JPH10318996A - Method and equipment for measuring range of slack or crack in ground, bed rock, concrete structure, and the like - Google Patents

Method and equipment for measuring range of slack or crack in ground, bed rock, concrete structure, and the like

Info

Publication number
JPH10318996A
JPH10318996A JP9130869A JP13086997A JPH10318996A JP H10318996 A JPH10318996 A JP H10318996A JP 9130869 A JP9130869 A JP 9130869A JP 13086997 A JP13086997 A JP 13086997A JP H10318996 A JPH10318996 A JP H10318996A
Authority
JP
Japan
Prior art keywords
ultrasonic
measuring
hole
ground
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9130869A
Other languages
Japanese (ja)
Other versions
JP3396596B2 (en
Inventor
Hiroshi Chikahisa
博志 近久
Kaoru Kobayashi
薫 小林
Hirotaka Nakahara
博隆 中原
Kazunobu Matsumoto
和伸 松元
Masayuki Tsutsui
雅行 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP13086997A priority Critical patent/JP3396596B2/en
Publication of JPH10318996A publication Critical patent/JPH10318996A/en
Application granted granted Critical
Publication of JP3396596B2 publication Critical patent/JP3396596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure an accurate measurement by inserting ultrasonic measuring units in holes made in the outer circumferential surface in a cavity at a plurality of measuring points and measuring the range of slack or crack in the ground from the difference of measured ultrasonic velocity thereby eliminating restriction in the measuring direction. SOLUTION: Ultrasonic measuring units 3 are inserted sequentially into a plurality of anchor holes or boring holes 2 made in a cavity, e.g. a tunnel or a basement. A stopper 9 is stretched on the outer surface of the anchor hole or boring hole 2 so that the anchor hole or boring hole 2 can be stopped at a measuring point even if it elongates vertically upward. An ultrasonic transmitter 4 is then actuated to transmit an ultrasonic wave which is received by an ultrasonic receiver 5. An ultrasonic velocity detector 12 detects the velocity of an ultrasonic wave from a received ultrasonic wave group and an indicator 13 indicates the velocity for each depth of the hole thus recognizing a slack or crack in the ground. When a decision is made that the slack in the ground is localized, an accurate measurement can be performed by limiting the fixing interval of the ultrasonic transmitter 4 and the ultrasonic receiver 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネルや地下空
洞あるいは岩盤の斜面などの掘削に伴う周辺地盤、岩盤
あるいはコンクリート構造物等の緩み、亀裂範囲を測定
する際に用いられる地盤、岩盤、コンクリート構造物等
の緩み、亀裂範囲測定方法及び測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground, a bedrock or a concrete used for measuring a looseness or a crack area of a surrounding ground, a bedrock or a concrete structure due to excavation of a tunnel, an underground cavity or a slope of a bedrock. The present invention relates to a method and a measuring device for measuring looseness and crack range of a structure or the like.

【0002】近年、地下空洞スペース利用の機運が高ま
り、その需要増大により、地盤、岩盤あるいはコンクリ
ート構造物等を掘削する工事が増加している。そして、
かかる掘削工事の増加に伴い、地盤掘削による地盤、岩
盤、コンクリート構造物等の緩み、亀裂範囲を調査し、
適切な支保工を施工することがきわめて重要な課題とさ
れている。
[0002] In recent years, there has been an increase in the use of underground cavities, and due to an increase in demand, construction work for excavating ground, rock, concrete structures, and the like has been increasing. And
With the increase of the excavation work, the ground, rock, concrete structure, etc. due to ground excavation were investigated for looseness and crack area,
Construction of appropriate shoring is an extremely important issue.

【0003】[0003]

【従来の技術】従来において地盤、岩盤、コンクリート
構造物等の緩み、亀裂範囲の測定方法としては、例え
ば、測定したい地盤からコアを採取し、このコアに超音
波を発信して、該超音波の速度を求め、この超音波速度
の違いから地盤、岩盤、コンクリート構造物等の緩み、
亀裂範囲を測定する方法、あるいは垂下するボーリング
孔内に、超音波速度試験器(鉛直方向下向きのみ測定)
を吊り下げ、もって、垂下するボーリング孔内近傍地
盤、岩盤、コンクリート構造物等の緩み、亀裂範囲を測
定する方法等が一般に知られている(図6参照)。
2. Description of the Related Art Conventionally, as a method for measuring the extent of looseness and cracks in the ground, bedrock, concrete structure, etc., for example, a core is sampled from the ground to be measured, ultrasonic waves are transmitted to the core, and the ultrasonic waves are transmitted. Of the ground, rocks, concrete structures, etc.
Ultrasonic velocity tester (measured only vertically downward)
It is generally known to measure the looseness of the ground, rock, concrete structure, etc. in the vicinity of the hanging boring hole and the extent of the cracks by suspending (see FIG. 6).

【0004】[0004]

【発明が解決しようとする課題】しかし、従来前者の方
法では、採取したコアのある程度堅さのある場合であれ
ば超音波を発信し、該超音波の速度を測定することがで
きるが、所定の堅さを持たず、柔らかい崩れた土砂の状
態で検出された場合には、超音波速度の検出ができな
い。
However, in the former method, if the sampled core has a certain degree of rigidity, an ultrasonic wave can be transmitted and the speed of the ultrasonic wave can be measured. If it is detected in the state of soft and crushed earth and sand without the rigidity, the ultrasonic velocity cannot be detected.

【0005】また、後者の方法では、図6から理解され
るように、検出用の機械、器具が大がかりになると共
に、鉛直方向下向きにしか測定できないとの課題があっ
た。かくして、本発明は前記従来の課題に対処するため
に創案されたものであって、形成されたトンネル等空洞
外周面に、略放射状に設けられた複数のアンカー孔やボ
ーリング孔を利用し、鉛直方向下向きのみならず、鉛直
方向上向きあるいは水平方向、換言すればトンネルの下
方向、上方向、左右水平方向の360度いずれの方向に
穿設されたアンカー孔やボーリング孔であっても測定で
き、さらに前記アンカー孔やボーリング孔の外周360
度方向いずれの方向の地盤、岩盤であっても測定でき、
測定方向の制約が全くない地盤、岩盤、コンクリート構
造物等の緩み、亀裂範囲を測定する測定方法及び測定装
置を提供し、かつ地盤、岩盤、コンクリート構造物等の
緩み、亀裂範囲が比較的狭い範囲であったとしても、超
音波発信器及超音波受信器の取付間隔を狭めることによ
り正確に測定することができる地盤、岩盤、コンクリー
ト構造物等の緩み、亀裂範囲の測定方法及び測定装置を
提供することを目的とするものである。
In the latter method, as can be understood from FIG. 6, there is a problem that the detection machine and equipment become large-scale and that the measurement can be performed only vertically downward. Thus, the present invention has been devised in order to address the above-mentioned conventional problems, and uses a plurality of anchor holes and boring holes provided in a substantially radial manner on the outer peripheral surface of a cavity such as a formed tunnel, thereby forming a vertical hole. Not only in the downward direction, but also in the vertical direction or in the horizontal direction, in other words, in the downward direction of the tunnel, in the upward direction, it can be measured even in the anchor hole or boring hole drilled in any direction of 360 degrees left and right horizontal, Further, the outer periphery 360 of the anchor hole or the boring hole is formed.
It can be measured on the ground or rock in any direction
Provide a measuring method and measuring device to measure the looseness and crack range of the ground, bedrock, concrete structure, etc., where there is no restriction on the measurement direction, and the ground, bedrock, concrete structure, etc. are relatively loose and the crack range is relatively narrow Even if it is within the range, it is possible to measure accurately by narrowing the installation interval of the ultrasonic transmitter and ultrasonic receiver, loosening of the ground, bedrock, concrete structures, etc. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明による地盤、岩
盤、コンクリート構造物等の緩み、亀裂範囲の測定方法
は、空洞内の外周面に穿設された孔内に超音波測定器を
挿入すると共に、該超音波測定器を挿入深度を異ならせ
て前記孔内の複数の測定個所に順次設置し、前記複数の
測定個所での超音波速度を各々測定し、測定した超音波
速度の違いから地盤の緩み、亀裂範囲を測定することを
特徴とし、本発明による地盤、岩盤、コンクリート構造
物等の緩み、亀裂範囲の測定装置は、超音波発信器と超
音波受信器とを有する超音波測定器と、測定孔内で伸長
係止し前記超音波発生器を測定孔内所定の測定個所に保
持する伸縮保持具と、超音波発生器からの超音波を受信
し、該超音波の速度を検出する超音波速度検出器と、測
定個所毎の超音波速度の違いを表示する表示器と、を備
えたことを特徴とし、または、略円筒状をなす孔の外周
面に、該孔外周面360度にわたり回動自在に当接可能
とされた超音波発信器及び超音波受信器と、超音波発信
器と超音波受信器との取付間隔を変更可能にして保持す
る保持具と、超音波発信器と超音波受信器とを保持した
保持具を孔深度を異ならせて孔内に係止しうる係止具
と、を備えた超音波測定器と、超音波測定器で受信した
超音波から、該超音波の速度を検出する超音波速度検出
器と、検出された測定個所毎の超音波速度の違いを表示
する表示器と、を備えたことを特徴とする。
According to the present invention, a method for measuring the extent of loosening or cracking of a ground, a bedrock, a concrete structure, or the like, according to the present invention, comprises inserting an ultrasonic measuring instrument into a hole formed in an outer peripheral surface of a cavity. Along with, the ultrasonic measuring device is sequentially installed at a plurality of measurement locations in the hole with different insertion depths, and the ultrasonic velocities at the plurality of measurement locations are measured, respectively, from the difference in the measured ultrasonic velocities. The apparatus for measuring the looseness and crack area of a ground, a rock, a concrete structure, etc. according to the present invention is characterized by measuring an area of looseness and a crack area, and an ultrasonic measurement having an ultrasonic transmitter and an ultrasonic receiver. Device, a telescopic holder for extending and locking in the measuring hole and holding the ultrasonic generator at a predetermined measuring point in the measuring hole, receiving ultrasonic waves from the ultrasonic generator, and controlling the speed of the ultrasonic waves. Ultrasonic velocity detector to detect and ultrasonic velocity at each measurement location Or an indicator for displaying the difference between the two, or an ultrasonic transmitter capable of rotatably contacting the outer peripheral surface of a substantially cylindrical hole over the outer peripheral surface of the hole through 360 degrees. The holder for holding the ultrasonic transmitter and the ultrasonic receiver, the mounting interval between the ultrasonic transmitter and the ultrasonic receiver can be changed, and the holder for holding the ultrasonic transmitter and the ultrasonic receiver with a hole depth. An ultrasonic measuring device equipped with a locking tool that can be locked in the hole by making the ultrasonic wave different from the ultrasonic wave received by the ultrasonic measuring device, and an ultrasonic speed detector that detects the speed of the ultrasonic wave And a display for displaying the difference in the ultrasonic velocities for each of the detected measurement points.

【0007】(作用)本発明であれば、形成されたトン
ネル等空洞外周面から地中に向かって穿設されたアンカ
ー孔やボーリング孔を利用し、従来のように、鉛直方向
下向きのみならず、鉛直方向上向きあるいは水平方向、
換言すれば掘削されたトンネル外周面下方向、上方向、
左右水平方向等の360度いずれの方向に穿設されたア
ンカー孔やボーリング孔であっても、該アンカー孔やボ
ーリング孔を利用して測定でき、かつ前記アンカー孔や
ボーリング孔の外周360度方向いずれの方向の地盤、
岩盤であっても測定でき、測定方向の制約が全くない地
盤、岩盤、コンクリート構造物等の緩み、亀裂範囲を測
定する測定方法及び測定装置を提供し、さらには地盤、
岩盤、コンクリート構造物等の緩み、亀裂範囲が比較的
狭い範囲に集中していたとしても、超音波発信器及び超
音波受信器の取付間隔を狭めることにより正確に測定す
ることができる。
(Operation) According to the present invention, not only a vertical downward direction but also an anchor hole and a boring hole which are drilled from the outer peripheral surface of a cavity such as a formed tunnel toward the ground are used. , Vertically upward or horizontal,
In other words, the excavated tunnel outer peripheral surface downward, upward,
Anchor holes and boring holes drilled in any direction of 360 degrees, such as the horizontal direction, can be measured using the anchor holes and boring holes, and the outer 360-degree direction of the anchor holes and boring holes can be measured. Ground in any direction,
It provides a measuring method and a measuring device that can measure even a bedrock, without any restriction on the measurement direction, a ground, a bedrock, a slackness of a concrete structure, etc., and a crack range.
Even if the looseness and crack range of rocks and concrete structures are concentrated in a relatively narrow range, it can be accurately measured by narrowing the mounting interval between the ultrasonic transmitter and the ultrasonic receiver.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の態様につき
図に基づいて説明する。図3において符号1はトンネル
あるいは地下室等の空洞を示す。しかして、該空洞1は
通常略円筒状に掘削されて形成されており、その空洞1
内の外周面には上下方向、あるいは左右方向に複数のボ
ーリング孔あるいはアンカー孔2が穿設されている(図
3参照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. In FIG. 3, reference numeral 1 denotes a cavity such as a tunnel or a basement. The cavity 1 is usually formed by excavating into a substantially cylindrical shape.
A plurality of boring holes or anchor holes 2 are formed in the inner peripheral surface in the vertical or horizontal direction (see FIG. 3).

【0009】ここで、空洞1内において上下方向、ある
いは左右方向に穿設された複数のボーリング孔あるいは
アンカー孔2は、トンネルや地下室等の空洞1を施工す
る際、該当の地盤を発破工法や機械掘削工法により掘削
したとき、トンネルや地下室等構造物の支保としてアン
カーやロックボルト挿入用に使用されるものである。し
かして、本発明ではこのアンカー孔あるいはボーリング
孔2を地盤、岩盤、コンクリート構造物等の緩み、亀裂
範囲を測定するための孔として使用する。
Here, a plurality of boring holes or anchor holes 2 drilled in the vertical direction or the horizontal direction in the cavity 1 are used for blasting a corresponding ground when constructing the cavity 1 such as a tunnel or a basement. When excavated by the mechanical excavation method, it is used to insert anchors and lock bolts as a support for structures such as tunnels and basements. In the present invention, the anchor hole or the boring hole 2 is used as a hole for measuring the extent of loosening or cracking of the ground, rock, concrete structure, or the like.

【0010】符号3は超音波測定器を示す。該超音波測
定器3は、例えば、超音波を生じさせる振動子及び該超
音波を受信する受信子等からなり、略直方体状をなす超
音波発信器4及び超音波受信器5とを備えている(図2
参照)。そして、符号6は前記超音波発信器4と超音波
受信器5を保持する保持具である。
Reference numeral 3 denotes an ultrasonic measuring device. The ultrasonic measuring device 3 includes, for example, a transducer that generates ultrasonic waves, a receiver that receives the ultrasonic waves, and the like, and includes an ultrasonic transmitter 4 and an ultrasonic receiver 5 having a substantially rectangular parallelepiped shape. (Figure 2
reference). Reference numeral 6 denotes a holder for holding the ultrasonic transmitter 4 and the ultrasonic receiver 5.

【0011】該保持具6は図から理解される様に長方形
の平板状をなす基板7と基板7の幅方向端部から垂下す
る一対の挟着片8,8とを有して構成され、挟着片8,
8間に前記超音波発信器4と超音波受信器5とが取り付
けられる。ここで、保持具6は超音波発信器4と超音波
受信器5とを挟着片8,8の長手方向に移動可能に取り
付けることが可能とされており、もって超音波発信器4
と超音波受信器5との取り付け間隔を狭めたり広げたり
自由に調整できるものとされている。
As shown in the figure, the holder 6 has a rectangular flat plate-shaped substrate 7 and a pair of sandwiching pieces 8, 8 hanging down from the widthwise end of the substrate 7. Sandwiching piece 8,
The ultrasonic transmitter 4 and the ultrasonic receiver 5 are attached between the eight. Here, the holder 6 can attach the ultrasonic transmitter 4 and the ultrasonic receiver 5 so as to be movable in the longitudinal direction of the holding pieces 8, 8.
It can be freely adjusted to narrow or widen the mounting interval between the antenna and the ultrasonic receiver 5.

【0012】次に、符号9は係止具を示す。該係止具9
は、前記超音波発信器4と超音波受信器5とをアンカー
孔あるいはボーリング孔2の測定面に密着させるべく伸
張可能な伸縮部材10とこの伸縮部材10に連結し、略
円筒状をなす前記孔の表面側に押圧されて、密着する押
圧子11、11とを有して形成されている。ここで、本
発明において伸縮部材10の構造については何ら限定さ
れるものではなく、例えば、エアジャッキ、油圧ジャッ
キ等で構成してもかまわないものである。
Next, reference numeral 9 denotes a locking member. The lock 9
The elastic transmitter 10 and the ultrasonic receiver 5 are connected to the expandable and contractible member 10 and extendable so that the ultrasonic transmitter 4 and the ultrasonic receiver 5 are brought into close contact with the measurement surface of the anchor hole or the boring hole 2. It is formed to have pressing elements 11 and 11 which are pressed against the surface side of the hole and come into close contact with each other. Here, in the present invention, the structure of the elastic member 10 is not limited at all, and for example, may be constituted by an air jack, a hydraulic jack, or the like.

【0013】さらに、符号12は超音波速度検出器であ
り、該超音波速度検出器12では超音波受信器5で測定
した例えば地中を通過した超音波の波形の差異等から超
音波の速度を検出するものとされている。符号13は表
示器であり、該表示器13では前記超音波速度検出器1
2で検出された各測定個所での超音波速度がグラフ状態
で表示され、これにより、地盤のいかなる箇所が緩い
か、あるいは亀裂が生じているかが即座に認識できるも
のとされている(図2,図4参照)。
Reference numeral 12 denotes an ultrasonic velocity detector. The ultrasonic velocity detector 12 determines the velocity of the ultrasonic wave based on, for example, a difference in the waveform of the ultrasonic wave passing through the ground measured by the ultrasonic receiver 5. Is to be detected. Reference numeral 13 denotes a display, on which the ultrasonic velocity detector 1 is connected.
The ultrasonic velocities at each of the measurement points detected in step 2 are displayed in a graph, so that it is possible to immediately recognize which part of the ground is loose or cracked (FIG. 2). , See FIG. 4).

【0014】以上において、本発明の使用状態につき説
明する。まず、図から理解されるように、トンネルある
いは地下室等の空洞1内に形成された複数のアンカー孔
あるいはボーリング孔2に順次本発明による超音波測定
器3を挿入する。しかして、本発明による超音波測定器
3には、前記アンカー孔あるいはボーリング孔2の外周
面に突っ張った状態で係止する係止具9が設けられてい
るため、たとえ前記アンカー孔あるいはボーリング孔2
が鉛直方向上方向に延びるものであったとしても、何ら
問題なく、すなわち超音波測定器3を落下させることな
く所定の測定個所に係止させて測定することができる。
The use of the present invention will be described above. First, as can be understood from the drawing, the ultrasonic measuring device 3 according to the present invention is sequentially inserted into a plurality of anchor holes or boring holes 2 formed in a cavity 1 such as a tunnel or a basement. Since the ultrasonic measuring device 3 according to the present invention is provided with the locking tool 9 that locks the outer peripheral surface of the anchor hole or the boring hole 2 in a protruding state, the ultrasonic measuring device 3 includes, for example, the anchor hole or the boring hole 2. 2
Can be measured without any problem, that is, by locking the ultrasonic measuring device 3 at a predetermined measuring point without dropping it.

【0015】すなわち、所定の測定個所に到達したらそ
の状態で係止具9の伸縮部材10を延ばし、孔2内に突
っ張った状態で係止させる。その状態から超音波発信器
4を起動し、超音波を発信させる。さらにその超音波を
超音波受信器5で受信する。しかして、受信された複数
の超音波群から当該超音波の速度を超音波速度検出器1
2で検出し、さらに表示器13で孔2の深度別に表示さ
れ、その表示により地盤等の緩み、亀裂等が認識され
る。
That is, when a predetermined measuring point is reached, the telescopic member 10 of the locking tool 9 is extended in that state, and is locked in a state of extending into the hole 2. From this state, the ultrasonic transmitter 4 is activated to transmit an ultrasonic wave. Further, the ultrasonic wave is received by the ultrasonic receiver 5. The ultrasonic velocity detector 1 determines the velocity of the ultrasonic wave from the plurality of received ultrasonic groups.
2, and the information is displayed on the display 13 according to the depth of the hole 2, and looseness, cracks and the like of the ground are recognized by the display.

【0016】尚、地盤の緩み範囲が小さいと判断される
場合、すなわち地盤の緩み範囲が局所的であると判断さ
れる場合には、超音波発信器4及び超音波受信器5の取
付間隔を狭めることにより、正確な測定ができる。
When it is determined that the ground slackening range is small, that is, when it is determined that the ground slackening range is local, the mounting interval between the ultrasonic transmitter 4 and the ultrasonic receiver 5 is changed. Accurate measurement is possible by narrowing.

【0017】[0017]

【発明の効果】かくして、本発明は以上の構成よりな
る。そして、本発明によれば、形成されたトンネル等空
洞外周面に、略放射状に設けられた複数のアンカー孔や
ボーリング孔を利用し、鉛直方向下向きのみならず、鉛
直方向上向きあるいは水平方向、換言すればトンネルの
下方向、上方向、左右水平方向の360度いずれの方向
に穿設されたアンカー孔やボーリング孔であっても測定
できる。
As described above, the present invention has the above configuration. According to the present invention, a plurality of anchor holes and boring holes provided substantially radially are used on the outer peripheral surface of the cavity such as the formed tunnel, and not only vertically downward but also vertically upward or horizontally, in other words. In this case, it is possible to measure an anchor hole or a boring hole drilled in any direction of 360 degrees in the downward direction, the upward direction, and the horizontal direction of the tunnel.

【0018】さらに前記アンカー孔やボーリング孔の外
周360度方向いずれの方向の地盤、岩盤であっても測
定でき、測定方向の制約が全くない地盤、岩盤、コンク
リート構造物等の緩み、亀裂範囲を測定する測定方法及
び測定装置を提供できる。かつ地盤、岩盤、コンクリー
ト構造物等の緩み、亀裂範囲が比較的狭い範囲であった
としても、超音波発信器及超音波受信器の取付間隔を狭
めることにより正確に測定することができる。
Furthermore, it is possible to measure the ground and the rock in any direction of 360 degrees in the outer circumference of the anchor hole and the boring hole. A measuring method and a measuring device for measuring can be provided. Even if the ground, rock, concrete structure, or the like is loose or cracked in a relatively narrow range, it can be accurately measured by narrowing the mounting interval between the ultrasonic transmitter and the ultrasonic receiver.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による地盤、岩盤、コンクリート構造物
等の緩み、亀裂範囲の測定装置の構成説明図(その1)
である。
FIG. 1 is an explanatory view of the configuration of a measuring device for measuring the extent of loosening and cracking of the ground, bedrock, concrete structure and the like according to the present invention (part 1)
It is.

【図2】本発明による地盤、岩盤、コンクリート構造物
等の緩み、亀裂範囲の測定装置の構成説明図(その2)
である。
FIG. 2 is an explanatory view of the configuration of a measuring device for measuring the extent of loosening and cracking of the ground, bedrock, concrete structure and the like according to the present invention (part 2)
It is.

【図3】本発明の使用状態を説明した概略説明図であ
る。
FIG. 3 is a schematic explanatory view illustrating a use state of the present invention.

【図4】本発明による表示器の使用状態を示す概略説明
図である。
FIG. 4 is a schematic explanatory view showing a use state of a display device according to the present invention.

【図5】アンカー孔やボーリング孔の測定位置を違えて
測定した状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a state where measurement is performed by changing a measurement position of an anchor hole or a boring hole.

【図6】従来例の概略構成を示す説明図である。FIG. 6 is an explanatory diagram showing a schematic configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 空洞 2 ボーリング孔あるいはアンカー孔 3 超音波測定器 4 超音波発信器 5 超音波受信器 6 保持具 7 基板 8 挟着片 9 係止具 10 伸縮部材 11 押圧子 12 超音波速度検出器 13 表示器 DESCRIPTION OF SYMBOLS 1 Cavity 2 Boring hole or anchor hole 3 Ultrasonic measuring device 4 Ultrasonic transmitter 5 Ultrasonic receiver 6 Holder 7 Substrate 8 Clamping piece 9 Locking member 10 Telescopic member 11 Presser 12 Ultrasonic velocity detector 13 Display vessel

フロントページの続き (72)発明者 松元 和伸 東京都千代田区三番町2番地 飛島建設株 式会社内 (72)発明者 筒井 雅行 東京都千代田区三番町2番地 飛島建設株 式会社内Continued on the front page (72) Inventor Kazunobu Matsumoto 2 Sanbancho, Chiyoda-ku, Tokyo Tobishima Construction Co., Ltd. (72) Inventor Masayuki Tsutsui 2 Sanbancho, Chiyoda-ku, Tokyo Tobishima Construction Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空洞内の外周面に穿設された孔内に超音
波測定器を挿入すると共に、該超音波測定器を挿入深度
を異ならせて前記孔内の複数の測定個所に順次設置し、 前記複数の測定個所での超音波速度を各々測定し、 測定した超音波速度の違いから地盤、岩盤、コンクリー
ト構造物等の緩み、亀裂範囲を測定する、 ことを特徴とする地盤、岩盤、コンクリート構造物等の
緩み、亀裂範囲測定方法。
1. An ultrasonic measuring device is inserted into a hole formed in an outer peripheral surface of a cavity, and the ultrasonic measuring device is sequentially installed at a plurality of measuring points in the hole with different insertion depths. Measuring the ultrasonic velocities at the plurality of measurement points, and measuring the looseness and crack range of the ground, rock, concrete structure, etc. based on the difference in the measured ultrasonic velocities. , Concrete structure etc. looseness and crack range measurement method.
【請求項2】 超音波発信器と超音波受信器とを有する
超音波測定器と、 測定孔内で伸長係止して孔外周面に当接し、前記超音波
測定器を測定孔内所定の測定個所に保持する保持具と、 超音波測定器からの超音波を受信し、該超音波の速度を
検出する超音波速度検出器と、 測定個所毎の超音波速度の違いを表示する表示器と、 を備えたことを特徴とする地盤、岩盤、コンクリート構
造物等の緩み、亀裂範囲測定装置。
2. An ultrasonic measuring device having an ultrasonic transmitter and an ultrasonic receiver, which is extended and locked in a measuring hole and abuts on an outer peripheral surface of the hole, and the ultrasonic measuring device is placed in a predetermined position in the measuring hole. A holder for holding at a measuring point, an ultrasonic velocity detector for receiving ultrasonic waves from an ultrasonic measuring instrument and detecting the velocity of the ultrasonic wave, and a display for displaying a difference in ultrasonic velocity for each measuring point A device for measuring the looseness and crack range of ground, rock, concrete structures, etc., characterized by comprising:
【請求項3】 略円筒状をなす孔の外周面に、該孔外周
面にわたり回動自在に取り付け可能とされた超音波発信
器及び超音波受信器と、超音波発信器と超音波受信器と
の取付間隔を変更可能にして超音波発信器と超音波受信
器とを保持する保持具と、超音波発信器と超音波受信器
とを保持した保持具を孔の深度を異ならせて孔内に係止
しうる係止具と、を備えた超音波測定器と、 超音波測定器で受信した超音波から、該超音波の速度を
検出する超音波速度検出器と、 検出された測定個所毎の超音波速度の違いを表示する表
示器と、 を備えたことを特徴とする地盤、岩盤、コンクリート構
造物等の緩み、亀裂範囲測定装置。
3. An ultrasonic transmitter and an ultrasonic receiver which are rotatably mounted on an outer peripheral surface of a substantially cylindrical hole over the outer peripheral surface of the hole, an ultrasonic transmitter and an ultrasonic receiver. The holder for holding the ultrasonic transmitter and the ultrasonic receiver by changing the mounting interval between the holder and the holder for holding the ultrasonic transmitter and the ultrasonic receiver by changing the depth of the hole. An ultrasonic measuring device comprising: a locking member that can be locked in the ultrasonic measuring device; an ultrasonic velocity detector that detects a velocity of the ultrasonic wave from ultrasonic waves received by the ultrasonic measuring device; An indicator for displaying a difference in ultrasonic velocity for each location, and a device for measuring the looseness and crack range of a ground, a bedrock, a concrete structure, or the like, comprising:
JP13086997A 1997-05-21 1997-05-21 Measuring method and measuring device for looseness and crack area of ground, bedrock, concrete structure, etc. Expired - Fee Related JP3396596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13086997A JP3396596B2 (en) 1997-05-21 1997-05-21 Measuring method and measuring device for looseness and crack area of ground, bedrock, concrete structure, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13086997A JP3396596B2 (en) 1997-05-21 1997-05-21 Measuring method and measuring device for looseness and crack area of ground, bedrock, concrete structure, etc.

Publications (2)

Publication Number Publication Date
JPH10318996A true JPH10318996A (en) 1998-12-04
JP3396596B2 JP3396596B2 (en) 2003-04-14

Family

ID=15044610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13086997A Expired - Fee Related JP3396596B2 (en) 1997-05-21 1997-05-21 Measuring method and measuring device for looseness and crack area of ground, bedrock, concrete structure, etc.

Country Status (1)

Country Link
JP (1) JP3396596B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325373B1 (en) * 1999-11-15 2002-02-28 김인식 Device and Method to Measure Stress Waves inside a Core Hole of Tunnel Lining
JP2002162389A (en) * 2000-11-27 2002-06-07 Mitsubishi Cable Ind Ltd Ultrasonic wave degradation diagnosing device for low- voltage electric-wire cable for nuclear power station
KR20030086783A (en) * 2002-05-07 2003-11-12 지하정보기술(주) A pressing and fitting device for the precise aquisition of seismic reflection signals in tunnel
KR100745036B1 (en) * 2006-09-07 2007-08-01 경희대학교 산학협력단 In-hole seismic method for measuring dynamic stiffness of subsurface materials
KR100767595B1 (en) 2006-09-07 2007-10-17 경희대학교 산학협력단 In-hole seismic testing device for measuring dynamic stiffness of subsurface materials
KR100921569B1 (en) 2007-11-26 2009-10-12 한국원자력연구원 Geostatistical Method for Calculating Rock Fracture Aperture Using Hydraulic Test Data
JP2012207999A (en) * 2011-03-29 2012-10-25 Central Research Institute Of Electric Power Industry Method for evaluating clearance state in rock mass by radon, and evaluation device of clearance state of rock mass by radon
JP2013032956A (en) * 2011-08-01 2013-02-14 Central Research Institute Of Electric Power Industry Method and device for evaluating condition of fracture of rock mass by radon
JP2014032123A (en) * 2012-08-03 2014-02-20 Fukui Prefecture Crack part evaluation method for ground surface reinforcement layer
CN103698398A (en) * 2014-01-22 2014-04-02 武汉大学 Transducer for detecting rock mass acoustic wave
WO2014104595A1 (en) * 2012-12-24 2014-07-03 대우조선해양 주식회사 Method of analyzing geophysical logging data
CN104035139A (en) * 2014-06-27 2014-09-10 中国电建集团贵阳勘测设计研究院有限公司 Method for measuring range and depth of fractured rock mass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374700A (en) * 2018-12-07 2019-02-22 中南大学 A method of detection fissure rock filling experiment effect

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325373B1 (en) * 1999-11-15 2002-02-28 김인식 Device and Method to Measure Stress Waves inside a Core Hole of Tunnel Lining
JP2002162389A (en) * 2000-11-27 2002-06-07 Mitsubishi Cable Ind Ltd Ultrasonic wave degradation diagnosing device for low- voltage electric-wire cable for nuclear power station
KR20030086783A (en) * 2002-05-07 2003-11-12 지하정보기술(주) A pressing and fitting device for the precise aquisition of seismic reflection signals in tunnel
KR100745036B1 (en) * 2006-09-07 2007-08-01 경희대학교 산학협력단 In-hole seismic method for measuring dynamic stiffness of subsurface materials
KR100767595B1 (en) 2006-09-07 2007-10-17 경희대학교 산학협력단 In-hole seismic testing device for measuring dynamic stiffness of subsurface materials
KR100921569B1 (en) 2007-11-26 2009-10-12 한국원자력연구원 Geostatistical Method for Calculating Rock Fracture Aperture Using Hydraulic Test Data
JP2012207999A (en) * 2011-03-29 2012-10-25 Central Research Institute Of Electric Power Industry Method for evaluating clearance state in rock mass by radon, and evaluation device of clearance state of rock mass by radon
JP2013032956A (en) * 2011-08-01 2013-02-14 Central Research Institute Of Electric Power Industry Method and device for evaluating condition of fracture of rock mass by radon
JP2014032123A (en) * 2012-08-03 2014-02-20 Fukui Prefecture Crack part evaluation method for ground surface reinforcement layer
WO2014104595A1 (en) * 2012-12-24 2014-07-03 대우조선해양 주식회사 Method of analyzing geophysical logging data
CN103698398A (en) * 2014-01-22 2014-04-02 武汉大学 Transducer for detecting rock mass acoustic wave
CN104035139A (en) * 2014-06-27 2014-09-10 中国电建集团贵阳勘测设计研究院有限公司 Method for measuring range and depth of fractured rock mass
CN104035139B (en) * 2014-06-27 2016-08-24 中国电建集团贵阳勘测设计研究院有限公司 Method for measuring range and depth of fractured rock mass

Also Published As

Publication number Publication date
JP3396596B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JPH10318996A (en) Method and equipment for measuring range of slack or crack in ground, bed rock, concrete structure, and the like
US3817345A (en) Continuous bit positioning system
US11619018B2 (en) Soil probing device having built-in generators and detectors for compressional waves and shear waves
JP5009873B2 (en) Support layer arrival detection device and detection method at tip of cast-in-place pile
CN105318824A (en) A method for measuring loose circles of surrounding rocks based on distributed resistance strain gauges
JP2019078549A (en) Face front probing method
JP4344440B2 (en) Anchor device, system anchor, and method of seismic exploration or tomography
CN210917488U (en) Pile foundation quality monitoring system for construction process
JPH03152420A (en) Method and apparatus for measuring movement of ground
JP3405207B2 (en) Judgment method of ground supported by excavator
KR100745036B1 (en) In-hole seismic method for measuring dynamic stiffness of subsurface materials
CN113417644A (en) Karst cave detection method in shield construction process
CN106592654A (en) Monitoring method for perpendicularity of steel pipe pile
CN1323300C (en) Harmless measuring method and device for analyzing and determining underground pile penetration length
CN210426413U (en) Multipoint displacement measuring system based on magnetic displacement sensor
JP3274341B2 (en) Damage inspection method for structural support piles
JP2559265B2 (en) Judgment method of ground properties
KR100390082B1 (en) Method of detecting an explosive time in seismic tomography survey and apparatus thereof
JP3272261B2 (en) Hole bending measurement method during drilling
JPS62291392A (en) Detection of support layer by ground drilling
CN218995257U (en) Inclined hole acoustic wave test pushing device and inclined hole acoustic wave test equipment
CN215448010U (en) Device capable of synchronously detecting integrity of pile body and underground water level
JPH08320228A (en) Attitude measuring device for boring rod
JP7337715B2 (en) How to install steel pipes in the ground
CN212742478U (en) Vibrating string type earth pressure gauge

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150207

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees