JPH06333846A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH06333846A
JPH06333846A JP12423293A JP12423293A JPH06333846A JP H06333846 A JPH06333846 A JP H06333846A JP 12423293 A JP12423293 A JP 12423293A JP 12423293 A JP12423293 A JP 12423293A JP H06333846 A JPH06333846 A JP H06333846A
Authority
JP
Japan
Prior art keywords
substrate
support
base body
film forming
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12423293A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12423293A priority Critical patent/JPH06333846A/en
Publication of JPH06333846A publication Critical patent/JPH06333846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize a base body temperature and reduce the variation of film quality by controlling power supply to light and a heater so as to permit the quantity of heat which is generated by the heater and transmitted to the base body from a support to be almost equal to the quantity of heat which is generated by the conversion of the partial light in the base body and transmitted to the support from the base body. CONSTITUTION:A base body 2 is arranged on a support 3, the base body 2 is heated from both front and rear coated planes by using a heater 4 and a lighting system 12. At that time, power supply to the heater 4 and the lighting system 12 is permitted to be almost equal to the quantity of heat which is generated by the heater 4 and transmitted to the base body 2, and the quantity of heat which is generated by the conversion of partial light from the lighting system 12 in the base body 2 and transmitted to the support 3 from the base body 2. The base body 2 is also controlled to be at the desired temperature. A reaction chamber 1 is supplied with reaction gas 5 and 6. Then, a thin film is formed on the base body 2. Thus, even when the quantity of transmitting heat is varied, equal quantity of heat is transmitted in the both directions, the base body temperature is stabilized and the variation in film forming speed and film quality is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子や電子回路
等の製造に用いられる薄膜形成装置、特に、操作圧変化
に対する基体温度の変動の少ない薄膜形成装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus used for manufacturing semiconductor elements, electronic circuits and the like, and more particularly to a thin film forming apparatus in which the temperature of a substrate is less likely to change with changes in operating pressure.

【0002】[0002]

【従来の技術】半導体素子や電子回路、特に超LSIの
製造プロセスに於て、薄膜形成装置は重要な位置を占め
ている。ゲート電極用シリサイド膜等やLOCOSマス
ク用Si34 膜形成には減圧CVD装置が、BPSG
膜や層間絶縁用SiO2 膜形成には常圧CVD装置が、
配線用Al−Si膜形成にはスパッタリング装置が、層
間絶縁用SiO2 膜や保護用SiN膜形成にはプラズマ
CVD装置が用いられ、更に低温・低ダメージ化を目的
としたECR−CVD装置や光CVD装置なども実用が
期待されている。
2. Description of the Related Art A thin film forming apparatus occupies an important position in the manufacturing process of semiconductor elements and electronic circuits, especially VLSI. A low pressure CVD apparatus is used to form a silicide film for a gate electrode or a Si 3 N 4 film for a LOCOS mask.
Atmospheric pressure CVD equipment is used for the formation of films and SiO 2 films for interlayer insulation.
A sputtering apparatus is used to form an Al-Si film for wiring, and a plasma CVD apparatus is used to form an SiO 2 film for interlayer insulation and a SiN film for protection. Further, an ECR-CVD apparatus or an optical device for lowering temperature and damage is used. Practical use of a CVD apparatus and the like is also expected.

【0003】これらの薄膜形成装置の多くは、基体の被
覆面とは反対の裏面から基体支持体を通して抵抗加熱に
より基体を200−900℃に保って薄膜形成を行って
いる。基体と基体支持体とが熱的に接触している面が実
質点状で狭いため、基体支持体から基体への熱の伝達は
直接熱伝導ではなく分子流領域では主に熱輻射、粘性流
領域では基体と基体支持体間の対流気体を介した熱伝導
によっている。
Most of these thin film forming apparatuses form a thin film by keeping the substrate at 200 to 900 ° C. by resistance heating through the substrate support from the back surface opposite to the coated surface of the substrate. Since the surface where the base body and the base body support body are in thermal contact is substantially point-shaped and narrow, heat transfer from the base body support body to the base body is not direct heat conduction but mainly heat radiation and viscous flow in the molecular flow region. In the region, heat conduction is carried out through convection gas between the substrate and the substrate support.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例の薄膜形成装置では、熱の伝導方向が基体支持体か
ら基体へと一方向であるため、成膜中及びその前後に1
−100mTorr程度の中間流領域を越えて反応室圧
力が変動する場合、対流気体を介した伝導熱量が変動し
基体温度が不安定になり、成膜速度や膜質が変動する問
題がある。
However, in the thin film forming apparatus of the above-mentioned conventional example, the heat conduction direction is one direction from the substrate support to the substrate.
When the reaction chamber pressure fluctuates beyond the intermediate flow region of about -100 mTorr, there is a problem that the amount of heat transferred through the convection gas fluctuates, the substrate temperature becomes unstable, and the film formation rate and film quality fluctuate.

【0005】本発明の目的は、従来例の問題点を解決
し、成膜中及びその前後に反応室圧力が中間流領域を越
えて変動しても基体温度が安定であり成膜速度や膜質の
変動が小さい薄膜形成装置を提供することにある。
The object of the present invention is to solve the problems of the conventional example, and the substrate temperature is stable even when the reaction chamber pressure fluctuates beyond the intermediate flow region during and before film formation, and the film formation rate and film quality are improved. It is to provide a thin film forming apparatus in which the fluctuation of

【0006】[0006]

【課題を解決するための手段】本発明の薄膜形成装置
は、被覆基体を保持するための支持体を内部に含む反応
室と、該支持体に接触して設置され該支持体を通して前
記基体を加熱するヒータと、前記反応室にガスを供給す
る手段と、該反応室からガスを排気する手段と、前記基
体に吸収される可視赤外光を含む光を照射する手段とで
構成される装置であって、前記ヒータで発生し前記支持
体から前記基体へ伝導する熱量と前記光の一部が前記基
体中で変換することにより発生し該基体から前記支持体
へ伝導する熱量とがほぼ等しくなるように前記光とヒー
タに供給する電力を制御することを特徴としている。
The thin film forming apparatus of the present invention comprises a reaction chamber containing a support for holding a coated substrate, a reaction chamber installed in contact with the support, and the substrate being passed through the support. Apparatus comprising heater for heating, means for supplying gas to the reaction chamber, means for exhausting gas from the reaction chamber, and means for irradiating light including visible infrared light absorbed by the substrate The amount of heat generated by the heater and transmitted from the support to the base is approximately equal to the amount of heat generated by conversion of part of the light in the base and conducted from the base to the support. The electric power supplied to the light and the heater is controlled so that

【0007】上記手段により、成膜中及びその前後に反
応室圧力が中間流領域を越え対流気体を介した伝導熱量
が変動しても双方向に等量伝導するので、基体温度が安
定になり成膜速度や膜質の変動の少ない薄膜形成装置が
可能になる。
By the above means, even if the pressure in the reaction chamber exceeds the intermediate flow region and the amount of heat transferred through the convection gas fluctuates during and before film formation, the same amount of heat is bidirectionally transferred, so that the substrate temperature becomes stable. A thin film forming apparatus with less variation in film forming speed and film quality becomes possible.

【0008】薄膜形成の高速化や低温化のため、反応ガ
ス若しくは基体に付着した反応中間体を励起するプラズ
マや可視紫外光などの励起手段を用いても良い。
In order to speed up the formation of a thin film and lower the temperature, an exciting means such as plasma or visible ultraviolet light for exciting a reaction gas or a reaction intermediate attached to a substrate may be used.

【0009】[0009]

【実施例】実施例1 本発明の薄膜形成装置を減圧CVD装置に応用した実施
例を図1により説明する。1は成膜室、2は被覆基体、
3は基体2の支持体、4は支持体3を介して基体2を加
熱するヒータ、5、6は反応ガス、7は排気、12は可
視赤外光照明系、13は光導入窓である。
EXAMPLE 1 An example in which the thin film forming apparatus of the present invention is applied to a low pressure CVD apparatus will be described with reference to FIG. 1 is a film forming chamber, 2 is a coated substrate,
Reference numeral 3 is a support for the base 2, 4 is a heater for heating the base 2 via the support 3, 5 and 6 are reaction gases, 7 is exhaust, 12 is a visible infrared light illumination system, and 13 is a light introduction window. .

【0010】まず基体2を支持体3上に設置し、ヒータ
4と照明系12を用いて基体2を被覆表面と裏面の両側
から加熱する。この時ヒータ4と照明系12に供給する
電力は、ヒータ4で発生し支持体3から基体2へ伝導す
る熱量と照明系12からの光の一部が基体2中で変換す
ることにより発生し基体2から支持体3へ伝導する熱量
とがほぼ等しくなり、かつ基体2が所望の温度になるよ
うに制御する。さらに反応ガス5、6を反応室1に供給
することにより、基体2上に薄膜が形成される。
First, the substrate 2 is placed on the support 3 and the heater 4 and the illumination system 12 are used to heat the substrate 2 from both the front and back sides of the coating. At this time, the electric power supplied to the heater 4 and the illumination system 12 is generated by converting the amount of heat generated in the heater 4 and conducted from the support 3 to the substrate 2 and a part of the light from the illumination system 12 in the substrate 2. The amount of heat conducted from the base 2 to the support 3 becomes substantially equal, and the base 2 is controlled to a desired temperature. Further, by supplying the reaction gases 5 and 6 to the reaction chamber 1, a thin film is formed on the substrate 2.

【0011】基体2としてSi基板、照明系12として
アレイ状に並べられた多数のハロゲンランプを用い、反
応ガス5、6流量SiH4 120sccm/NH3 60
0sccm、操作圧10Torr、基板温度800℃の
条件で成膜したところ、ガス導入前後で基板温度はほと
んど変化せず、ウェハ間の膜厚のむらは約±2%と良好
だった。
A Si substrate is used as the substrate 2, a large number of halogen lamps arranged in an array are used as the illumination system 12, and the reaction gas flow rate is 5 and 6 SiH 4 120 sccm / NH 3 60
When a film was formed under the conditions of 0 sccm, an operating pressure of 10 Torr, and a substrate temperature of 800 ° C., the substrate temperature hardly changed before and after the introduction of the gas, and the unevenness of the film thickness between the wafers was about ± 2%.

【0012】実施例2 本発明の薄膜形成装置をプラズマCVD装置に応用した
実施例を図2により説明する。1は成膜室、2は被覆基
体、3は基体2の支持体、4は支持体3を介して基体2
を加熱するヒータ、5は第一の反応ガス、6は第二の反
応ガス、7は排気、8はプラズマ発生室、9は石英管、
10は13.56MHzの高周波電極、11は石英管9
の管壁に平行な磁界を発生する磁石、12は可視赤外光
照明系、13は光導入窓である。
Embodiment 2 An embodiment in which the thin film forming apparatus of the present invention is applied to a plasma CVD apparatus will be described with reference to FIG. 1 is a film forming chamber, 2 is a coated substrate, 3 is a support for the substrate 2, and 4 is a substrate 2 via the support 3.
, 5 is a first reaction gas, 6 is a second reaction gas, 7 is an exhaust gas, 8 is a plasma generation chamber, 9 is a quartz tube,
10 is a 13.56 MHz high frequency electrode, 11 is a quartz tube 9
Is a magnet for generating a magnetic field parallel to the tube wall, 12 is a visible infrared light illumination system, and 13 is a light introduction window.

【0013】まず基体2を支持体3上に設置し、ヒータ
4と照明系12を用いて基体2を被覆表面と裏面の両側
から加熱する。この時ヒータ4と照明系12に供給する
電力は、ヒータ4で発生し支持体3から基体2へ伝導す
る熱量と照明系12からの光の一部が基体2中で変換す
ることにより発生し基体2から支持体3へ伝導する熱量
とがほぼ等しくなり、かつ基体2が所望の温度になるよ
うに制御する。さらに反応ガス5、6を反応室1に供給
し、高周波電極10に高周波を供給する事により、基体
2上に薄膜が形成される。基体2としてSi基板、照明
系12としてアレイ状に並べられた多数のハロゲンラン
プを用い、反応ガス5流量N2 800sccm、反応ガ
ス6流量SiH4 80sccm、操作圧10mTor
r、基板温度300℃、rfパワー500Wの条件で成
膜したところ、ガス導入前後で基板温度はほとんど変化
せず、ガスの導入直後に成膜を開始でき、かつウェハ間
の膜厚と水素含有率のむらはそれぞれ約±3%、約±2
%で良好だった。
First, the base 2 is placed on the support 3, and the heater 2 and the illumination system 12 are used to heat the base 2 from both the front and back sides of the coating. At this time, the electric power supplied to the heater 4 and the illumination system 12 is generated by converting the amount of heat generated in the heater 4 and conducted from the support 3 to the substrate 2 and a part of the light from the illumination system 12 in the substrate 2. The amount of heat conducted from the base 2 to the support 3 becomes substantially equal, and the base 2 is controlled to a desired temperature. Further, by supplying the reaction gases 5 and 6 to the reaction chamber 1 and supplying a high frequency to the high frequency electrode 10, a thin film is formed on the substrate 2. A Si substrate is used as the substrate 2, a large number of halogen lamps arranged in an array are used as the illumination system 12, the reaction gas flow rate is N 2 800 sccm, the reaction gas flow rate is 6 SiH 4 80 sccm, and the operating pressure is 10 mTorr.
When a film was formed under conditions of r, substrate temperature of 300 ° C., and rf power of 500 W, the substrate temperature hardly changed before and after gas introduction, film formation can be started immediately after gas introduction, and the film thickness between wafers and hydrogen content can be increased. Rate unevenness is about ± 3% and about ± 2, respectively
% Was good.

【0014】本実施例ではプラズマ発生手段として1
3.56MHzの高周波を用いたが、1−300MHz
の高周波でも、0.8−5.0GHzのマイクロ波でも
よい。またプラズマ発生部の構造として有磁場バレル型
容量結合を用いたが、誘導結合でも、平行平板でもよ
い。
In this embodiment, the plasma generating means 1
High frequency of 3.56MHz was used, but 1-300MHz
Or a microwave of 0.8-5.0 GHz may be used. Although the magnetic field barrel type capacitive coupling is used as the structure of the plasma generating portion, it may be inductive coupling or parallel plate.

【0015】実施例3 本発明の薄膜形成装置を光CVD装置に応用した実施例
を図3により説明する。1は成膜室、2は被覆基体、3
は基体2の支持体、4は支持体3を介して基体2を加熱
するヒータ、5、6は反応ガス、7は排気、12は可視
赤外光及び紫外光照明系、13は光導入窓である。
Embodiment 3 An embodiment in which the thin film forming apparatus of the present invention is applied to an optical CVD apparatus will be described with reference to FIG. 1 is a film forming chamber, 2 is a coated substrate, 3
Is a support for the substrate 2, 4 is a heater for heating the substrate 2 through the support 3, 5 and 6 are reaction gases, 7 is exhaust gas, 12 is a visible infrared light and ultraviolet light illumination system, and 13 is a light introduction window. Is.

【0016】まず基体2を支持体3上に設置し、ヒータ
4と照明系12を用いて基体2を被覆表面と裏面の両側
から加熱する。この時ヒータ4と照明系12に供給する
電力は、ヒータ4で発生し支持体3から基体2へ伝導す
る熱量と照明系12からの光の一部が基体2中で変換す
ることにより発生し基体2から支持体3へ伝導する熱量
とがほぼ等しくなり、かつ基体2が所望の温度になるよ
うに制御する。さらに反応ガス5、6を反応室1に供給
することにより、基体2上に薄膜が形成される。
First, the substrate 2 is placed on the support 3 and the heater 4 and the illumination system 12 are used to heat the substrate 2 from both the front and back surfaces of the coating. At this time, the electric power supplied to the heater 4 and the illumination system 12 is generated by converting the amount of heat generated in the heater 4 and conducted from the support 3 to the substrate 2 and a part of the light from the illumination system 12 in the substrate 2. The amount of heat conducted from the base 2 to the support 3 becomes substantially equal, and the base 2 is controlled to a desired temperature. Further, by supplying the reaction gases 5 and 6 to the reaction chamber 1, a thin film is formed on the substrate 2.

【0017】基体2としてSi基板、照明系12として
交互にアレイ状に並べられた多数の低圧水銀ランプとハ
ロゲンランプを用い、反応ガス5、6流量Si26
0sccm/N2 O 1slm、操作圧5Torr、基
板温度250℃の条件で成膜したところ、ガス導入前後
で基板温度はほとんど変化せず、ウェハ間の膜厚のむら
は約±2%と良好だった。
A Si substrate is used as the substrate 2, and a large number of low-pressure mercury lamps and halogen lamps alternately arranged in an array are used as the illumination system 12, and a reaction gas flow rate of 5 and 6 is set to Si 2 H 6 9
When a film was formed under the conditions of 0 sccm / N 2 O 1 slm, operating pressure of 5 Torr, and substrate temperature of 250 ° C., the substrate temperature hardly changed before and after introducing gas, and the unevenness of the film thickness between wafers was about ± 2%. .

【0018】本実施例では、照明系12として交互にア
レイ状に並べられた多数の低圧水銀ランプとハロゲンラ
ンプを用いたが、ガスに吸収される光と基体に吸収され
熱に変換する光を照射できるものなら何でも良い。
In this embodiment, a large number of low-pressure mercury lamps and halogen lamps, which are alternately arranged in an array, are used as the illumination system 12, but the light absorbed by the gas and the light absorbed by the substrate and converted into heat are used. Anything that can be irradiated can be used.

【0019】実施例4 本発明の薄膜形成装置を光アシストプラズマCVD装置
に応用した実施例を図4により説明する。1は成膜室、
2は被覆基体、3は基体2の支持体、4は支持体3を介
して基体2を加熱するヒータ、5は第一の反応ガス、6
は第二の反応ガス、7は排気、8はプラズマ発生室、9
は石英管、10は高周波電極、11は石英管の管壁に平
行な磁界を発生する磁石、12は可視赤外光及び近紫外
光照明系、13は光導入窓、14は成膜室1とプラズマ
発生室8を分離する多孔透明分離板である。
Embodiment 4 An embodiment in which the thin film forming apparatus of the present invention is applied to a photo-assisted plasma CVD apparatus will be described with reference to FIG. 1 is a film forming chamber,
2 is a coated substrate, 3 is a support for the substrate 2, 4 is a heater for heating the substrate 2 via the support 3, 5 is a first reaction gas, 6
Is the second reaction gas, 7 is the exhaust gas, 8 is the plasma generation chamber, and 9 is
Is a quartz tube, 10 is a high frequency electrode, 11 is a magnet that generates a magnetic field parallel to the tube wall of the quartz tube, 12 is a visible infrared light and near-ultraviolet light illumination system, 13 is a light introduction window, and 14 is a film forming chamber 1. And a plasma transparent separation plate for separating the plasma generation chamber 8 from each other.

【0020】まず基体2を支持体3上に設置し、ヒータ
4と照明系12を用いて基体2を被覆表面と裏面の両側
から加熱する。この時ヒータ4と照明系12に供給する
電力は、ヒータ4で発生し支持体3から基体2へ伝導す
る熱量と照明系12からの光の一部が基体2中で変換す
ることにより発生し基体2から支持体3へ伝導する熱量
とが等しくなり、かつ基体2が所望の温度になるように
制御する。さらに反応ガス5、6を反応室1に供給し、
高周波電極10に高周波を供給する事により基体2上に
薄膜が形成される。
First, the base 2 is placed on the support 3, and the heater 2 and the illumination system 12 are used to heat the base 2 from both the front and back sides of the coating. At this time, the electric power supplied to the heater 4 and the illumination system 12 is generated by converting the amount of heat generated in the heater 4 and conducted from the support 3 to the substrate 2 and a part of the light from the illumination system 12 in the substrate 2. The amount of heat conducted from the base 2 to the support 3 is equalized, and the base 2 is controlled to a desired temperature. Furthermore, the reaction gases 5 and 6 are supplied to the reaction chamber 1,
By supplying a high frequency to the high frequency electrode 10, a thin film is formed on the substrate 2.

【0021】基体2としてSi基板、照明系12として
Xeランプを用い、第一の反応ガス5流量O2 2sl
m、第二のガス6流量TEOS500sccm、操作圧
0.1Torr、基板温度250℃の条件で成膜したと
ころ、ガス導入前後で基板温度はほとんど変化せず、ウ
ェハ間の膜厚と水素含有量のむらはそれぞれ約±3%、
約±2.5%で良好だった。
A Si substrate is used as the substrate 2, an Xe lamp is used as the illumination system 12, and the flow rate of the first reaction gas is O 2 2 sl.
m, the second gas 6 flow rate TEOS 500 sccm, the operating pressure 0.1 Torr, and the substrate temperature 250 ° C. When the film was formed, the substrate temperature hardly changed before and after the introduction of the gas, and the unevenness of the film thickness and hydrogen content between the wafers was observed. Is about ± 3%,
It was good at about ± 2.5%.

【0022】[0022]

【発明の効果】以上説明したように、ヒータで発生し基
体支持体から基体へ伝導する熱量と光の一部が基体中で
変換することにより発生し基体から基体支持体へ伝導す
る熱量とがほぼ等しくなるように光とヒータに供給する
電力を制御することによって、成膜中及びその前後に反
応室圧力が中間流領域を越え対流気体を介した伝導熱量
が変動しても双方向に等量伝導するので基体温度が安定
になり成膜速度や膜質の変動の少ない薄膜形成装置が可
能になる効果がある。
As described above, the amount of heat generated by the heater and transmitted from the substrate support to the substrate and the amount of heat generated by conversion of a part of light in the substrate and transmitted from the substrate to the substrate support are as follows. By controlling the light and the electric power supplied to the heater so as to be almost equal, bidirectional etc. even if the reaction chamber pressure exceeds the intermediate flow region and the amount of heat transferred through the convection gas fluctuates during and before film formation. Since the amount of conduction is constant, the temperature of the substrate becomes stable, and there is an effect that a thin film forming apparatus in which the film forming speed and the film quality are little changed can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した減圧CVD装置の断面図であ
る。
FIG. 1 is a sectional view of a low pressure CVD apparatus embodying the present invention.

【図2】本発明を実施したプラズマCVD装置の断面図
である。
FIG. 2 is a sectional view of a plasma CVD apparatus embodying the present invention.

【図3】本発明を実施した光CVD装置の断面図であ
る。
FIG. 3 is a cross-sectional view of a photo-CVD apparatus embodying the present invention.

【図4】本発明を実施した光アシストプラズマCVD装
置の断面図である。
FIG. 4 is a sectional view of a photo-assisted plasma CVD apparatus embodying the present invention.

【符号の説明】[Explanation of symbols]

1 成膜室 2 被覆基体 3 基体2の支持体 4 支持体3を介して基体2を加熱するヒータ 5 第一の反応ガス(又は反応ガス) 6 第二の反応ガス(又は反応ガス) 7 排気 8 プラズマ発生室 9 石英管 10 高周波電極 11 石英管9の管壁に平行な磁界を発生する磁石 12 照明系 13 光導入窓 14 成膜室1とプラズマ発生室8を分離する多孔透
明分離板
1 Film Forming Chamber 2 Coated Substrate 3 Support for Substrate 2 4 Heater for Heating Substrate 2 via Support 3 5 First Reaction Gas (or Reaction Gas) 6 Second Reaction Gas (or Reaction Gas) 7 Exhaust 8 Plasma generation chamber 9 Quartz tube 10 High frequency electrode 11 Magnet that generates a magnetic field parallel to the tube wall of the quartz tube 9 Illumination system 13 Light introduction window 14 Porous transparent separation plate that separates the film formation chamber 1 and the plasma generation chamber 8

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被覆基体を保持する為の支持体を内部に
含む反応室と、該支持体に接触して設置され該支持体を
通して前記基体を加熱するヒータと、前記反応室にガス
を供給する手段と、該反応室からガスを排気する手段
と、前記基体に吸収される可視赤外光を含む光を照射す
る手段とで構成される薄膜形成装置であって、前記ヒー
タで発生し前記支持体から前記基体へ伝導する熱量と前
記光の一部が前記基体中で変換することにより発生し該
基体から前記支持体へ伝導する熱量とが略略等しくなる
ように前記光と前記ヒータに供給する電力を制御するこ
とを特徴とする薄膜形成装置。
1. A reaction chamber containing a support for holding a coated substrate therein, a heater installed in contact with the support to heat the substrate through the support, and a gas is supplied to the reaction chamber. And a means for evacuating gas from the reaction chamber, and a means for irradiating light including visible infrared light absorbed by the substrate, the thin film forming apparatus comprising: The light and the heater are supplied so that the amount of heat transferred from the support to the base and the amount of heat generated by conversion of part of the light in the base and transferred from the base to the support are approximately equal. A thin film forming apparatus characterized by controlling electric power to be applied.
【請求項2】 前記光は、前記ガスに吸収される紫外光
を含む請求項1記載の薄膜形成装置。
2. The thin film forming apparatus according to claim 1, wherein the light includes ultraviolet light absorbed by the gas.
【請求項3】 前記反応室に高周波またはマイクロ波電
力を供給するプラズマ発生手段を含む請求項1記載の薄
膜形成装置。
3. The thin film forming apparatus according to claim 1, further comprising plasma generating means for supplying high-frequency or microwave power to the reaction chamber.
【請求項4】 前記反応室に隣接したプラズマ発生室
と、該反応室及び該プラズマ発生室に独立にガスを供給
する手段と、該プラズマ発生室に高周波またはマイクロ
波電力を供給する手段とを含む請求項1記載の薄膜形成
装置。
4. A plasma generating chamber adjacent to the reaction chamber, means for independently supplying gas to the reaction chamber and the plasma generating chamber, and means for supplying high frequency or microwave power to the plasma generating chamber. The thin film forming apparatus according to claim 1, which comprises.
【請求項5】 前記光は、前記基体上に付着した反応中
間体に吸収される可視紫外光を含む請求項4記載の薄膜
形成装置。
5. The thin film forming apparatus according to claim 4, wherein the light includes visible ultraviolet light that is absorbed by a reaction intermediate attached on the substrate.
JP12423293A 1993-05-26 1993-05-26 Thin film forming device Pending JPH06333846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12423293A JPH06333846A (en) 1993-05-26 1993-05-26 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12423293A JPH06333846A (en) 1993-05-26 1993-05-26 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH06333846A true JPH06333846A (en) 1994-12-02

Family

ID=14880251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12423293A Pending JPH06333846A (en) 1993-05-26 1993-05-26 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH06333846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065521A1 (en) * 2001-02-16 2002-08-22 Tokyo Electron Limited Sheet-type treating device
JP2002246318A (en) * 2001-02-16 2002-08-30 Tokyo Electron Ltd Heat treating method and heat treating device
JP2003500865A (en) * 1999-05-27 2003-01-07 ステアーグ シーヴイディー システムズ リミテッド Window cooled
JP2006093427A (en) * 2004-09-24 2006-04-06 Hitachi Kokusai Electric Inc Semiconductor manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500865A (en) * 1999-05-27 2003-01-07 ステアーグ シーヴイディー システムズ リミテッド Window cooled
WO2002065521A1 (en) * 2001-02-16 2002-08-22 Tokyo Electron Limited Sheet-type treating device
JP2002246318A (en) * 2001-02-16 2002-08-30 Tokyo Electron Ltd Heat treating method and heat treating device
JP2006093427A (en) * 2004-09-24 2006-04-06 Hitachi Kokusai Electric Inc Semiconductor manufacturing device
JP4563760B2 (en) * 2004-09-24 2010-10-13 株式会社日立国際電気 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US5863338A (en) Apparatus and method for forming thin film
US7915139B1 (en) CVD flowable gap fill
TW584902B (en) Method of plasma processing silicon nitride using argon, nitrogen and silane gases
JPS61127121A (en) Formation of thin film
KR101046506B1 (en) Plasma Surface Treatment to Prevent Pattern Collapse in Immersion Lithography
JPH10199874A (en) Device and method for white powder reduction in silicon nitride deposition using remote plasma source cleaning technology
JPH0831454B2 (en) Method for manufacturing semiconductor device
JPH11251308A (en) Low dielectric constant fluorinated amorphous carbon dielectric and formation method therefor
JPH09270421A (en) Surface treatment apparatus and method
US5626924A (en) Method of forming oxide film
US6172322B1 (en) Annealing an amorphous film using microwave energy
KR20040108697A (en) Method for producing material of electronic device
JPH0766186A (en) Anisotropic depositing method of dielectric
JPH06333857A (en) Device and method for forming film
JPH06333846A (en) Thin film forming device
JP4314650B2 (en) Method for forming interlayer insulating film of semiconductor device
JP5074946B2 (en) Low dielectric constant film, film forming method thereof, and electronic device using the film
JP3530788B2 (en) Microwave supplier, plasma processing apparatus and processing method
KR20210097044A (en) Etching method, substrate processing apparatus, and substrate processing system
US20230377892A1 (en) Methods and apparatus for processing a substrate
JP2002075980A (en) Method for depositing low dielectric film by vacuum ultraviolet cvd
JPH06333842A (en) Device and method for microwave plasma treatment
JP3086424B2 (en) Fabrication method of interlayer insulating film
JP3167995B2 (en) Fabrication method of interlayer insulating film
JP2682734B2 (en) Dielectric film deposition method and apparatus