JPH1032196A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH1032196A
JPH1032196A JP18733096A JP18733096A JPH1032196A JP H1032196 A JPH1032196 A JP H1032196A JP 18733096 A JP18733096 A JP 18733096A JP 18733096 A JP18733096 A JP 18733096A JP H1032196 A JPH1032196 A JP H1032196A
Authority
JP
Japan
Prior art keywords
thin film
insulating thin
cyclic hydrocarbon
reaction gas
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18733096A
Other languages
Japanese (ja)
Other versions
JP3445902B2 (en
Inventor
Yasushi Arai
康司 新井
Kazuyuki Sawada
和幸 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18733096A priority Critical patent/JP3445902B2/en
Publication of JPH1032196A publication Critical patent/JPH1032196A/en
Application granted granted Critical
Publication of JP3445902B2 publication Critical patent/JP3445902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an insulating thin film, which is excellent in heat resistance, while the thin film maintains a good moisture resistance and has a relative dielectric constant of a specified value or lower, by a method wherein the insulat ing thin film, which is formed on a semiconductor substrate provided with metal wirings, is formed using a cyclic hydrocarbon containing F and N or its polymer. SOLUTION: A plasma is generated in a reaction chamber, and reaction gas is reacted with the plasma to form cyclic hydrocarbon films containing F and N for an insulating thin film for covering metal wiring 1. As this reaction gas, a reaction gas which consists of a lower hydrocarbon, a lower carbon fluoride and nitrogen is used, and it is also possible to use a reaction gas which consists of carbon, hydrogen and fluorine, as the reaction gas. Moreover, the degree of vacuum in the reaction chamber is controlled to polymerize the cyclic hydrocarbon 21 to form a polymer consisting of the cyclic hydrocarbon. As the film 23 made of the cyclic hydrocarbon 21 containing the F and the N or the polymer, is good in moisture resistance and has a relative dielectric constant of 3.0 or less, the insulating thin film having a good heat resistance is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板上に設
けられた配線上に、耐湿性があり、かつ比誘電率が3.
0以下で、しかも平坦性に優れた絶縁薄膜を有する半導
体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring provided on a semiconductor substrate, which has a moisture resistance and a relative dielectric constant of 3.
The present invention relates to a semiconductor device having an insulating thin film having a flatness of 0 or less and a method of manufacturing the same.

【0002】[0002]

【従来の技術】一般に、半導体装置においては、半導体
基板上に素子および金属配線を形成した後に、表面保護
膜または層間絶縁膜としてSiO2等の絶縁薄膜が形成
される。かかる絶縁薄膜は、半導体装置の特性にも影響
し、低誘電率で、耐湿性があり、平坦性に優れているこ
とが好ましい。即ち、半導体基板上の金属配線の伝達遅
延時間τは、該金属配線上に設けられた絶縁薄膜の誘電
率に比例し、特に、高集積化された半導体装置では、か
かる誘電率が伝達遅延時間τに与える影響が大きくなる
ため絶縁薄膜の低誘電率化が不可欠となる。また、上記
絶縁薄膜は、回路や金属配線の保護膜としても機能する
ため、耐湿性の高い膜であることも必要である。更に
は、上記絶縁薄膜は、層間絶縁薄膜としても使用される
ため、平坦性に優れた膜であることも必要となる。
2. Description of the Related Art Generally, in a semiconductor device, after an element and a metal wiring are formed on a semiconductor substrate, an insulating thin film such as SiO 2 is formed as a surface protective film or an interlayer insulating film. Such an insulating thin film also affects the characteristics of the semiconductor device, and preferably has a low dielectric constant, moisture resistance, and excellent flatness. That is, the transmission delay time τ of the metal wiring on the semiconductor substrate is proportional to the dielectric constant of the insulating thin film provided on the metal wiring. In particular, in a highly integrated semiconductor device, the dielectric constant is the transmission delay time. Since the influence on τ increases, it is essential to lower the dielectric constant of the insulating thin film. Further, since the insulating thin film also functions as a protective film for circuits and metal wiring, it is necessary that the insulating thin film has high moisture resistance. Furthermore, since the above-mentioned insulating thin film is used also as an interlayer insulating thin film, it is necessary to be a film excellent in flatness.

【0003】[0003]

【発明が解決しようとする課題】従来は、絶縁薄膜の低
誘電率化のために、TEOS(テトラエトキシシラン)
を原料としたプラズマCVD法で形成したSiO2絶縁
薄膜中に、絶縁薄膜の誘電率を下げるFを添加し、絶縁
薄膜の低誘電率化を図っていたが、Fの添加量の増加
は、SiO2絶縁薄膜の耐湿性の低下を招くため、現実
にはFの添加量は一定の制限を受け、結果として絶縁薄
膜の比誘電率は3.7程度とするのが限界であり、高集
積化半導体装置で必要とされる3.0以下の比誘電率を
得ることは困難であった。
Conventionally, TEOS (tetraethoxysilane) has been used to reduce the dielectric constant of an insulating thin film.
F, which lowers the dielectric constant of the insulating thin film, was added to the SiO 2 insulating thin film formed by the plasma CVD method using as a raw material to reduce the dielectric constant of the insulating thin film. Since the moisture resistance of the SiO 2 insulating thin film is reduced, the amount of F added is actually limited to a certain extent. As a result, the relative dielectric constant of the insulating thin film is limited to about 3.7, and the high integration It has been difficult to obtain a relative dielectric constant of 3.0 or less, which is required for a semiconductor device.

【0004】また、半導体装置の高集積化に伴い、半導
体基板上の金属配線の配線間隔が狭くなり、TEOSよ
り形成したSiO2絶縁薄膜のみでは、狭い金属配線間
を平坦に埋めることが困難なため、図3に示すように、
TEOSより形成したSiO2膜4(図3(b))上
に、段差被覆性、平坦性に優れたSOG(Spin−O
n−Grass)5を形成(図3(c))し、更にSi
2膜6を積層形成(図3(d))するサンドイッチ法
のような複合プロセスが用いられてきたが、かかるサン
ドイッチ法は、工程が複雑であり、絶縁薄膜の形成に時
間がかかるとともに、SOG5は、耐熱性が低く、40
0℃以上の高温プロセスではクラックが発生するという
欠点を有していた。
[0004] Further, as the degree of integration of a semiconductor device increases, the spacing between metal wirings on a semiconductor substrate becomes narrower, and it is difficult to fill the narrow metal wirings flat with only an SiO 2 insulating thin film formed of TEOS. Therefore, as shown in FIG.
An SOG (Spin-O) having excellent step coverage and flatness is formed on a SiO 2 film 4 (FIG. 3B) formed from TEOS.
n-Grass) 5 (FIG. 3C), and
A composite process such as a sandwich method for laminating and forming the O 2 film 6 (FIG. 3D) has been used. However, such a sandwich method requires complicated steps, takes a long time to form an insulating thin film, and SOG5 has low heat resistance and 40
The high-temperature process of 0 ° C. or more has a disadvantage that cracks occur.

【0005】そこで本発明は、耐湿性があり、かつ比誘
電率が3.0以下で、平坦性に優れた絶縁薄膜を有する
半導体装置およびその製造方法を提供することを目的と
する。
Accordingly, an object of the present invention is to provide a semiconductor device having an insulating thin film which has moisture resistance, a relative dielectric constant of 3.0 or less, and excellent flatness, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】そこで発明者らは鋭意研
究の結果、半導体基板上の金属配線上に配置される絶縁
薄膜を、F、Nを含む環状炭化水素、特にそのポリマー
より形成することにより上記目的を達成できることを見
出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have made intensive studies and have found that an insulating thin film disposed on a metal wiring on a semiconductor substrate is formed of a cyclic hydrocarbon containing F and N, particularly a polymer thereof. As a result, the present inventors have found that the above object can be achieved, and have completed the present invention.

【0007】即ち、本発明は、半導体基板上に設けられ
た金属配線を被覆するように形成された絶縁薄膜を含む
半導体装置であって、上記絶縁薄膜が、F、Nを含む環
状炭化水素より形成され、その比誘電率が3.0以下で
あることを特徴とする半導体装置である。かかる環状炭
化水素より絶縁薄膜を形成することにより、絶縁薄膜の
耐湿性を維持しつつ、比誘電率を3.0以下とすること
が可能となり、該絶縁薄膜により覆われる金属配線の伝
達遅延時間τを小さくしつつ、耐湿性、平坦性に優れた
絶縁薄膜を得ることができるからである。
That is, the present invention is a semiconductor device including an insulating thin film formed so as to cover a metal wiring provided on a semiconductor substrate, wherein the insulating thin film is made of a cyclic hydrocarbon containing F and N. The semiconductor device is formed and has a relative dielectric constant of 3.0 or less. By forming the insulating thin film from such a cyclic hydrocarbon, it is possible to maintain the relative dielectric constant of 3.0 or less while maintaining the moisture resistance of the insulating thin film, and to reduce the transmission delay time of the metal wiring covered by the insulating thin film. This is because an insulating thin film having excellent moisture resistance and flatness can be obtained while reducing τ.

【0008】上記環状炭化水素は、更に、ポリマー構造
を有することが好ましい。環状炭化水素が、ポリマー構
造を有することにより、環状炭化水素の流動性が向上
し、より段差被覆性、平坦性に優れた絶縁薄膜を得るこ
とができるからである。
The above-mentioned cyclic hydrocarbon preferably further has a polymer structure. When the cyclic hydrocarbon has a polymer structure, the fluidity of the cyclic hydrocarbon is improved, and an insulating thin film having more excellent step coverage and flatness can be obtained.

【0009】また、本発明は、半導体基板上に金属配線
を設けた半導体基板を配置した反応室に、低級炭化水
素、低級フッ化炭素、窒素の各反応ガスを導入する工程
と、プラズマCVD法により、上記反応ガスを反応させ
て、F、Nを含む環状炭化水素からなる絶縁薄膜を、上
記半導体基板上に堆積する工程とを含むことを特徴とす
る半導体装置の製造方法でもある。
Further, the present invention provides a step of introducing a reaction gas of a lower hydrocarbon, a lower carbon fluoride and a nitrogen into a reaction chamber in which a semiconductor substrate having a metal wiring provided on a semiconductor substrate is arranged; A step of causing the reaction gas to react to deposit an insulating thin film made of a cyclic hydrocarbon containing F and N on the semiconductor substrate.

【0010】上記半導体装置の製造方法は、更に、上記
反応ガスを重合させて、F、Nを含む環状炭化水素ポリ
マーからなる絶縁薄膜を、上記半導体基板上に堆積する
工程とを含むことが好ましい。かかる環状炭化水素の重
合工程を含むことにより、より平坦性に優れた絶縁薄膜
が得られるからである。
Preferably, the method for manufacturing a semiconductor device further includes a step of polymerizing the reaction gas to deposit an insulating thin film made of a cyclic hydrocarbon polymer containing F and N on the semiconductor substrate. . By including such a cyclic hydrocarbon polymerization step, an insulating thin film having more excellent flatness can be obtained.

【0011】[0011]

【発明の実施の形態】図1に、本発明の一の実施の形態
にかかる、半導体装置の製造工程の一部である絶縁薄膜
の形成工程を、図2に、本発明の実施に使用される反応
室の該略図を示す。本実施の形態では、図2に示す反応
室11内の導電性支持台12上に、半導体基板13が設
置される。該半導体基板13は、基板上にAl配線のよ
うな金属配線1が設けられ、表面段差を有している。ま
た、支持台12には、半導体基板13を加熱するための
ヒータ14、および支持台12に高周波を印加するため
の高周波電源16が設けられており、スイッチ15によ
り両者の切替ができるようになっている。反応ガスは、
ガス導入口17から反応室11内に導入され、排気口1
8を経て、真空ポンプ(図示せず)により排気される。
また、反応室11の周囲には、コイル19が設けられて
おり、高周波電源20によりコイル19に高周波を印加
し、反応室11内にプラズマを発生させ、上記反応ガス
を反応させて、図1(a)に示すようなF、Nを含む環
状炭化水素を形成することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a step of forming an insulating thin film which is a part of a semiconductor device manufacturing process according to an embodiment of the present invention. 1 shows the schematic diagram of the reaction chamber. In the present embodiment, a semiconductor substrate 13 is provided on a conductive support 12 in a reaction chamber 11 shown in FIG. The semiconductor substrate 13 has a metal wiring 1 such as an Al wiring provided on a substrate and has a surface step. The support 12 is provided with a heater 14 for heating the semiconductor substrate 13 and a high-frequency power supply 16 for applying a high frequency to the support 12, and the switch 15 can switch between the two. ing. The reaction gas is
The gas is introduced into the reaction chamber 11 from the gas inlet 17 and the exhaust port 1
After passing through 8, the air is evacuated by a vacuum pump (not shown).
Further, a coil 19 is provided around the reaction chamber 11, and a high frequency is applied to the coil 19 by a high frequency power supply 20 to generate plasma in the reaction chamber 11 and cause the reaction gas to react. A cyclic hydrocarbon containing F and N as shown in (a) can be formed.

【0012】表1に、上記反応室11内でのプラズマ反
応条件として好ましい、反応ガス、高周波出力、真空度
の組み合わせを示す。
Table 1 shows a combination of a reaction gas, a high-frequency output, and a degree of vacuum, which are preferable as plasma reaction conditions in the reaction chamber 11.

【表1】 ここに、上記反応ガスは、低級炭化水素、低級フッ化炭
素、窒素から構成されるが、このうち、低級炭化水素
は、炭素が1〜10の炭化水素、低級フッ化炭素は、フ
ッ素が1〜20のフッ化炭素であることが好ましい。ま
た、これらの反応ガスの一方または双方に代わって、炭
素、水素、フッ素からなる反応ガスを用いることも可能
である。また、窒素の導入は、N2ガス以外に、NH3
2O等の形態で導入することも可能である。また、本
実施の形態で形成された環状炭化水素に含まれるC、
H、F、Nは、C:H:F:N=20:10:30:1
0であることが好ましいため、反応室11に導入される
反応ガスの各流量の割合も、これに合わせて調整するこ
とが好ましい。上記高周波出力は、安定したプラズマ反
応を得るために、100〜2000W程度が好ましい。
上記反応室11の真空度は、表1に示すように 1.0
〜100Torrの範囲であることが好ましいが、特
に、10Torr以下の低真空に維持することにより、
F、Nを含む環状炭化水素21の、重合が起こり易くな
り、環状炭化水素ポリマー22を形成することが可能と
なる(図1(b))。即ち、反応室11の真空度をコン
トロールすることにより、上記環状炭化水素21を重合
させ、環状炭化水素のポリマー22を形成することが可
能となる。尚、上記反応ガスの反応には、プラズマ反応
以外に、熱分解反応等を用いることも可能である。ま
た、スイッチ15を用いて、支持台12に高周波電源1
6を接続し、高周波電圧を印加することにより、また
は、支持台12をヒータ14で加熱することにより、絶
縁薄膜23の成膜速度を1.5〜3倍程度に速くするこ
とができる。
[Table 1] Here, the reaction gas is composed of a lower hydrocarbon, a lower fluorocarbon, and nitrogen. Among them, the lower hydrocarbon is a hydrocarbon having 1 to 10 carbons, and the lower fluorocarbon has a fluorine of 1 to 10. It is preferably from 20 to 20 fluorocarbons. Also, instead of one or both of these reaction gases, a reaction gas composed of carbon, hydrogen, and fluorine can be used. In addition, nitrogen is introduced in addition to N 2 gas, NH 3 ,
It is also possible to introduce in the form of N 2 O or the like. Further, C contained in the cyclic hydrocarbon formed in the present embodiment,
H, F, and N are C: H: F: N = 20: 10: 30: 1
Since it is preferably 0, the ratio of each flow rate of the reaction gas introduced into the reaction chamber 11 is also preferably adjusted according to this. The high-frequency output is preferably about 100 to 2000 W in order to obtain a stable plasma reaction.
The degree of vacuum in the reaction chamber 11 was 1.0 as shown in Table 1.
Preferably, the pressure is in the range of 100 Torr to 100 Torr.
Polymerization of the cyclic hydrocarbon 21 containing F and N is likely to occur, and a cyclic hydrocarbon polymer 22 can be formed (FIG. 1B). That is, by controlling the degree of vacuum in the reaction chamber 11, the cyclic hydrocarbon 21 can be polymerized to form a cyclic hydrocarbon polymer 22. In addition, a thermal decomposition reaction or the like can be used for the reaction of the reaction gas in addition to the plasma reaction. In addition, using the switch 15, the high frequency power
6 and applying a high-frequency voltage or heating the support base 12 with the heater 14, the film forming speed of the insulating thin film 23 can be increased to about 1.5 to 3 times.

【0013】本発明の実施の形態にかかるF、Nを含む
環状炭化水素21またはそのポリマー22からなる絶縁
薄膜23は、良好な耐湿性を維持でき、なおかつ比誘電
率が3.0以下となるため、かかる絶縁薄膜23を用い
ることにより、絶縁薄膜23の耐湿性の低下を起こさ
ず、金属配線1の伝達遅延時間τを改善することが可能
となる。また、上記F、Nを含む環状炭化水素21は、
流動性に優れるため、これにより形成した絶縁薄膜23
は、良好な段差被覆性、平坦性を有することができる。
特に、上記環状炭化水素がポリマー22を形成すること
により、更に環状炭化水素の流動性が向上し、より平坦
性の良い絶縁薄膜23を得ることができる。また、本実
施の形態では、従来例のように絶縁薄膜23がSOG5
を含まないため、400℃以上の温度プロセスを行って
も絶縁薄膜23にクラックが発生せず、更に、絶縁薄膜
23中に、耐熱性向上に寄与するN、およびその環状構
造が含まれるため、上記絶縁薄膜23は、良好な耐熱性
を有することができる。更に、本実施の形態では、従来
のサンドイッチ法のような複合プロセスを用いずに、段
差被覆性が良く、平坦性に優れた絶縁薄膜23の形成が
可能となる。
The insulating thin film 23 made of the cyclic hydrocarbon 21 containing F or N or its polymer 22 according to the embodiment of the present invention can maintain good moisture resistance and has a relative dielectric constant of 3.0 or less. Therefore, by using the insulating thin film 23, it is possible to improve the transmission delay time τ of the metal wiring 1 without lowering the moisture resistance of the insulating thin film 23. The cyclic hydrocarbon 21 containing F and N is
Since the fluidity is excellent, the insulating thin film 23 formed by this is used.
Can have good step coverage and flatness.
In particular, when the cyclic hydrocarbon forms the polymer 22, the fluidity of the cyclic hydrocarbon is further improved, and the insulating thin film 23 having better flatness can be obtained. In the present embodiment, the insulating thin film 23 is made of SOG5 as in the conventional example.
Does not include, cracks do not occur in the insulating thin film 23 even when a temperature process of 400 ° C. or more is performed, and furthermore, the insulating thin film 23 contains N, which contributes to improvement in heat resistance, and its cyclic structure. The insulating thin film 23 can have good heat resistance. Further, in the present embodiment, it is possible to form the insulating thin film 23 having good step coverage and excellent flatness without using a complex process such as a conventional sandwich method.

【0014】[0014]

【発明の効果】以上の説明で明らかなように、本発明で
は、金属配線を設けた半導体基板上に形成される絶縁薄
膜を、F、Nを含む環状炭化水素、特に、そのポリマー
を用いて形成することにより、良好な耐湿性を維持しつ
つ、かつ比誘電率が3.0以下で、耐熱性に優れた絶縁
薄膜の形成が可能となる。これにより、絶縁薄膜の耐湿
性の低下を招くことなく該絶縁薄膜に覆われた金属配線
の伝達遅延時間τを小さくすることができる、半導体装
置の特性の向上を図ることが可能となる。
As is apparent from the above description, according to the present invention, an insulating thin film formed on a semiconductor substrate provided with a metal wiring is formed by using a cyclic hydrocarbon containing F and N, particularly a polymer thereof. By forming the insulating film, it is possible to form an insulating thin film having excellent relative heat resistance and excellent heat resistance while maintaining good moisture resistance. As a result, the transmission delay time τ of the metal wiring covered with the insulating thin film can be reduced without lowering the moisture resistance of the insulating thin film, and the characteristics of the semiconductor device can be improved.

【0015】また、上記絶縁薄膜、特に、環状炭化水素
のポリマーを用いて形成した絶縁薄膜は、流動性に優れ
るため、従来のサンドイッチ法のような複合プロセスを
用いることなく半導体基板上に段差被覆性、平坦性の良
好な絶縁薄膜を形成することができ、半導体装置の製造
工程の簡略化、低コスト化が可能となる。
The insulating thin film, particularly an insulating thin film formed using a polymer of a cyclic hydrocarbon, has excellent fluidity, so that a step coating can be formed on a semiconductor substrate without using a complex process such as a conventional sandwich method. It is possible to form an insulating thin film with good properties and flatness, and it is possible to simplify a manufacturing process of a semiconductor device and reduce costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態にかかるF、Nを含む環
状炭化水素、または環状炭化水素のポリマーを絶縁薄膜
に用いた半導体装置の製造工程の一部である。
FIG. 1 is a part of a manufacturing process of a semiconductor device in which a cyclic hydrocarbon containing F and N or a polymer of a cyclic hydrocarbon according to an embodiment of the present invention is used for an insulating thin film.

【図2】 本発明の実施の形態に使用する反応室の該略
図である。
FIG. 2 is a schematic view of a reaction chamber used in an embodiment of the present invention.

【図3】 従来のサンドイッチ法を用いて絶縁薄膜を形
成した半導体装置の製造工程の一部である。
FIG. 3 is a part of a manufacturing process of a semiconductor device in which an insulating thin film is formed by using a conventional sandwich method.

【符号の説明】[Explanation of symbols]

1 金属配線(段差)、4 SiO2膜、5 SOG、
6 SiO2膜、11反応室、12 導電性支持台、1
3 半導体基板、14 ヒータ、15 スイッチ、16
高周波電源、17 ガス導入口、18 排気口、19
コイル、20高周波電源、21 F、Nを含む環状炭
化水素、22 F、Nを含む環状炭化水素ポリマー、2
3 絶縁薄膜。
1 metal wiring (step), 4 SiO 2 film, 5 SOG,
6 SiO 2 film, 11 reaction chamber, 12 conductive support, 1
3 semiconductor substrate, 14 heater, 15 switch, 16
High frequency power supply, 17 gas inlet, 18 exhaust port, 19
Coil, 20 high frequency power supply, cyclic hydrocarbon containing 21 F, N, cyclic hydrocarbon polymer containing 22 F, N, 2
3 Insulating thin film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に設けられた金属配線を被
覆するように形成された絶縁薄膜を含む半導体装置であ
って、 上記絶縁薄膜が、F、Nを含む環状炭化水素より形成さ
れ、その比誘電率が3.0以下であることを特徴とする
半導体装置。
1. A semiconductor device comprising an insulating thin film formed so as to cover a metal wiring provided on a semiconductor substrate, wherein the insulating thin film is formed of a cyclic hydrocarbon containing F and N, and A semiconductor device having a relative dielectric constant of 3.0 or less.
【請求項2】 上記環状炭化水素が、更に、ポリマー構
造を有することを特徴とする請求項1に記載の半導体装
置。
2. The semiconductor device according to claim 1, wherein said cyclic hydrocarbon further has a polymer structure.
【請求項3】 半導体基板上に金属配線を設けた半導体
基板を配置した反応室に、低級炭化水素、低級フッ化炭
素、窒素の各反応ガスを導入する工程と、 プラズマCVD法により、上記反応ガスを反応させて、
F、Nを含む環状炭化水素からなる絶縁薄膜を、上記半
導体基板上に堆積する工程とを含むことを特徴とする半
導体装置の製造方法。
3. A step of introducing each reaction gas of lower hydrocarbon, lower fluorocarbon, and nitrogen into a reaction chamber in which a semiconductor substrate provided with metal wiring on a semiconductor substrate is provided. React the gas,
Depositing an insulating thin film made of a cyclic hydrocarbon containing F and N on the semiconductor substrate.
【請求項4】 プラズマCVD法により、上記反応ガス
を重合させて、F、Nを含む環状炭化水素ポリマーから
なる絶縁薄膜を、上記半導体基板上に堆積する工程を含
むことを特徴とする請求項3に記載の半導体装置の製造
方法。
4. The method according to claim 1, further comprising a step of polymerizing the reaction gas by plasma CVD to deposit an insulating thin film made of a cyclic hydrocarbon polymer containing F and N on the semiconductor substrate. 4. The method for manufacturing a semiconductor device according to item 3.
JP18733096A 1996-07-17 1996-07-17 Method for manufacturing semiconductor device Expired - Fee Related JP3445902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18733096A JP3445902B2 (en) 1996-07-17 1996-07-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18733096A JP3445902B2 (en) 1996-07-17 1996-07-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH1032196A true JPH1032196A (en) 1998-02-03
JP3445902B2 JP3445902B2 (en) 2003-09-16

Family

ID=16204120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18733096A Expired - Fee Related JP3445902B2 (en) 1996-07-17 1996-07-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3445902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168364B1 (en) 1999-04-19 2001-01-02 Tdk Corporation Vacuum clean box, clean transfer method and apparatus therefor
KR100372625B1 (en) * 1998-04-08 2003-02-17 닛폰 덴키(주) Method of fabricating semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100372625B1 (en) * 1998-04-08 2003-02-17 닛폰 덴키(주) Method of fabricating semiconductor device
US6168364B1 (en) 1999-04-19 2001-01-02 Tdk Corporation Vacuum clean box, clean transfer method and apparatus therefor

Also Published As

Publication number Publication date
JP3445902B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
EP0936282B1 (en) Low-k fluorinated amorphous carbon dielectric and method of making the same
US6768200B2 (en) Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device
JP2789587B2 (en) Manufacturing method of insulating thin film
JP3463416B2 (en) Method of manufacturing insulating film and semiconductor device
US5116640A (en) Process for preparing an electroluminescent device
US6303519B1 (en) Method of making low K fluorinated silicon oxide
US20100003833A1 (en) Method of forming fluorine-containing dielectric film
EP1253630B1 (en) Chemical vapor deposition of silicon oxide films
JPH1032196A (en) Semiconductor device and manufacture thereof
JP4314650B2 (en) Method for forming interlayer insulating film of semiconductor device
US6905981B1 (en) Low-k dielectric materials and processes
JP3396791B2 (en) Method of forming insulating film
JPH0574763A (en) Formation of gate insulating film
JPS5941773B2 (en) Vapor phase growth method and apparatus
JPH08167650A (en) Insulation film structure and its manufacture
JPH08148481A (en) Forming method of insulating thin film
JPS61256735A (en) Semiconductor device and manufacture thereof
WO2022140346A1 (en) Single precursor low-k film deposition and uv cure for advanced technology node
JPH05262819A (en) Functional organic polymer material and its preparation
JPH1079385A (en) Method of forming insulating film
JPH05343390A (en) Formation of insulating film
CN112779519A (en) Low-dielectric-constant silicon oxide film layer, preparation method thereof and semiconductor component
JPH11111716A (en) Insulation film for semiconductor element and its manufacture
JPS63204617A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees