JPH10321908A - Nitride group compound semiconductor element and light-emitting semiconductor element and manufacture thereof - Google Patents

Nitride group compound semiconductor element and light-emitting semiconductor element and manufacture thereof

Info

Publication number
JPH10321908A
JPH10321908A JP12815597A JP12815597A JPH10321908A JP H10321908 A JPH10321908 A JP H10321908A JP 12815597 A JP12815597 A JP 12815597A JP 12815597 A JP12815597 A JP 12815597A JP H10321908 A JPH10321908 A JP H10321908A
Authority
JP
Japan
Prior art keywords
semiconductor
groove
nitride
based compound
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12815597A
Other languages
Japanese (ja)
Other versions
JP3230572B2 (en
Inventor
Tatsunori Toyoda
達憲 豊田
Hirobumi Shono
博文 庄野
Hironori Takagi
宏典 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP12815597A priority Critical patent/JP3230572B2/en
Publication of JPH10321908A publication Critical patent/JPH10321908A/en
Application granted granted Critical
Publication of JP3230572B2 publication Critical patent/JP3230572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Led Devices (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To utilize a groove formed accurately in a small chip and form chips for a short time and precisely, by a method wherein a first groove is formed by laser irradiation and a scriber or a dicer aligned to an edge along the groove is driven. SOLUTION: A semiconductor wafer 1 is fixed on an XY stage and moved while excimer lasers are radiated, whereby first grooves 103 are formed vertically and laterally. Next, an edge of dicing is abutted on the first groove 103 and an edge of dicing is run along the first groove 103, whereby a second groove 104 is formed. Thereafter, pressure is applied by a roller from a sapphire substrate side to split it and separate it into each semiconductor chip 105. As a result, a contour of each semiconductor chip 105 can be formed equally.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外光から赤色系まで
発光可能な発光素子や起電力の高い受光素子などに利用
可能な半導体素子及びその製造方法に係わり、特に窒化
物系化合物半導体ウエハーをチップ状に分離した半導体
素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device which can be used as a light emitting device capable of emitting light from ultraviolet light to red light, a light receiving device having a high electromotive force, and a method of manufacturing the same. And a method of manufacturing the same.

【0002】[0002]

【従来の技術】今日、高エネルギーバンドギャップを有
する窒化物系化合物半導体を利用した半導体素子が開発
されつつある。高エネルギーバンドギャップを有する半
導体素子を利用したデバイス例として、青色系が発光可
能な発光ダイオードや青紫光が発光可能な半導体レーザ
などが挙げられる。デバイスは、半導体チップをステム
上などに配置し通電可能な構成とされている。
2. Description of the Related Art At present, a semiconductor device using a nitride compound semiconductor having a high energy band gap is being developed. Examples of a device using a semiconductor element having a high energy band gap include a light emitting diode capable of emitting blue light and a semiconductor laser capable of emitting blue violet light. The device has a configuration in which a semiconductor chip is arranged on a stem or the like and can be energized.

【0003】窒化物系化合物半導体を利用した半導体素
子は、GaAs、GaPやInGaAlAsなどの半導
体素子とは異なり単結晶を形成させることが難しい。結
晶性の良い窒化物系化合物半導体の単結晶膜を得るため
に、MOCVD法やHDVPE法を用いサファイア基板
上にバッファ層を介して形成させることが行われてい
る。
A semiconductor device using a nitride-based compound semiconductor is difficult to form a single crystal unlike semiconductor devices such as GaAs, GaP, and InGaAlAs. In order to obtain a single crystal film of a nitride-based compound semiconductor having good crystallinity, a single crystal film is formed on a sapphire substrate via a buffer layer by using the MOCVD method or the HDVPE method.

【0004】通常、GaAs、GaPやInGaAlA
sなどの半導体材料が積層された半導体ウエハは、チッ
プ状に切り出され半導体発光素子などとして利用され
る。半導体ウエハからチップ状に切り出す方法として
は、ダイサー、やスクライバーが用いられる。ダイサー
とは刃先をダイヤモンドとする円盤の回転運動によりウ
エハーをフルカットするか、又は刃先巾よりも広い巾の
溝を切り込んだ後(ハーフカット)、外力によりカット
する装置である。一方、スクライバーとは同じく先端を
ダイヤモンドとする針によりウエハーに極めて細い線
(スクライブライン)を例えば碁盤目状に引いた後、外
力によってカットする装置である。GaPやGaAs等
のせん亜鉛構造の結晶は、へき開性が「110」方向に
ある。そのため、この性質を利用してGaAs、GaA
lAs、GaPなどの半導体ウエハーを比較的簡単に所
望形状に分離することができる。
Usually, GaAs, GaP or InGaAlA
A semiconductor wafer on which a semiconductor material such as s is stacked is cut into chips and used as a semiconductor light emitting device or the like. As a method of cutting out a semiconductor wafer into chips, a dicer or a scriber is used. The dicer is a device that cuts a wafer by an external force after a wafer is fully cut by a rotating motion of a disk having a blade as a diamond, or after a groove having a width wider than the blade is cut (half cut). On the other hand, a scriber is a device that similarly draws a very thin line (scribe line) on a wafer in a checkerboard shape with a needle having a diamond tip, and then cuts the wafer with an external force. Crystals having a zinc zinc structure, such as GaP and GaAs, have cleavage in the "110" direction. Therefore, GaAs, GaAs
Semiconductor wafers such as GaAs and GaP can be relatively easily separated into desired shapes.

【0005】しかしながら、窒化物系化合物半導体はサ
ファイア基板上などに積層されるヘテロエピ構造であ
り、窒化物系化合物半導体とサファイア基板とは格子定
数不整が大きい。サファイア基板は六方晶系という性質
上、へき開性を有していない。さらに、サファイア、窒
化物系化合物半導体ともモース硬度がほぼ9と非常に硬
い物質である。したがって、スクライバーで切断するこ
とは困難であった。また、ダイサーでフルカットする
と、その切断面にクラック、チッピングが発生しやすく
綺麗に切断できなかった。場合によっては、形成された
半導体層がサファイアから剥がれる場合もあった。
[0005] However, the nitride-based compound semiconductor has a heteroepitaxial structure laminated on a sapphire substrate or the like, and the nitride-based compound semiconductor and the sapphire substrate have large lattice constant irregularities. The sapphire substrate has no cleavage property due to its hexagonal nature. Further, both sapphire and nitride-based compound semiconductors are very hard substances having Mohs hardness of about 9. Therefore, it was difficult to cut with a scriber. In addition, when a full cut was made with a dicer, cracks and chipping were likely to occur on the cut surface, and cutting could not be performed neatly. In some cases, the formed semiconductor layer was separated from sapphire.

【0006】窒化物系化合物半導体の結晶性を損傷する
ことなく半導体ウエハを正確にチップ状に分離すること
ができれば、半導体素子の電気特性や効率を向上させる
ことができる。しかも、1枚のウエハーから多くの半導
体チップを得ることができるため生産性をも向上させら
れる。
If the semiconductor wafer can be accurately separated into chips without damaging the crystallinity of the nitride-based compound semiconductor, the electrical characteristics and efficiency of the semiconductor device can be improved. In addition, since many semiconductor chips can be obtained from one wafer, productivity can be improved.

【0007】そのため窒化物系化合物半導体ウエハはス
クライバーやダイサーを組み合わせて所望のチップごと
に分離することが行われている。チップごとの分離方法
として特開平8−274371号などに記載されてい
る。具体的には、窒化ガリウム系化合物半導体からなる
半導体ウエハに対し、ダイサーによりサファイア基板の
下面に溝部を、その底面とサファイア基板の上面との間
隔がほぼ100μmとなるように形成する。次に、スク
ライバーにより、溝部の底面にスクライブラインを形成
する。続いて、スクライブラインに沿ってローラにより
加重を加え半導体ウエハを切断することにより所望の半
導体発光素子を形成することが開示されている。このよ
うな、半導体素子の製造方法により半導体ウエハから所
望の大きさに半導体チップを切断することができる。
For this reason, a nitride compound semiconductor wafer is separated into desired chips by combining a scriber and a dicer. A method for separating each chip is described in JP-A-8-274371. Specifically, a groove is formed on the lower surface of the sapphire substrate by a dicer on a semiconductor wafer made of a gallium nitride-based compound semiconductor such that the distance between the bottom surface and the upper surface of the sapphire substrate is approximately 100 μm. Next, a scribe line is formed on the bottom surface of the groove by a scriber. Subsequently, it is disclosed that a desired semiconductor light emitting element is formed by applying a weight by a roller along a scribe line and cutting the semiconductor wafer. By such a method of manufacturing a semiconductor element, a semiconductor chip can be cut into a desired size from a semiconductor wafer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、より小
さいチップを正確に量産性よく形成させることが望まれ
る今日においては上記切断方法においては十分ではな
く、より優れたチップの分離方法が求められている。ま
た、半導体発光素子として利用した場合においては、よ
り高コントラスト化が求められている。したがって、本
発明は窒化物系化合物半導体ウエハをチップ状に分離す
るに際し、切断面のクラック、チッピングの発生を防止
する。また、窒化物系化合物半導体の結晶性を損なうこ
となく、かつ歩留まりよく所望の形、サイズに分離され
た半導体素子及びその製造方法を提供することを目的と
するものである。
However, today, when it is desired to form smaller chips accurately and with good mass productivity, the above cutting method is not sufficient, and a more excellent chip separation method is required. . Further, when used as a semiconductor light emitting element, higher contrast is required. Therefore, the present invention prevents the occurrence of cracks and chipping on the cut surface when separating the nitride-based compound semiconductor wafer into chips. Another object of the present invention is to provide a semiconductor device separated into a desired shape and size at a high yield without impairing the crystallinity of the nitride-based compound semiconductor, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明の製造方法は、窒
化物系化合物半導体ウエハから半導体素子ごとに分離さ
せ方法に関するものである。特に、半導体素子の分離に
先立って、半導体ウエハをレーザ照射により第1の溝を
形成する工程、第1の溝に沿って刃先を合わせたスクラ
イバー及び/又はダイサーを駆動させることにより窒化
物系化合物半導体素子を製造する。
The manufacturing method of the present invention relates to a method for separating a semiconductor device from a nitride-based compound semiconductor wafer for each semiconductor element. In particular, a step of forming a first groove by irradiating a semiconductor wafer with a laser prior to separation of a semiconductor element, and driving a scriber and / or a dicer having a cutting edge along the first groove to form a nitride-based compound. Manufacture semiconductor devices.

【0010】また、窒化物系化合物半導体がサファイア
基板上に形成されている窒化物系化合物半導体素子の製
造方法でもある。
The present invention is also a method for manufacturing a nitride-based compound semiconductor device in which a nitride-based compound semiconductor is formed on a sapphire substrate.

【0011】本発明の半導体素子は、サファイア基板上
に窒化物系化合物半導体層を有する発光素子である。こ
の半導体発光素子を構成するサファア基板の外周端又は
窒化物系化合物層外周端に白濁部を有している。
The semiconductor device of the present invention is a light emitting device having a nitride compound semiconductor layer on a sapphire substrate. The sapphire substrate constituting the semiconductor light emitting device has a cloudy portion at the outer edge or the outer edge of the nitride-based compound layer.

【0012】[0012]

【作用】本発明は、第1の溝を形成するに当たりレーザ
光を利用することで、窒化物半導体素子においてもより
小さいチップでも正確に溝を形成することができる。ま
た、第1の溝をガイドとして利用してスクライバー及び
/又はダイサーを行うことで短時間且つ精密に半導体チ
ップを形成させることができる。また、硬度が極めて高
いサファイア基板や窒化物系化合物半導体においても量
産性よく製造できる。さらに、レーザにより溝を形成さ
せた場合原因は定かでないが、外周端において白濁部が
形成される。この白濁部は、外来光を散乱させるため発
光素子を形成させた場合においてコントラスト比の向上
を図ることができると考えられる。
According to the present invention, a laser beam is used to form the first groove, so that the groove can be accurately formed even in a nitride semiconductor device or a smaller chip. In addition, by performing scriber and / or dicer using the first groove as a guide, a semiconductor chip can be formed accurately in a short time. In addition, even a sapphire substrate or a nitride-based compound semiconductor having extremely high hardness can be manufactured with high productivity. Furthermore, although the cause is not clear when the groove is formed by the laser, a cloudy portion is formed at the outer peripheral end. It is considered that the cloudy portion can improve the contrast ratio when a light emitting element is formed to scatter external light.

【0013】[0013]

【発明の実施の形態】本発明者らは種々の実験の結果、
窒化物系化合物半導体ウエハから半導体素子を分離させ
る場合において、分離工程をスクライブ及び/又はダイ
シングに先立ってスクライブ及び/又はダイサーの刃先
をガイドする溝を形成する工程と、実質的な分離溝を形
成させるスクライバー及び/又はダイサー工程に機能分
離させることにより精度、歩留まり及び量産性よくチッ
プ形状などに分離できることを見いだし本発明を成すに
至った。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of various experiments, the present inventors
In the case of separating a semiconductor element from a nitride-based compound semiconductor wafer, a step of forming a groove for guiding a scribe and / or a dicer blade prior to the scribe and / or dicing in the separation step, and forming a substantial separation groove The present inventors have found that the functions can be separated into a chip shape and the like with high accuracy, yield, and mass productivity by separating functions into a scriber and / or a dicer process to be performed.

【0014】即ち、スクライバーなどにより量産性よく
半導体チップを分離させるにはある程度の加重をかける
必要がある。スクライバーの刃先に加重をかけると窒化
物系化合物半導体素子やサファイアのモース硬度がほぼ
9と非常に硬いため図2の如く所望の溝201に対し歪
んだ溝202が形成されることがある。このような溝の
歪みは精度良くチップ状に分離させることができないば
かりでなく歩留まりを低下させる原因となる。また、ス
クライバーの刃先を傷つける原因ともなる。さらに、ウ
エハのクラックやチッピングを生ずる場合もある。他
方、加重を弱めると所望のチップ形状などに分離するの
に極めて長時間がかかり量産性が悪くなる。
That is, it is necessary to apply a certain amount of weight in order to separate the semiconductor chips with high productivity by a scriber or the like. When a load is applied to the blade edge of the scriber, the nitride-based compound semiconductor element or sapphire has a very high Mohs hardness of about 9, which is so hard that a desired groove 201 may be formed into a distorted groove 202 as shown in FIG. Such groove distortion not only cannot be separated into chips with high accuracy, but also causes a reduction in yield. In addition, it may cause damage to the blade of the scriber. Further, cracking and chipping of the wafer may occur. On the other hand, if the weight is reduced, it takes an extremely long time to separate the chip into a desired chip shape or the like, and mass productivity is deteriorated.

【0015】本発明者は、非常に硬い窒化物系化合物半
導体やサファイアにレーザを用いてスクライバー用など
の溝を予め効率よく形成させることによりスクライバー
の刃先に合わせた溝形状を容易に形成したものである。
したがって、スクライブ時の加重を増やしても所望通り
に刃を移動させることができる。結果として分離時間が
短縮できると共に所望通りのチップ形状に精度良く分離
できる。また、スクライブを行う切断深さを浅くするこ
とができる。そのため半導体ウエハにかかるストレス割
合を大幅に低減することができる。さらに、レーザ照射
された端面が白濁する。そのため発光素子を形成させた
場合においては、外来光の反射を抑制しコントラストが
向上するという利点もある。以下、本発明について詳述
する。
The inventor of the present invention has made it possible to easily form a groove for a scriber or the like by using a laser on a very hard nitride-based compound semiconductor or sapphire to efficiently form a groove for a scriber in advance. It is.
Therefore, the blade can be moved as desired even if the load during scribing is increased. As a result, the separation time can be shortened, and the chip can be accurately separated into a desired chip shape. Further, the cutting depth at which the scribe is performed can be reduced. Therefore, the stress ratio applied to the semiconductor wafer can be significantly reduced. Further, the laser-irradiated end face becomes cloudy. Therefore, when a light emitting element is formed, there is an advantage that reflection of extraneous light is suppressed and contrast is improved. Hereinafter, the present invention will be described in detail.

【0016】図1に本発明の窒化物系化合物半導体の分
離例を示す。図1には予め窒化物系化合物半導体101
が形成された半導体ウエハ1が準備されている。この半
導体ウエハは、サファイア基板102上にGaNを低温
で形成させたバッファ層が形成されている。順次、N型
コンタクト層としてGaN、活性層としてノンドープの
InGaN、P型クラッド層としてAlGaN、P型コ
ンタクト層としてGaNを形成させた2インチ径の半導
体ウエハ1である。なお、半導体には不示図の部分的な
エッチングが施されP型及びN型半導体がそれぞれ露出
されている。露出された半導体表面には電極が形成され
ており分離後は発光素子として機能するよう形成されて
いる。また、レーザ照射される溝に沿って半導体接合部
までエッチングされている(図1(a))。
FIG. 1 shows an example of separation of a nitride-based compound semiconductor of the present invention. FIG. 1 shows a nitride-based compound semiconductor 101 in advance.
Is prepared. In this semiconductor wafer, a buffer layer in which GaN is formed at a low temperature is formed on a sapphire substrate 102. The semiconductor wafer 1 has a diameter of 2 inches in which GaN is sequentially formed as an N-type contact layer, non-doped InGaN is formed as an active layer, AlGaN is formed as a P-type cladding layer, and GaN is formed as a P-type contact layer. The semiconductor is partially etched (not shown) to expose the P-type and N-type semiconductors. An electrode is formed on the exposed surface of the semiconductor, and is formed so as to function as a light emitting element after separation. Also, the semiconductor junction is etched along the groove irradiated with the laser (FIG. 1A).

【0017】このような半導体ウエハをXYステージ上
に固定配置させる。エキシマレーザを照射させながら半
導体ウエハをX軸及びY軸方向にそれぞれ移動させて縦
横に第1の溝103を形成させた。形成された第1の溝
103は、半導体表面側からサファイア基板の一部まで
形成されており開口部が巾の約40μmの逆三角形形状
であった(図1(b))。
Such a semiconductor wafer is fixedly arranged on an XY stage. The semiconductor wafer was moved in the X-axis direction and the Y-axis direction while irradiating the excimer laser to form the first grooves 103 vertically and horizontally. The formed first groove 103 was formed from the semiconductor surface side to a part of the sapphire substrate, and had an inverted triangular shape having a width of about 40 μm (FIG. 1B).

【0018】レーザ照射により形成された第1の溝にダ
イシングの刃を当て第1の溝に沿ってダイシングの刃を
走らせ第2の溝104を形成させた(図1(c))。
A dicing blade was applied to the first groove formed by laser irradiation, and the dicing blade was moved along the first groove to form a second groove 104 (FIG. 1C).

【0019】その後、第2の溝104に沿ってサファイ
ア基板側からローラーにより圧力を加えて押し割ること
により各半導体チップ105ごとに分離させた(図1
(d))。これにより各半導体チップの外形が等しい半
導体素子を形成することができる。以下、本発明の構成
について詳述する。
Thereafter, the semiconductor chips 105 are separated from each other by applying pressure from the sapphire substrate side with a roller along the second groove 104 and pressing the same (FIG. 1).
(D)). As a result, a semiconductor element having the same outer shape of each semiconductor chip can be formed. Hereinafter, the configuration of the present invention will be described in detail.

【0020】(レーザ)本発明に用いられるレーザとし
てはサファイア基板や窒化物系化合物半導体に溝や貫通
孔などが形成できる限り、種々のものを利用することが
できる。具体的にはエキシマレーザやYAGレーザなど
種々のものが好適に用いることができる。特に、エキシ
マレーザは、窒化物系化合物半導体及びサファイア基板
の何れにも細い溝を形成することができる。レーザによ
り深い溝を形成するにはスクライバーやダイサーに比べ
て時間がかかること及び長時間の加熱による部分的破壊
などの観点からレーザ加工における深さ方向の長さを大
き過ぎないことが好ましい。また、レーザにより形成さ
れた第1の溝の深さや巾は、レーザのエネルギー密度、
照射時間や焦点を他段階に変更することなどにより種々
に調整することができる。
(Laser) As the laser used in the present invention, various lasers can be used as long as grooves or through holes can be formed in a sapphire substrate or a nitride-based compound semiconductor. Specifically, various types such as an excimer laser and a YAG laser can be suitably used. In particular, an excimer laser can form a thin groove in any of a nitride-based compound semiconductor and a sapphire substrate. It is preferable that the length in the depth direction in the laser processing is not too large from the viewpoint that it takes a longer time to form a deep groove by laser as compared with a scriber or a dicer and partial destruction due to long-time heating. The depth and width of the first groove formed by the laser are determined by the energy density of the laser,
Various adjustments can be made by changing the irradiation time or the focus to another stage.

【0021】なお、窒化物系化合物半導体表面側からレ
ーザー照射する場合、レーザー照射により半導体接合端
面で短絡する可能性があるため、半導体接合端面まで予
めエッチングすることもできる。また、レーザー照射
は、半導体ウエハの一方の面のみを照射しても良いし、
両面を照射しても良い。
When laser irradiation is performed from the surface of the nitride-based compound semiconductor, short-circuiting may occur at the semiconductor junction end face due to the laser irradiation. Therefore, the semiconductor junction end face may be etched in advance. Further, the laser irradiation may irradiate only one surface of the semiconductor wafer,
Both surfaces may be irradiated.

【0022】(窒化物系化合物半導体)本発明に用いら
れる窒化物系化合物半導体としては、BN、GaN、A
lN、InN、GaAlN、InGaN、InGaAl
Nなどが挙げられる。このような窒化物系化合物半導体
は、MOCVD法などを利用することによって成膜する
ことができる。窒化物系化合物半導体は、炭化珪素、酸
化亜鉛、窒化ガリウム単結晶、スピネルやサファイア基
板上に形成することができる。結晶性の良い単結晶を形
成するためには、サファイアを基板として用いることが
好ましい。このような窒化物系化合物半導体にMIS接
合、PN接合やPIN接合を形成させることにより半導
体素子として利用することができる。半導体の構造もホ
モ接合、ヘテロ接合やダブルへテロ接合など種々選択す
ることができる。また、半導体層を量子効果が生ずる程
度の薄膜とした単一量子井戸構造や多重量子井戸構造と
することもできる。このように形成された半導体ウエハ
をそれぞれ分離することにより半導体素子を形成させる
ことができる。
(Nitride-based compound semiconductor) As the nitride-based compound semiconductor used in the present invention, BN, GaN, A
1N, InN, GaAlN, InGaN, InGaAl
N and the like. Such a nitride-based compound semiconductor can be formed by utilizing the MOCVD method or the like. The nitride-based compound semiconductor can be formed over silicon carbide, zinc oxide, gallium nitride single crystal, spinel, or a sapphire substrate. In order to form a single crystal with good crystallinity, sapphire is preferably used as a substrate. By forming an MIS junction, PN junction or PIN junction in such a nitride-based compound semiconductor, it can be used as a semiconductor element. The structure of the semiconductor can be variously selected such as a homo junction, a hetero junction, and a double hetero junction. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor layer is thin enough to produce a quantum effect can be used. A semiconductor element can be formed by separating the semiconductor wafers thus formed, respectively.

【0023】窒化物系化合物半導体素子は、バンドギャ
ップが比較的大きいことから紫外から赤色系まで発光可
能な発光ダイオード、DVDなどに利用可能な短波長レ
ーザダイオードなどの発光素子、光センサーや比較的高
起電力を有する太陽電池などの受光素子として利用する
ことができる。
Since the nitride-based compound semiconductor device has a relatively large band gap, a light-emitting diode such as a light-emitting diode capable of emitting light from ultraviolet to red, a short-wavelength laser diode usable for DVD and the like, an optical sensor, and a light-emitting device. It can be used as a light receiving element such as a solar cell having a high electromotive force.

【0024】(第1の溝103)第1の溝103は、ス
クライブ及び/又はダイシング時の刃をガイドするガイ
ド溝として利用するための深さ及び巾があることが好ま
しい。レーザにより形成される第1の溝103自体には
チッピングなどが生じない。しかし、あまり深く形成し
すぎるとその後の分離工程において所望外にウエハ1が
チップ状に切断されてしまいチッピングやクラックが生
じやすくなる傾向がある。また、レーザにより半導体素
子側を照射する場合は、半導体接合を切断しないほうが
好ましい。半導体接合面までレーザ光が到達すると短絡
する可能性があるからである。したがって、予めエッチ
ングにより半導体接合面まで除去するか半導体接合面深
さまでレーザ照射しないことが望ましい。
(First Groove 103) The first groove 103 preferably has a depth and a width to be used as a guide groove for guiding a blade during scribing and / or dicing. Chipping or the like does not occur in the first groove 103 itself formed by the laser. However, if it is formed too deep, the wafer 1 is cut into chips in an undesired manner in the subsequent separation step, and chipping and cracking tend to occur. When the semiconductor element side is irradiated with a laser, it is preferable not to cut the semiconductor junction. This is because a short circuit may occur when the laser beam reaches the semiconductor bonding surface. Therefore, it is desirable to remove the semiconductor junction surface by etching in advance or not to irradiate the laser to the depth of the semiconductor junction surface.

【0025】(第2の溝104)第1の溝103に沿っ
て形成される第2の溝104は、加重をかけることによ
りウエハ1を各半導体チップに分離するためにもちいら
れる。したがって、第2の溝104の形成は全厚の10
%以下が好ましい。これ以上の厚みにさせると溝形成中
にウエハがチップ状に切断されてしまいチッピングやク
ラックが生じやすくなる傾向がある。また、スクライバ
ーやダイサーにより第2の溝104を形成後、より正確
にチップ状に分離させる目的で再びスクライバーなどで
スクライブラインを形成させても良い。この第2の溝1
04形成後のスクライバーを再び用いてチップ状に分離
させることもできる。また、第2の溝104形成後のウ
エハ分離は、溝に沿って外力が加わるよう第2の溝10
4に沿ってローラなどに加重をかけることで分離するこ
ともできる。以下、本発明の具体例を実施例に基づいて
詳述するがこの実施例のみに限定されるものでないこと
はいうまでもない。
(Second Groove 104) The second groove 104 formed along the first groove 103 is used to separate the wafer 1 into semiconductor chips by applying a load. Therefore, the formation of the second groove 104 has a thickness of 10
% Or less is preferable. If the thickness is larger than this, the wafer is cut into chips during the formation of the groove, and chipping and cracking tend to occur. Further, after the second groove 104 is formed by a scriber or a dicer, a scribe line may be formed again by a scriber or the like for the purpose of more accurately separating into chips. This second groove 1
The scriber after the formation of 04 can be used again to separate the chips into chips. Further, the wafer separation after the formation of the second groove 104 is performed such that an external force is applied along the groove.
It can also be separated by applying a weight to a roller or the like along 4. Hereinafter, specific examples of the present invention will be described in detail based on examples, but it is needless to say that the present invention is not limited to only these examples.

【0026】[0026]

【実施例】【Example】

(実施例1)厚さ450μm、大きさ2インチΦのサフ
ァイア基板上に、n型コンタクト層としてGaN、活性
層として量子効果が生ずる厚さ約3nmでありノンドー
プのInGaN、p型クラッド層としてAlGaN、p
型コンタクト層としてGaNを順次積層した窒化物系化
合物半導体ウエハを形成した。形成された半導体層の厚
みは約5μmである。半導体層を形成後、半導体層をエ
ッチングしPN各電極が形成できるよう半導体面を露出
させ電極を形成させた。(なお、サファイア基板上に
は、バッファ層としてGaN層が形成されている。ま
た、P型層は、不純物をドープしただけではP型化しに
くいため成膜後400℃でアニールしてある。)分離さ
せやすくするために形成された半導体ウエハのサファイ
ア基板側を研磨機により80μmの厚みまで研磨した。
こうして形成された半導体ウエハーを以下の工程で順次
切断させた。
(Example 1) On a sapphire substrate having a thickness of 450 μm and a size of 2 inches φ, GaN is used as an n-type contact layer, non-doped InGaN having a thickness of about 3 nm which produces a quantum effect as an active layer, and AlGaN as a p-type cladding layer. , P
A nitride-based compound semiconductor wafer in which GaN was sequentially stacked as a mold contact layer was formed. The thickness of the formed semiconductor layer is about 5 μm. After the formation of the semiconductor layer, the semiconductor layer was etched to expose the semiconductor surface and form electrodes so that PN electrodes could be formed. (Note that a GaN layer is formed as a buffer layer on the sapphire substrate. The P-type layer is annealed at 400 ° C. after film formation because it is difficult to form a P-type layer only by doping impurities.) The sapphire substrate side of the semiconductor wafer formed to facilitate separation was polished to a thickness of 80 μm by a polishing machine.
The semiconductor wafer thus formed was sequentially cut in the following steps.

【0027】研磨されたサファイア基板に粘着テープ
を張り付け、真空チャックで固定する。テーブルはX軸
(左右)、Y軸(前後)に移動することができ、回転可
能な構造となっている。固定後、半導体ウエハーのサフ
ァイア基板側から最大エネルギー密度20J/cm2
エキシマレーザを照射した。レーザーを照射しながらX
Yステージを移動させることで1チップが300μm角
となる溝を形成させた。レーザの照射された端面は約1
0゜の角度を持った逆円錐形となり巾約10μmの溝が
形成された。
An adhesive tape is attached to the polished sapphire substrate and fixed with a vacuum chuck. The table can move in the X axis (left and right) and the Y axis (front and rear) and has a rotatable structure. After fixing, the semiconductor wafer was irradiated with an excimer laser at a maximum energy density of 20 J / cm 2 from the sapphire substrate side. X while irradiating laser
By moving the Y stage, a groove having one chip of 300 μm square was formed. Laser irradiated end face is about 1
An inverted cone having an angle of 0 ° was formed, and a groove having a width of about 10 μm was formed.

【0028】レーザー照射された半導体ウエハをスク
ライバーのテーブル上に張り付け真空チャックで固定す
る。テーブルはx軸(左右)、y軸(前後)に動き、1
80度水平に回転可能な構造となっている。固定後、ス
クライバーのダイヤモンド刃が設けられたバーはz軸
(上下)、y軸(前後)方向に移動可能な構造となって
いる。切断速度13mm/sec、ダイヤモンド刃の刃
先への加重110gの条件で、レーザ照射により形成さ
れた第1の溝に沿ってスクライバーの刃を合わせ所定の
カットライン(300μm角)上にスクライブラインを
引いた。同じ条件でスクライバーを再度移動させること
により、300μm角の窒化物系化合物半導体素子を得
た。
The laser-irradiated semiconductor wafer is stuck on a scriber table and fixed with a vacuum chuck. The table moves along the x-axis (left and right) and the y-axis (back and forth).
It has a structure that can rotate 80 degrees horizontally. After fixation, the scriber bar provided with the diamond blade has a structure capable of moving in the z-axis (vertical) and y-axis (front-back) directions. Under the conditions of a cutting speed of 13 mm / sec and a load of 110 g on the cutting edge of the diamond blade, the scriber blade is aligned along the first groove formed by laser irradiation, and a scribe line is drawn on a predetermined cut line (300 μm square). Was. By moving the scriber again under the same conditions, a 300 μm square nitride-based compound semiconductor device was obtained.

【0029】スクライバーにより所望の大きさに分離
された窒化物系化合物半導体をテーブルから剥がし取り
各半導体発光素子を得ることができた。こうして得られ
た窒化ガリウム系半導体発光チップより外形不良による
ものを取り除いたところ歩留まりは97%以上であっ
た。得られた半導体チップの端面はほぼ均一であった。
The nitride-based compound semiconductor separated into a desired size by the scriber was peeled off from the table to obtain each semiconductor light emitting device. The gallium nitride-based semiconductor light-emitting chip obtained in this manner was free from defects due to outer shape defects, and the yield was 97% or more. The end face of the obtained semiconductor chip was almost uniform.

【0030】(実施例2)第1及び第2の溝を半導体素
子側ではなくサファイア基板から行う以外は条件を同様
にして半導体発光素子を分離させた。なお、窒化物系化
合物半導体側に電極306形成用のエッチングが施され
ておりエッチング溝307と一致するようにサファイア
基板304側に本発明の溝を形成させてある。エッチン
グにより活性層305をそれぞれ分離させてある。こう
して形成された発光チップも実施例1と同様に端面30
2、303にチッピングなどがない綺麗な面を持ち歩留
まりも高かった。
Example 2 A semiconductor light emitting device was separated under the same conditions except that the first and second grooves were formed not from the semiconductor device side but from the sapphire substrate. The etching for forming the electrode 306 is performed on the nitride-based compound semiconductor side, and the groove of the present invention is formed on the sapphire substrate 304 side so as to coincide with the etching groove 307. The active layers 305 are separated from each other by etching. The light emitting chip thus formed also has an end face 30 similar to the first embodiment.
2,303 had a beautiful surface without chipping and the like, and the yield was high.

【0031】また、形成された半導体発光素子のサファ
イア端の外周は、図2の如く白濁部301を有しており
コントラスト比の高い発光素子とすることができる。
Further, the outer periphery of the sapphire end of the formed semiconductor light emitting device has a cloudy portion 301 as shown in FIG. 2 and can be a light emitting device having a high contrast ratio.

【0032】(比較例1)エキシマレーザーを用いて第
1の溝部を形成する工程を省き、スクライバーを用いて
窒化物系化合物半導体エピタキシャルウエハをカットし
た以外は実施例1と同様にして切断した。形成された半
導体チップは、スクライブ時に刃先がずれたために生ず
る部分的に大きさが異なるものがあった。また、切断線
に対しクラックが入っているものもあった。こうした半
導体チップを除いた歩留まりは、75%以下であった。
(Comparative Example 1) Cutting was performed in the same manner as in Example 1 except that the step of forming the first groove using an excimer laser was omitted, and the nitride-based compound semiconductor epitaxial wafer was cut using a scriber. Some of the formed semiconductor chips differ in size partially due to the shift of the cutting edge during scribing. In addition, there were cracks in the cutting line. The yield excluding such semiconductor chips was 75% or less.

【0033】[0033]

【発明の効果】以上述べたように本発明の製造方法によ
るとクラック、チッピング等を発生させず、窒化物系化
合物半導体ウエハを歩留まり及び量産性よく分離でき
る。
As described above, according to the manufacturing method of the present invention, a nitride-based compound semiconductor wafer can be separated with good yield and mass productivity without generating cracks and chipping.

【0034】また、本発明は、レーザ照射で予めスクラ
イバー及び/又はダイサーの走行溝を形成できるためよ
り小さい半導体チップにおいても所望通り歩留まりよく
切断することができる。また、スクライバー及び/又は
ダイサーにおける切断時間が非常に短く刃先の損傷も少
なくてすむという利点がある。さらに、形成された半導
体素子においてはレーザ照射された外周端において、白
濁部が形成されておりコントラストの高い発光素子とし
て利用することができる。
Further, according to the present invention, since the running grooves of the scriber and / or the dicer can be formed in advance by laser irradiation, even a smaller semiconductor chip can be cut with a desired yield as desired. In addition, there is an advantage that the cutting time at the scriber and / or the dicer is very short, and damage to the cutting edge is reduced. Further, in the formed semiconductor element, a cloudy portion is formed at the outer peripheral end irradiated with the laser, so that the semiconductor element can be used as a light emitting element with high contrast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の窒化物系化合物半導体の製造
方法を示した模式図である。図1(a)は、半導体ウエ
ハの模式的断面図を示し、図1(b)は、レーザにより
第1の溝を形成させた半導体ウエハの模式的断面図であ
る。また、図1(c)は、ダイサーにより第2の溝を形
成させた半導体ウエハの模式的断面図である。図1
(d)は、外力により個々の半導体素子に分離させた模
式的断面図である。
FIG. 1 is a schematic view illustrating a method for manufacturing a nitride-based compound semiconductor according to the present invention. FIG. 1A is a schematic cross-sectional view of a semiconductor wafer, and FIG. 1B is a schematic cross-sectional view of a semiconductor wafer in which a first groove is formed by a laser. FIG. 1C is a schematic cross-sectional view of a semiconductor wafer in which a second groove is formed by a dicer. FIG.
(D) is a schematic cross-sectional view in which individual semiconductor elements are separated by an external force.

【図2】図2は、本発明と比較のために示したスクライ
バーによる分離溝の部分的平面図である。
FIG. 2 is a partial plan view of a separation groove formed by a scriber shown for comparison with the present invention.

【図3】図3は、本発明の半導体発光素子の模式的断面
図である。
FIG. 3 is a schematic sectional view of a semiconductor light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

1・・・半導体ウエハ 101・・・半導体接合が形成された窒化物系化合物半
導体 102・・・サファイア基板 103・・・レーザにより形成された第1の溝 104・・・ダイサーにより形成された第2の溝 105・・・分離された半導体素子 2・・・半導体ウエハ 201・・・スクライバーにより形成された所望の溝 202・・・スクライバーにより形成された所望外の歪
んだ溝 301・・・白濁部 302・・・レーザーにより形成された端面 303・・・スクライブにより形成された端面 304・・・サファイア基板 305・・・半導体接合面となる活性層 306・・・発光素子の電極 307・・・エッチングにより形成された端面
DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer 101 ... Nitride compound semiconductor with semiconductor junction formed 102 ... Sapphire substrate 103 ... First groove formed by laser 104 ... Dicing formed by dicer 2 grooves 105: separated semiconductor element 2: semiconductor wafer 201: desired groove formed by scriber 202: undesired distorted groove formed by scriber 301: cloudy Section 302: End face formed by laser 303: End face formed by scribing 304: Sapphire substrate 305: Active layer to be a semiconductor bonding surface 306: Electrode of light emitting element 307: End face formed by etching

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒化物系化合物半導体が積層形成された半
導体ウエハから窒化物系化合物半導体素子を製造する方
法であって、 前記半導体ウエハをレーザ照射により第1の溝を形成す
る工程と、ダイサー及び/又はスクライバーの刃先を前
記第1の溝に沿って合わせ駆動させる工程と、を有する
ことを特徴とする窒化物系化合物半導体の製造方法。
1. A method for manufacturing a nitride-based compound semiconductor device from a semiconductor wafer on which a nitride-based compound semiconductor is stacked, wherein a first groove is formed on the semiconductor wafer by laser irradiation, And / or a step of aligning and driving the cutting edge of the scriber along the first groove.
【請求項2】前記窒化物系化合物半導体がサファイア基
板上に形成されている請求項1記載の窒化物系化合物半
導体素子の製造方法。
2. The method for manufacturing a nitride-based compound semiconductor device according to claim 1, wherein said nitride-based compound semiconductor is formed on a sapphire substrate.
【請求項3】サファイア基板上に窒化物系化合物半導体
層を有する半導体発光素子であって、 前記半導体発光素子を構成するサファア基板の外周端又
は窒化物系化合物層外周端に白濁部を有することを特徴
とする半導体発光素子。
3. A semiconductor light-emitting device having a nitride-based compound semiconductor layer on a sapphire substrate, wherein the semiconductor light-emitting device has a white turbid portion at an outer peripheral end of a safare substrate or at an outer peripheral end of the nitride-based compound layer. A semiconductor light emitting device characterized by the above-mentioned.
JP12815597A 1997-05-19 1997-05-19 Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device Expired - Fee Related JP3230572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12815597A JP3230572B2 (en) 1997-05-19 1997-05-19 Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12815597A JP3230572B2 (en) 1997-05-19 1997-05-19 Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10321908A true JPH10321908A (en) 1998-12-04
JP3230572B2 JP3230572B2 (en) 2001-11-19

Family

ID=14977753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12815597A Expired - Fee Related JP3230572B2 (en) 1997-05-19 1997-05-19 Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3230572B2 (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244068A (en) * 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
WO2000075983A1 (en) * 1999-06-08 2000-12-14 Kulicke & Soffa Investments, Inc. A method for dicing wafers with laser scribing
US6420245B1 (en) 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
JP2002326157A (en) * 2001-04-27 2002-11-12 Kyocera Corp Plate for polishing wafer, and method for machining the same
US6555447B2 (en) 1999-06-08 2003-04-29 Kulicke & Soffa Investments, Inc. Method for laser scribing of wafers
US6562698B2 (en) 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
JP2004009139A (en) * 2002-06-10 2004-01-15 New Wave Research Method and system which manufacture die
KR100519326B1 (en) * 1999-04-20 2005-10-07 엘지전자 주식회사 method for fabricating substate of GaN semiconductor laser diode
US7105859B2 (en) 2003-11-05 2006-09-12 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting diode chip and method of manufacturing the same
US7183136B2 (en) 2002-06-24 2007-02-27 Toyoda Gosei Co., Ltd. Semiconductor element and method for producing the same
JP2007258321A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Process for manufacturing light emitting element
US7615721B2 (en) * 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7791098B2 (en) 2004-03-31 2010-09-07 Nichia Corporation Nitride semiconductor light emitting device
US8507363B2 (en) 2011-06-15 2013-08-13 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US8557682B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-layer mask for substrate dicing by laser and plasma etch
US8557683B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
CN103358032A (en) * 2013-07-31 2013-10-23 江阴长电先进封装有限公司 Wafer level scribing method for CIS (Cmos image sensor) product
US8598016B2 (en) 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
US8642448B2 (en) 2010-06-22 2014-02-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US8652940B2 (en) 2012-04-10 2014-02-18 Applied Materials, Inc. Wafer dicing used hybrid multi-step laser scribing process with plasma etch
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8759197B2 (en) 2011-06-15 2014-06-24 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8845854B2 (en) 2012-07-13 2014-09-30 Applied Materials, Inc. Laser, plasma etch, and backside grind process for wafer dicing
US8859397B2 (en) 2012-07-13 2014-10-14 Applied Materials, Inc. Method of coating water soluble mask for laser scribing and plasma etch
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8883614B1 (en) 2013-05-22 2014-11-11 Applied Materials, Inc. Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach
US8883615B1 (en) 2014-03-07 2014-11-11 Applied Materials, Inc. Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US8912075B1 (en) 2014-04-29 2014-12-16 Applied Materials, Inc. Wafer edge warp supression for thin wafer supported by tape frame
US8912077B2 (en) 2011-06-15 2014-12-16 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier
US8912078B1 (en) 2014-04-16 2014-12-16 Applied Materials, Inc. Dicing wafers having solder bumps on wafer backside
US8927393B1 (en) 2014-01-29 2015-01-06 Applied Materials, Inc. Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing
US8932939B1 (en) 2014-04-14 2015-01-13 Applied Materials, Inc. Water soluble mask formation by dry film lamination
US8940619B2 (en) 2012-07-13 2015-01-27 Applied Materials, Inc. Method of diced wafer transportation
US8946057B2 (en) 2012-04-24 2015-02-03 Applied Materials, Inc. Laser and plasma etch wafer dicing using UV-curable adhesive film
US8951819B2 (en) 2011-07-11 2015-02-10 Applied Materials, Inc. Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US8969177B2 (en) 2012-06-29 2015-03-03 Applied Materials, Inc. Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film
US8975163B1 (en) 2014-04-10 2015-03-10 Applied Materials, Inc. Laser-dominated laser scribing and plasma etch hybrid wafer dicing
US8975162B2 (en) 2012-12-20 2015-03-10 Applied Materials, Inc. Wafer dicing from wafer backside
US8980727B1 (en) 2014-05-07 2015-03-17 Applied Materials, Inc. Substrate patterning using hybrid laser scribing and plasma etching processing schemes
US8980726B2 (en) 2013-01-25 2015-03-17 Applied Materials, Inc. Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers
US8991329B1 (en) 2014-01-31 2015-03-31 Applied Materials, Inc. Wafer coating
US8993414B2 (en) 2012-07-13 2015-03-31 Applied Materials, Inc. Laser scribing and plasma etch for high die break strength and clean sidewall
US8999816B1 (en) 2014-04-18 2015-04-07 Applied Materials, Inc. Pre-patterned dry laminate mask for wafer dicing processes
US9012305B1 (en) 2014-01-29 2015-04-21 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean
US9018079B1 (en) 2014-01-29 2015-04-28 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US9034771B1 (en) 2014-05-23 2015-05-19 Applied Materials, Inc. Cooling pedestal for dicing tape thermal management during plasma dicing
US9041198B2 (en) 2013-10-22 2015-05-26 Applied Materials, Inc. Maskless hybrid laser scribing and plasma etching wafer dicing process
US9048309B2 (en) 2012-07-10 2015-06-02 Applied Materials, Inc. Uniform masking for wafer dicing using laser and plasma etch
US9076860B1 (en) 2014-04-04 2015-07-07 Applied Materials, Inc. Residue removal from singulated die sidewall
US9093518B1 (en) 2014-06-30 2015-07-28 Applied Materials, Inc. Singulation of wafers having wafer-level underfill
US9105710B2 (en) 2013-08-30 2015-08-11 Applied Materials, Inc. Wafer dicing method for improving die packaging quality
US9112050B1 (en) 2014-05-13 2015-08-18 Applied Materials, Inc. Dicing tape thermal management by wafer frame support ring cooling during plasma dicing
US9117868B1 (en) 2014-08-12 2015-08-25 Applied Materials, Inc. Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
US9130030B1 (en) 2014-03-07 2015-09-08 Applied Materials, Inc. Baking tool for improved wafer coating process
US9129904B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
US9130056B1 (en) 2014-10-03 2015-09-08 Applied Materials, Inc. Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing
US9126285B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
US9130057B1 (en) 2014-06-30 2015-09-08 Applied Materials, Inc. Hybrid dicing process using a blade and laser
US9142459B1 (en) 2014-06-30 2015-09-22 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination
WO2015140849A1 (en) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 Process for producing ultraviolet light emitting elements, and ultraviolet light emitting element
US9159621B1 (en) 2014-04-29 2015-10-13 Applied Materials, Inc. Dicing tape protection for wafer dicing using laser scribe process
US9159624B1 (en) 2015-01-05 2015-10-13 Applied Materials, Inc. Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach
US9159574B2 (en) 2012-08-27 2015-10-13 Applied Materials, Inc. Method of silicon etch for trench sidewall smoothing
US9165812B2 (en) 2014-01-31 2015-10-20 Applied Materials, Inc. Cooled tape frame lift and low contact shadow ring for plasma heat isolation
US9165832B1 (en) 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
US9177861B1 (en) 2014-09-19 2015-11-03 Applied Materials, Inc. Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile
US9196536B1 (en) 2014-09-25 2015-11-24 Applied Materials, Inc. Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process
US9196498B1 (en) 2014-08-12 2015-11-24 Applied Materials, Inc. Stationary actively-cooled shadow ring for heat dissipation in plasma chamber
US9224650B2 (en) 2013-09-19 2015-12-29 Applied Materials, Inc. Wafer dicing from wafer backside and front side
US9236305B2 (en) 2013-01-25 2016-01-12 Applied Materials, Inc. Wafer dicing with etch chamber shield ring for film frame wafer applications
US9245803B1 (en) 2014-10-17 2016-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process
US9252057B2 (en) 2012-10-17 2016-02-02 Applied Materials, Inc. Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application
US9275902B2 (en) 2014-03-26 2016-03-01 Applied Materials, Inc. Dicing processes for thin wafers with bumps on wafer backside
US9281244B1 (en) 2014-09-18 2016-03-08 Applied Materials, Inc. Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process
US9293304B2 (en) 2013-12-17 2016-03-22 Applied Materials, Inc. Plasma thermal shield for heat dissipation in plasma chamber
US9299614B2 (en) 2013-12-10 2016-03-29 Applied Materials, Inc. Method and carrier for dicing a wafer
US9299611B2 (en) 2014-01-29 2016-03-29 Applied Materials, Inc. Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance
US9312177B2 (en) 2013-12-06 2016-04-12 Applied Materials, Inc. Screen print mask for laser scribe and plasma etch wafer dicing process
US9330977B1 (en) 2015-01-05 2016-05-03 Applied Materials, Inc. Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process
US9349648B2 (en) 2014-07-22 2016-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process
US9355907B1 (en) 2015-01-05 2016-05-31 Applied Materials, Inc. Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process
US9460966B2 (en) 2013-10-10 2016-10-04 Applied Materials, Inc. Method and apparatus for dicing wafers having thick passivation polymer layer
US9478455B1 (en) 2015-06-12 2016-10-25 Applied Materials, Inc. Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
US9601375B2 (en) 2015-04-27 2017-03-21 Applied Materials, Inc. UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach
US9620379B2 (en) 2013-03-14 2017-04-11 Applied Materials, Inc. Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch
US9721839B2 (en) 2015-06-12 2017-08-01 Applied Materials, Inc. Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch
US9793132B1 (en) 2016-05-13 2017-10-17 Applied Materials, Inc. Etch mask for hybrid laser scribing and plasma etch wafer singulation process
US9852997B2 (en) 2016-03-25 2017-12-26 Applied Materials, Inc. Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process
US9865679B2 (en) 2013-04-17 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Compound semiconductor device, method for producing same, and resin-sealed type semiconductor device
US9972575B2 (en) 2016-03-03 2018-05-15 Applied Materials, Inc. Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process
CN108356412A (en) * 2017-01-24 2018-08-03 株式会社迪思科 Laser processing device
JP2019117905A (en) * 2017-12-27 2019-07-18 ローム株式会社 Semiconductor light-emitting device
US10363629B2 (en) 2017-06-01 2019-07-30 Applied Materials, Inc. Mitigation of particle contamination for wafer dicing processes
US10535561B2 (en) 2018-03-12 2020-01-14 Applied Materials, Inc. Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process
US10692765B2 (en) 2014-11-07 2020-06-23 Applied Materials, Inc. Transfer arm for film frame substrate handling during plasma singulation of wafers
US10903121B1 (en) 2019-08-14 2021-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process
US11011424B2 (en) 2019-08-06 2021-05-18 Applied Materials, Inc. Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process
US11158540B2 (en) 2017-05-26 2021-10-26 Applied Materials, Inc. Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process
US11195756B2 (en) 2014-09-19 2021-12-07 Applied Materials, Inc. Proximity contact cover ring for plasma dicing
US11211247B2 (en) 2020-01-30 2021-12-28 Applied Materials, Inc. Water soluble organic-inorganic hybrid mask formulations and their applications
US11342226B2 (en) 2019-08-13 2022-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process
US11355394B2 (en) 2018-09-13 2022-06-07 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment
US11600492B2 (en) 2019-12-10 2023-03-07 Applied Materials, Inc. Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244068A (en) * 1998-12-22 2000-09-08 Pioneer Electronic Corp Nitride semiconductor laser and fabrication thereof
KR100519326B1 (en) * 1999-04-20 2005-10-07 엘지전자 주식회사 method for fabricating substate of GaN semiconductor laser diode
WO2000075983A1 (en) * 1999-06-08 2000-12-14 Kulicke & Soffa Investments, Inc. A method for dicing wafers with laser scribing
US6420245B1 (en) 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US6555447B2 (en) 1999-06-08 2003-04-29 Kulicke & Soffa Investments, Inc. Method for laser scribing of wafers
US6562698B2 (en) 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US7615721B2 (en) * 2000-09-13 2009-11-10 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
JP2002326157A (en) * 2001-04-27 2002-11-12 Kyocera Corp Plate for polishing wafer, and method for machining the same
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
JP2004009139A (en) * 2002-06-10 2004-01-15 New Wave Research Method and system which manufacture die
US8822882B2 (en) 2002-06-10 2014-09-02 New Wave Research Scribing sapphire substrates with a solid state UV laser with edge detection
US7183136B2 (en) 2002-06-24 2007-02-27 Toyoda Gosei Co., Ltd. Semiconductor element and method for producing the same
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
US7105859B2 (en) 2003-11-05 2006-09-12 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting diode chip and method of manufacturing the same
US7791098B2 (en) 2004-03-31 2010-09-07 Nichia Corporation Nitride semiconductor light emitting device
JP2007258321A (en) * 2006-03-22 2007-10-04 Matsushita Electric Ind Co Ltd Process for manufacturing light emitting element
US10566238B2 (en) 2010-06-22 2020-02-18 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US10910271B2 (en) 2010-06-22 2021-02-02 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US8642448B2 (en) 2010-06-22 2014-02-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US9245802B2 (en) 2010-06-22 2016-01-26 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US10714390B2 (en) 2010-06-22 2020-07-14 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US10163713B2 (en) 2010-06-22 2018-12-25 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US8853056B2 (en) 2010-06-22 2014-10-07 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US11621194B2 (en) 2010-06-22 2023-04-04 Applied Materials, Inc. Wafer dicing using femtosecond-based laser and plasma etch
US9029242B2 (en) 2011-06-15 2015-05-12 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US8557683B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US10112259B2 (en) 2011-06-15 2018-10-30 Applied Materials, Inc. Damage isolation by shaped beam delivery in laser scribing process
US8507363B2 (en) 2011-06-15 2013-08-13 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US8557682B2 (en) 2011-06-15 2013-10-15 Applied Materials, Inc. Multi-layer mask for substrate dicing by laser and plasma etch
US9054176B2 (en) 2011-06-15 2015-06-09 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US8598016B2 (en) 2011-06-15 2013-12-03 Applied Materials, Inc. In-situ deposited mask layer for device singulation by laser scribing and plasma etch
US9263308B2 (en) 2011-06-15 2016-02-16 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8703581B2 (en) 2011-06-15 2014-04-22 Applied Materials, Inc. Water soluble mask for substrate dicing by laser and plasma etch
US8759197B2 (en) 2011-06-15 2014-06-24 Applied Materials, Inc. Multi-step and asymmetrically shaped laser beam scribing
US9224625B2 (en) 2011-06-15 2015-12-29 Applied Materials, Inc. Laser and plasma etch wafer dicing using water-soluble die attach film
US9218992B2 (en) 2011-06-15 2015-12-22 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier
US9129904B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Wafer dicing using pulse train laser with multiple-pulse bursts and plasma etch
US9126285B2 (en) 2011-06-15 2015-09-08 Applied Materials, Inc. Laser and plasma etch wafer dicing using physically-removable mask
US8912077B2 (en) 2011-06-15 2014-12-16 Applied Materials, Inc. Hybrid laser and plasma etch wafer dicing using substrate carrier
US8951819B2 (en) 2011-07-11 2015-02-10 Applied Materials, Inc. Wafer dicing using hybrid split-beam laser scribing process with plasma etch
US8846498B2 (en) 2012-04-10 2014-09-30 Applied Materials, Inc. Wafer dicing using hybrid multi-step laser scribing process with plasma etch
US8652940B2 (en) 2012-04-10 2014-02-18 Applied Materials, Inc. Wafer dicing used hybrid multi-step laser scribing process with plasma etch
US8946057B2 (en) 2012-04-24 2015-02-03 Applied Materials, Inc. Laser and plasma etch wafer dicing using UV-curable adhesive film
US8969177B2 (en) 2012-06-29 2015-03-03 Applied Materials, Inc. Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film
US9048309B2 (en) 2012-07-10 2015-06-02 Applied Materials, Inc. Uniform masking for wafer dicing using laser and plasma etch
US8845854B2 (en) 2012-07-13 2014-09-30 Applied Materials, Inc. Laser, plasma etch, and backside grind process for wafer dicing
US8859397B2 (en) 2012-07-13 2014-10-14 Applied Materials, Inc. Method of coating water soluble mask for laser scribing and plasma etch
US9177864B2 (en) 2012-07-13 2015-11-03 Applied Materials, Inc. Method of coating water soluble mask for laser scribing and plasma etch
US8940619B2 (en) 2012-07-13 2015-01-27 Applied Materials, Inc. Method of diced wafer transportation
US8993414B2 (en) 2012-07-13 2015-03-31 Applied Materials, Inc. Laser scribing and plasma etch for high die break strength and clean sidewall
US9159574B2 (en) 2012-08-27 2015-10-13 Applied Materials, Inc. Method of silicon etch for trench sidewall smoothing
US9252057B2 (en) 2012-10-17 2016-02-02 Applied Materials, Inc. Laser and plasma etch wafer dicing with partial pre-curing of UV release dicing tape for film frame wafer application
US8975162B2 (en) 2012-12-20 2015-03-10 Applied Materials, Inc. Wafer dicing from wafer backside
US9236305B2 (en) 2013-01-25 2016-01-12 Applied Materials, Inc. Wafer dicing with etch chamber shield ring for film frame wafer applications
US8980726B2 (en) 2013-01-25 2015-03-17 Applied Materials, Inc. Substrate dicing by laser ablation and plasma etch damage removal for ultra-thin wafers
US9620379B2 (en) 2013-03-14 2017-04-11 Applied Materials, Inc. Multi-layer mask including non-photodefinable laser energy absorbing layer for substrate dicing by laser and plasma etch
US9865679B2 (en) 2013-04-17 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Compound semiconductor device, method for producing same, and resin-sealed type semiconductor device
US10553676B2 (en) 2013-04-17 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Compound semiconductor device, method for producing same, and resin-sealed type semiconductor device
US10224397B2 (en) 2013-04-17 2019-03-05 Panasonic Intellectual Property Management Co., Ltd. Compound semiconductor device, method for producing same, and resin-sealed type semiconductor device
US8883614B1 (en) 2013-05-22 2014-11-11 Applied Materials, Inc. Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach
CN103358032A (en) * 2013-07-31 2013-10-23 江阴长电先进封装有限公司 Wafer level scribing method for CIS (Cmos image sensor) product
US9105710B2 (en) 2013-08-30 2015-08-11 Applied Materials, Inc. Wafer dicing method for improving die packaging quality
US9224650B2 (en) 2013-09-19 2015-12-29 Applied Materials, Inc. Wafer dicing from wafer backside and front side
US9460966B2 (en) 2013-10-10 2016-10-04 Applied Materials, Inc. Method and apparatus for dicing wafers having thick passivation polymer layer
US9209084B2 (en) 2013-10-22 2015-12-08 Applied Materials, Inc. Maskless hybrid laser scribing and plasma etching wafer dicing process
US9041198B2 (en) 2013-10-22 2015-05-26 Applied Materials, Inc. Maskless hybrid laser scribing and plasma etching wafer dicing process
US9312177B2 (en) 2013-12-06 2016-04-12 Applied Materials, Inc. Screen print mask for laser scribe and plasma etch wafer dicing process
US9299614B2 (en) 2013-12-10 2016-03-29 Applied Materials, Inc. Method and carrier for dicing a wafer
US9293304B2 (en) 2013-12-17 2016-03-22 Applied Materials, Inc. Plasma thermal shield for heat dissipation in plasma chamber
US8927393B1 (en) 2014-01-29 2015-01-06 Applied Materials, Inc. Water soluble mask formation by dry film vacuum lamination for laser and plasma dicing
US9012305B1 (en) 2014-01-29 2015-04-21 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate non-reactive post mask-opening clean
US9299611B2 (en) 2014-01-29 2016-03-29 Applied Materials, Inc. Method of wafer dicing using hybrid laser scribing and plasma etch approach with mask plasma treatment for improved mask etch resistance
US9018079B1 (en) 2014-01-29 2015-04-28 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate reactive post mask-opening clean
US9768014B2 (en) 2014-01-31 2017-09-19 Applied Materials, Inc. Wafer coating
US8991329B1 (en) 2014-01-31 2015-03-31 Applied Materials, Inc. Wafer coating
US9236284B2 (en) 2014-01-31 2016-01-12 Applied Materials, Inc. Cooled tape frame lift and low contact shadow ring for plasma heat isolation
US9165812B2 (en) 2014-01-31 2015-10-20 Applied Materials, Inc. Cooled tape frame lift and low contact shadow ring for plasma heat isolation
US8883615B1 (en) 2014-03-07 2014-11-11 Applied Materials, Inc. Approaches for cleaning a wafer during hybrid laser scribing and plasma etching wafer dicing processes
US9130030B1 (en) 2014-03-07 2015-09-08 Applied Materials, Inc. Baking tool for improved wafer coating process
JPWO2015140849A1 (en) * 2014-03-18 2017-04-06 パナソニックIpマネジメント株式会社 Method for manufacturing ultraviolet light emitting element, ultraviolet light emitting element
WO2015140849A1 (en) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 Process for producing ultraviolet light emitting elements, and ultraviolet light emitting element
US9275902B2 (en) 2014-03-26 2016-03-01 Applied Materials, Inc. Dicing processes for thin wafers with bumps on wafer backside
US9076860B1 (en) 2014-04-04 2015-07-07 Applied Materials, Inc. Residue removal from singulated die sidewall
US8975163B1 (en) 2014-04-10 2015-03-10 Applied Materials, Inc. Laser-dominated laser scribing and plasma etch hybrid wafer dicing
US8932939B1 (en) 2014-04-14 2015-01-13 Applied Materials, Inc. Water soluble mask formation by dry film lamination
US9583375B2 (en) 2014-04-14 2017-02-28 Applied Materials, Inc. Water soluble mask formation by dry film lamination
US9343366B2 (en) 2014-04-16 2016-05-17 Applied Materials, Inc. Dicing wafers having solder bumps on wafer backside
US8912078B1 (en) 2014-04-16 2014-12-16 Applied Materials, Inc. Dicing wafers having solder bumps on wafer backside
US8999816B1 (en) 2014-04-18 2015-04-07 Applied Materials, Inc. Pre-patterned dry laminate mask for wafer dicing processes
US9159621B1 (en) 2014-04-29 2015-10-13 Applied Materials, Inc. Dicing tape protection for wafer dicing using laser scribe process
US9269604B2 (en) 2014-04-29 2016-02-23 Applied Materials, Inc. Wafer edge warp suppression for thin wafer supported by tape frame
US8912075B1 (en) 2014-04-29 2014-12-16 Applied Materials, Inc. Wafer edge warp supression for thin wafer supported by tape frame
US8980727B1 (en) 2014-05-07 2015-03-17 Applied Materials, Inc. Substrate patterning using hybrid laser scribing and plasma etching processing schemes
US9112050B1 (en) 2014-05-13 2015-08-18 Applied Materials, Inc. Dicing tape thermal management by wafer frame support ring cooling during plasma dicing
US9034771B1 (en) 2014-05-23 2015-05-19 Applied Materials, Inc. Cooling pedestal for dicing tape thermal management during plasma dicing
US9165832B1 (en) 2014-06-30 2015-10-20 Applied Materials, Inc. Method of die singulation using laser ablation and induction of internal defects with a laser
US9142459B1 (en) 2014-06-30 2015-09-22 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with mask application by vacuum lamination
US9093518B1 (en) 2014-06-30 2015-07-28 Applied Materials, Inc. Singulation of wafers having wafer-level underfill
US9130057B1 (en) 2014-06-30 2015-09-08 Applied Materials, Inc. Hybrid dicing process using a blade and laser
US9349648B2 (en) 2014-07-22 2016-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using a rectangular shaped two-dimensional top hat laser beam profile or a linear shaped one-dimensional top hat laser beam profile laser scribing process and plasma etch process
US9117868B1 (en) 2014-08-12 2015-08-25 Applied Materials, Inc. Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
US9196498B1 (en) 2014-08-12 2015-11-24 Applied Materials, Inc. Stationary actively-cooled shadow ring for heat dissipation in plasma chamber
US9281244B1 (en) 2014-09-18 2016-03-08 Applied Materials, Inc. Hybrid wafer dicing approach using an adaptive optics-controlled laser scribing process and plasma etch process
US11195756B2 (en) 2014-09-19 2021-12-07 Applied Materials, Inc. Proximity contact cover ring for plasma dicing
US9177861B1 (en) 2014-09-19 2015-11-03 Applied Materials, Inc. Hybrid wafer dicing approach using laser scribing process based on an elliptical laser beam profile or a spatio-temporal controlled laser beam profile
US9196536B1 (en) 2014-09-25 2015-11-24 Applied Materials, Inc. Hybrid wafer dicing approach using a phase modulated laser beam profile laser scribing process and plasma etch process
US9130056B1 (en) 2014-10-03 2015-09-08 Applied Materials, Inc. Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing
US9245803B1 (en) 2014-10-17 2016-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a bessel beam shaper laser scribing process and plasma etch process
US10692765B2 (en) 2014-11-07 2020-06-23 Applied Materials, Inc. Transfer arm for film frame substrate handling during plasma singulation of wafers
US9330977B1 (en) 2015-01-05 2016-05-03 Applied Materials, Inc. Hybrid wafer dicing approach using a galvo scanner and linear stage hybrid motion laser scribing process and plasma etch process
US9159624B1 (en) 2015-01-05 2015-10-13 Applied Materials, Inc. Vacuum lamination of polymeric dry films for wafer dicing using hybrid laser scribing and plasma etch approach
US9355907B1 (en) 2015-01-05 2016-05-31 Applied Materials, Inc. Hybrid wafer dicing approach using a line shaped laser beam profile laser scribing process and plasma etch process
US9601375B2 (en) 2015-04-27 2017-03-21 Applied Materials, Inc. UV-cure pre-treatment of carrier film for wafer dicing using hybrid laser scribing and plasma etch approach
US9721839B2 (en) 2015-06-12 2017-08-01 Applied Materials, Inc. Etch-resistant water soluble mask for hybrid wafer dicing using laser scribing and plasma etch
US9478455B1 (en) 2015-06-12 2016-10-25 Applied Materials, Inc. Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
US11217536B2 (en) 2016-03-03 2022-01-04 Applied Materials, Inc. Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process
US9972575B2 (en) 2016-03-03 2018-05-15 Applied Materials, Inc. Hybrid wafer dicing approach using a split beam laser scribing process and plasma etch process
US9852997B2 (en) 2016-03-25 2017-12-26 Applied Materials, Inc. Hybrid wafer dicing approach using a rotating beam laser scribing process and plasma etch process
US9793132B1 (en) 2016-05-13 2017-10-17 Applied Materials, Inc. Etch mask for hybrid laser scribing and plasma etch wafer singulation process
CN108356412A (en) * 2017-01-24 2018-08-03 株式会社迪思科 Laser processing device
US11158540B2 (en) 2017-05-26 2021-10-26 Applied Materials, Inc. Light-absorbing mask for hybrid laser scribing and plasma etch wafer singulation process
US10363629B2 (en) 2017-06-01 2019-07-30 Applied Materials, Inc. Mitigation of particle contamination for wafer dicing processes
US10661383B2 (en) 2017-06-01 2020-05-26 Applied Materials, Inc. Mitigation of particle contamination for wafer dicing processes
JP2019117905A (en) * 2017-12-27 2019-07-18 ローム株式会社 Semiconductor light-emitting device
US10535561B2 (en) 2018-03-12 2020-01-14 Applied Materials, Inc. Hybrid wafer dicing approach using a multiple pass laser scribing process and plasma etch process
US11355394B2 (en) 2018-09-13 2022-06-07 Applied Materials, Inc. Wafer dicing using hybrid laser scribing and plasma etch approach with intermediate breakthrough treatment
US11011424B2 (en) 2019-08-06 2021-05-18 Applied Materials, Inc. Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process
US11342226B2 (en) 2019-08-13 2022-05-24 Applied Materials, Inc. Hybrid wafer dicing approach using an actively-focused laser beam laser scribing process and plasma etch process
US10903121B1 (en) 2019-08-14 2021-01-26 Applied Materials, Inc. Hybrid wafer dicing approach using a uniform rotating beam laser scribing process and plasma etch process
US11600492B2 (en) 2019-12-10 2023-03-07 Applied Materials, Inc. Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process
US11211247B2 (en) 2020-01-30 2021-12-28 Applied Materials, Inc. Water soluble organic-inorganic hybrid mask formulations and their applications
US11764061B2 (en) 2020-01-30 2023-09-19 Applied Materials, Inc. Water soluble organic-inorganic hybrid mask formulations and their applications

Also Published As

Publication number Publication date
JP3230572B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP3230572B2 (en) Method for manufacturing nitride compound semiconductor device and semiconductor light emitting device
JP3449201B2 (en) Method for manufacturing nitride semiconductor device
JP3604550B2 (en) Method for manufacturing nitride semiconductor device
JP3904585B2 (en) Manufacturing method of semiconductor device
KR100854986B1 (en) Production method of compound semiconductor device wafer
US7008861B2 (en) Semiconductor substrate assemblies and methods for preparing and dicing the same
TWI327340B (en) Production method for semiconductor device
US7358156B2 (en) Compound semiconductor device and method of manufacturing the same
JP2780618B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2004031526A (en) Manufacturing method of group iii nitride compound semiconductor element
TW200849670A (en) Process for producing compound semiconductor device and compound semiconductor device
JP2009032970A (en) Method of manufacturing nitride semiconductor element
JP2005166728A (en) Method of manufacturing nitride-based semiconductor element
JP2861991B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
TW200903869A (en) Semiconductor light-emitting device and method for manufacturing the same
JP2914014B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP2748355B2 (en) Method of manufacturing gallium nitride based compound semiconductor chip
JP3532752B2 (en) Semiconductor device separation method
JP3227287B2 (en) Method of manufacturing gallium nitride-based compound semiconductor chip and gallium nitride-based compound semiconductor device
JP5271563B2 (en) Method of manufacturing nitride semiconductor device
JP4244618B2 (en) Method of manufacturing nitride semiconductor device
JP5472242B2 (en) Method of manufacturing nitride semiconductor device
JP2006203251A (en) Production method for semiconductor device
US11646392B2 (en) Method of manufacturing light-emitting device
JP3679626B2 (en) Gallium nitride compound semiconductor chip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees