01-09 2014-07-24 Honda Motor Co Ltd Link mechanism
CN106393145A (en) * 2016-12-20 2017-02-15 自兴人工智能(深圳)有限公司 Virtual reality experience method and device based on mechanical arm control
CN112384336A (en) * 2018-06-29 2021-02-19 Cmr外科有限公司 Detecting collisions of a robot arm
JP2021531846A (en) * 2018-06-29 2021-11-25 シーエムアール・サージカル・リミテッドCmr Surgical Limited Robot arm collision detection
CN110861097A (en) * 2019-12-24 2020-03-06 中国科学院宁波材料技术与工程研究所 Force control tail end actuating mechanism and force control method for reducing vibration of mechanical arm
CN110861097B (en) * 2019-12-24 2023-05-23 中国科学院宁波材料技术与工程研究所 Force control end actuating mechanism for reducing vibration of mechanical arm and force control method
JP2022122820A (en) * 2021-02-10 2022-08-23 キヤノン株式会社 System, manufacturing method, control method, program, and recording medium
CN116175648A (en) * 2023-04-25 2023-05-30 江西明天高科技股份有限公司 Force feedback mechanical arm moving resistance test board

Also Published As

Publication number Publication date
JP3865158B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JPH10329071A (en) Impedance control device for robot arm
KR100439466B1 (en) Robot controller
JP3088004B2 (en) Operation command device
US10564635B2 (en) Human-cooperative robot system
JP3077514B2 (en) robot
US4640663A (en) Balancer and controlling method thereof
JP2001038664A (en) Robot arm impedance control device
JPH09141580A (en) Operating range limiting device for direct teaching robot
US11618163B2 (en) Industrial robot system
EP1505463A2 (en) Position control device and position control method for machine tools
EP0518303B1 (en) Rate mode hand controller with force reflection
JP3286842B2 (en) Flexible control device for robot
JP4055090B2 (en) Robot control device
JP3752758B2 (en) Robot arm control device
JP2005118466A (en) Controller for limb driving apparatus
JP3412324B2 (en) Arm drive
JP3268222B2 (en) Redundancy synchronization control method and apparatus
JP2002177352A (en) Force controller
JP7283994B2 (en) Robot controller and programming device
CN114074323A (en) Safety system for ensuring boundary limit of speed and momentum of robot
JP3718515B2 (en) Force control system
JP2001022446A (en) Servo controller
JPH10177409A (en) Direct teaching device of robot
JPH0683971B2 (en) Bilateral Servo Manipulator Control Method
JPH0323064B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060613

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees