JP2559265B2 - Judgment method of ground properties - Google Patents

Judgment method of ground properties

Info

Publication number
JP2559265B2
JP2559265B2 JP63328966A JP32896688A JP2559265B2 JP 2559265 B2 JP2559265 B2 JP 2559265B2 JP 63328966 A JP63328966 A JP 63328966A JP 32896688 A JP32896688 A JP 32896688A JP 2559265 B2 JP2559265 B2 JP 2559265B2
Authority
JP
Japan
Prior art keywords
ground
standing hole
wave
hole
standing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63328966A
Other languages
Japanese (ja)
Other versions
JPH02176011A (en
Inventor
勉 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP63328966A priority Critical patent/JP2559265B2/en
Publication of JPH02176011A publication Critical patent/JPH02176011A/en
Application granted granted Critical
Publication of JP2559265B2 publication Critical patent/JP2559265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はグラウトによって改良した地盤性状を検査
したり、トンネル掘削に伴う周辺地盤の緩み状態等を判
定する際に用いる地盤性状の判定方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for determining a ground property used for inspecting a ground property improved by a grout and for determining a loose state of a surrounding ground due to tunnel excavation. It is a thing.

〔従来の技術〕[Conventional technology]

土木工事現場等において、施工に先だって工事現場の
地盤をセメントミルクやモルタルなどのグラウトによっ
て改良することが良く行われるが、この改良結果は、そ
の後の工事の進行度合いに影響するので、改良効果の判
定が行われる。この判定方法の従来例としては、第4図
に示すようなものがある。これは地盤1に第1の立孔2
および第2の立孔3を掘削し、その第1の立孔2には、
この第1の立孔2の内周面に圧着される発振器4を設
け、もう1つの第2の立孔3には受信器5を設けたもの
から成る。そして、上記発振器4に対し地上から差し入
れたロッド6を上下方向に打撃して、この発振器4から
第1の立孔2の内周面および地盤中に、鉛直成分の変位
を含む弾性波(以下、SV波という)7を発生および伝播
させる。一方、このSV波7は第2の立孔3の内周面を通
じて受信器5に伝えられる。そして、かかる弾性波の発
振から受信までの時間つまり、弾性波の地盤1への伝わ
り方から振動解析装置(図示しない)によって、地盤性
状が解析され、かかる測定試験が第1の立孔2および第
2の立孔3の複数箇所で、繰り返し実施されて、地盤の
深さ方向の性状判定を総合的に行う。
At civil engineering work sites, etc., the ground at the construction site is often improved with grout such as cement milk or mortar prior to the construction. A decision is made. A conventional example of this determination method is shown in FIG. This is the first vertical hole 2 in the ground 1.
And the second standing hole 3 is excavated, and in the first standing hole 2,
An oscillator 4 to be crimped is provided on the inner peripheral surface of the first standing hole 2, and a receiver 5 is provided on the other second standing hole 3. Then, the rod 6 inserted from the ground to the oscillator 4 is struck in the up-down direction, and an elastic wave including a displacement of a vertical component (hereinafter referred to as an elastic wave) from the oscillator 4 to the inner peripheral surface of the first standing hole 2 and the ground. , SV wave) 7 is generated and propagated. On the other hand, this SV wave 7 is transmitted to the receiver 5 through the inner peripheral surface of the second standing hole 3. Then, the ground property is analyzed by the vibration analyzer (not shown) from the time from the oscillation of the elastic wave to the reception, that is, how the elastic wave is transmitted to the ground 1, and the measurement test is performed by the first standing hole 2 and It is repeatedly performed at a plurality of locations in the second standing hole 3 to comprehensively determine the property in the depth direction of the ground.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このような従来の地盤性状の判定方法
にあっては、SV波7を地盤1に伝播させる弾性波として
用いるため、地盤1の剛性の高い層と低い層との領界付
近で入射または反射する上記鉛直の弾性波の一部がP波
8として受信器5に受信されてしまい、これが本来の受
信すべき弾性波の波形の乱れを大きくし、弾性波速度す
なわち地盤性状の測定精度を低下させてしまうという問
題点があった。
However, in such a conventional ground property determination method, since the SV wave 7 is used as an elastic wave propagating to the ground 1, the SV wave 7 is incident near the boundary between the high rigidity layer and the low rigidity layer of the ground 1. A part of the reflected vertical elastic wave is received by the receiver 5 as the P wave 8, which increases the disturbance of the waveform of the elastic wave to be originally received, and improves the measurement accuracy of the elastic wave velocity, that is, the ground property. There was a problem of lowering it.

この発明はかかる従来の問題点に着目してなされたも
のであり、第1の立孔に圧着させたせん断波発振器から
地盤中に水平方向に伝播するせん断波を発射し、これを
第2の立孔に設けた受信器にて受信することにより、P
波の発生および妨害のない弾性波検出および弾性波速度
の測定を高精度にて実施することができる地盤性状の判
定方法を得ることを目的とする。
The present invention has been made by paying attention to such a conventional problem, and a shear wave propagating horizontally in the ground is emitted from the shear wave oscillator crimped to the first vertical hole, and this is transmitted to the second By receiving with the receiver installed in the vertical hole, P
An object of the present invention is to obtain a method for determining a ground property that enables highly accurate detection of elastic waves and measurement of elastic wave velocity without generation of waves and interference.

〔課題を解決するための手段〕[Means for solving the problem]

そして、かかる目的を達成するために、この発明にか
かる地盤性状の判定方法は、地盤に第1の立孔および第
2の立孔を設けて、衝撃トルクを受けることによって、
この第1の立孔内に圧着させたせん断波発振器が発生す
るせん断波を、上記第2の立孔に設けた受信器により受
信して、上記第1の立孔および第2の立孔間の地盤の弾
性波速度を測定するようにしたものである。
Then, in order to achieve such an object, the method for determining the ground property according to the present invention provides the first standing hole and the second standing hole in the ground, and receives the impact torque,
The shear wave generated by the shear wave oscillator crimped in the first standing hole is received by the receiver provided in the second standing hole, and the shear wave is received between the first standing hole and the second standing hole. The elastic wave velocity of the ground is measured.

〔作用〕[Action]

この発明におけるせん断波発生器は、外部から水平方
向の衝撃トルクが印加されることによって、第1の立孔
の内周面(内周壁)およびその周辺地盤に、水平方向の
ねじり力を瞬間的に印加伝播する。この伝播弾性波は水
平方向に変位する振動波であり、従って深さ方向にある
剛性が異なる層へ入射あるいは反射が少なく、しかもP
波を発生しない。このため、P波によるせん断波の乱れ
は生じることがなく、地盤性状の測定精度を高められる
ようにしている。
The shear wave generator according to the present invention instantaneously applies a horizontal torsional force to the inner peripheral surface (inner peripheral wall) of the first vertical hole and the surrounding ground by applying a horizontal impact torque from the outside. Propagated to. This propagating elastic wave is an oscillating wave that is displaced in the horizontal direction, and therefore is less likely to be incident on or reflected in a layer having different rigidity in the depth direction.
Does not generate waves. Therefore, the shear wave is not disturbed by the P wave, and the measurement accuracy of the ground property can be improved.

〔実施例〕〔Example〕

以下に、この発明の一実施例を図について説明する。
第1図において、1は地盤、2は第1の立孔、3は第2
の立孔で、これらは第4図に示したものと同様である。
11はこの発明におけるせん断波発振器で、これが第1の
立孔2に圧着される。12はせん断波13としての弾性波の
受信器で、これが第2の立孔3内に設けられている。
An embodiment of the present invention will be described below with reference to the drawings.
In FIG. 1, 1 is the ground, 2 is the first standing hole, and 3 is the second
These are the same as those shown in FIG.
Reference numeral 11 denotes a shear wave oscillator according to the present invention, which is crimped to the first standing hole 2. Reference numeral 12 is a receiver for elastic waves as shear waves 13, which is provided in the second standing hole 3.

また、このせん断波発振器11は、全体として第2図に
示すように構成され、第1の立孔2内に挿入されたロッ
ド14と、このロッド14の上部(第1の立孔2内の)およ
び下部に取り付けられた一対のパッカー15,16と、これ
らのパッカー15,16間のロッド14の外周に、円周方向お
よび上下方向に複数個に分割して設置された突っ張りセ
ル部17と、上記パッカー15,16に圧縮空気を供給する空
気ホース18と、ロッド14内の通路(図示しない)を通し
て、上記突っ張りセル部17駆動用の油圧シリンダ(図示
しない)に油圧を供給する油圧ホース19と、上記ロッド
14の上端に直交する方向に第3図に示すように固定した
衝撃受アーム20と、この衝撃受アーム20の上方のロッド
14上に回転自在に取り付けられた水平の衝撃負荷アーム
21と、この衝撃負荷アーム21の両端に吊持させたおもり
22とを備えている。なお、上記パッカー15,16は第1の
立孔2内の一部を水がない領域として他から分断するた
めに設けられ、空気ホース18を通じて圧縮空気を送りこ
んで膨大させることで、せん断波発振器11本体の設置空
間が確保される。また、突っ張りセル部17は油圧ホース
19を通じて油圧シリンダ内に油圧を送りこむことによ
り、外径方向に突出して、第1の立孔2の内周面(内周
壁)を内側から押圧して、ロッド14と第1の立孔2の内
周壁との一体結合を可能にしている。
The shear wave oscillator 11 is configured as shown in FIG. 2 as a whole, and has a rod 14 inserted into the first standing hole 2 and an upper portion of the rod 14 (in the first standing hole 2). ) And a pair of packers 15 and 16 attached to the lower part, and a strut cell part 17 installed in the outer circumference of the rod 14 between these packers 15 and 16 in a circumferentially and vertically divided manner. , An air hose 18 for supplying compressed air to the packers 15 and 16, and a hydraulic hose 19 for supplying hydraulic pressure to a hydraulic cylinder (not shown) for driving the strut cell portion 17 through a passage (not shown) in the rod 14. And above rod
An impact receiving arm 20 fixed as shown in FIG. 3 in a direction orthogonal to the upper end of 14 and a rod above the impact receiving arm 20.
Horizontal impact load arm rotatably mounted on 14
21 and a weight suspended from both ends of this impact load arm 21.
22 and. The packers 15 and 16 are provided to divide a part of the first vertical hole 2 from the other as a water-free region, and the compressed air is sent through the air hose 18 to expand the compressed air. 11 The installation space for the main body is secured. In addition, the tension cell part 17 is a hydraulic hose.
By sending hydraulic pressure into the hydraulic cylinder through 19, it projects in the outer diameter direction and presses the inner peripheral surface (inner peripheral wall) of the first standing hole 2 from the inside, and the rod 14 and the first standing hole 2 It enables an integral connection with the inner wall.

次に動作について説明する。 Next, the operation will be described.

まず、ロッド14にパッカー15,16および突っ張りセル
部17を取り付けたものを、予め掘削した地盤1内の第1
の立孔2内に挿入し、地盤1への衝撃印加部位に突っ張
りセル部17を合わせる。次に、上記パッカー15,16に圧
縮空気を送りこんでこれらを膨大させることによって、
衝撃印加部分を他から隔離して、この部分の水抜きを行
う。さらに、続いて、上記油圧シリンダ(図示しない)
に油圧を送り込んで、各突っ張りセル部17を外径方向に
突出させ、第1の立孔2の内周壁に突っ張らせて、ロッ
ド14とこの立孔2の内周壁とのできるだけ剛結合する。
First, the rod 14 having the packers 15 and 16 and the tension cell portion 17 attached thereto is used as a first excavation in the first ground in the ground 1.
It is inserted in the vertical hole 2 of the, and the tension cell portion 17 is aligned with the impact application site on the ground 1. Next, by sending compressed air to the packers 15 and 16 and enlarging them,
Isolate the impacted part from other parts and drain water from this part. Further, subsequently, the hydraulic cylinder (not shown)
A hydraulic pressure is sent to each of the tension cell parts 17 so as to project in the outer diameter direction, and the tension cell parts 17 are stretched to the inner peripheral wall of the first standing hole 2 so that the rod 14 and the inner peripheral wall of the standing hole 2 are rigidly connected to each other.

一方、上記ロッド14の第1の立孔2内への挿入作業に
前後して、ロッド14の上端部に衝撃受アーム20を固定す
るとともに、このロッド14上であって衝撃受アーム20の
上方に、おもり22を両端に有する衝撃負荷アーム21を回
転自在に取り付ける。
On the other hand, before and after the work of inserting the rod 14 into the first standing hole 2, the impact receiving arm 20 is fixed to the upper end of the rod 14 and is above the impact receiving arm 20. An impact load arm 21 having a weight 22 at both ends is rotatably attached to the.

次に、かかる状態において、衝撃負荷アーム21を、予
め決定した一定の速度で外部から回転操作する。する
と、おもり22も同様に回転し、最大180゜付近まで回転
して、おもり22が衝撃受アーム20に衝突する。つまり、
このせん断波発振器はこの衝突によって衝撃トルクが加
えられて、せん断波(以下、SH波という)を発生し、ロ
ッド14および突っ張りセル部17を通じて、第1の立孔2
の内周壁に伝播される。そして、このSH波はその内周壁
周辺の地盤を水平方向にねじる力としてその地盤に伝え
られ、遂には第2の立孔3の内周辺に固定した受信器に
よって受信され、この受信結果が図示しない地上の振動
解析装置に伝えられる。この振動解析装置では、その受
信した弾性波であるせん断波形から伝播速度などを解析
処理して、地盤の性状を測定し、必要に応じプリントア
ウトまたはディスプレイ表示する。この場合において、
SH波は地盤1の異なる層において入射および反射が生じ
てもP波を発生せず、従って、このSH波による測定結果
は、極めて信頼性の高いものとなる。従って、このせん
断波を用いる地盤の性状測定は、特に、P波の影響の大
きい飽和した地盤に適して有効である。
Next, in such a state, the impact load arm 21 is externally rotated at a predetermined constant speed. Then, the weight 22 also rotates and rotates up to a maximum of about 180 °, and the weight 22 collides with the impact receiving arm 20. That is,
This shear wave oscillator generates a shear wave (hereinafter referred to as SH wave) due to the impact torque applied by this collision, and the shear wave (hereinafter referred to as SH wave) is generated through the rod 14 and the strut cell portion 17 to the first standing hole 2
Is propagated to the inner wall of. Then, this SH wave is transmitted to the ground as a force to twist the ground around the inner peripheral wall in the horizontal direction, and finally received by the receiver fixed to the inner circumference of the second standing hole 3, and the reception result is shown in the figure. Not transmitted to ground vibration analyzer. This vibration analysis device analyzes the propagation velocity and the like from the received shear waveform which is an elastic wave, measures the properties of the ground, and prints out or displays it on a display as necessary. In this case,
The SH wave does not generate the P wave even when incident and reflected on different layers of the ground 1, and therefore the measurement result by the SH wave becomes extremely reliable. Therefore, the measurement of the ground property using this shear wave is particularly suitable and effective for the saturated ground greatly affected by the P wave.

また、実際には第1の立孔2内におけるせん断波の印
加部位を深さ方向に多数設定し、これに対応する第2の
立孔2内の複数位置で、上記せん断波の受信を行い、こ
れらの複数の受信データを総合的に解析することによ
り、所定深さ領域における地盤の性状を立体的データと
して得ることができ、性状判定がより高精度に行えるこ
とになる。なお、この場合においてせん断波発振器11や
受信器12を複数台個別的に並設したり、あるいは各1台
を移動させながら、上記測定を行うことができる。
In addition, in practice, a large number of shear wave application sites in the first standing hole 2 are set in the depth direction, and the shear waves are received at a plurality of positions in the second standing hole 2 corresponding thereto. By comprehensively analyzing the plurality of received data, the property of the ground in the predetermined depth area can be obtained as three-dimensional data, and the property determination can be performed with higher accuracy. In this case, the above-mentioned measurement can be carried out while a plurality of shear wave oscillators 11 and receivers 12 are individually arranged side by side or one of them is moved.

また、測定作業が終了した場合は、パッカー15,16内
の圧縮空気を抜き、油圧シリンダの油圧を抜いて突っ張
りセル部17を退避させれば、これらをロッドとともに、
第1の立孔2から容易に抜き取ることができ、次の作業
位置へ運んで再利用することができる。
Further, when the measurement work is completed, the compressed air in the packers 15 and 16 is evacuated, the hydraulic pressure of the hydraulic cylinder is evacuated, and the tension cell portion 17 is retracted.
It can be easily removed from the first standing hole 2 and can be carried to the next working position for reuse.

従って、例えばグラウトの地盤への注入により地盤が
改良されたか否かの判定や、トンネル地山のグラウトに
よる地盤性状の改善の取合いなどの判定を迅速にしかも
正確に行うことができる。
Therefore, for example, it is possible to quickly and accurately determine whether or not the ground has been improved by injecting grout into the ground and whether or not the ground property is improved by the grout of the tunnel ground.

〔発明の効果〕〔The invention's effect〕

以上詳細に述べてきたように、この発明によれば地盤
に第1の立孔および第2の立孔を設けて、衝撃トルクを
受けることによってこの第1の立孔内に圧着させたせん
断波発振器が発生するせん断波を、上記第2の立孔に設
けた受信器により受信して、上記第1の立孔および第2
の立孔間の地盤の弾性波速度を測定するようにしたの
で、P波による障害なしに、せん断波たる弾性波の伝播
速度を高精度に測定でき、この結果、地盤性状の良否判
定,状態測定を正確に行うことができるという効果が得
られる。
As described in detail above, according to the present invention, a shear wave is provided in which the first standing hole and the second standing hole are provided in the ground and is pressed into the first standing hole by receiving an impact torque. The shear wave generated by the oscillator is received by the receiver provided in the second vertical hole, and the first vertical hole and the second vertical hole are received.
Since the elastic wave velocity of the ground between the vertical holes is measured, the propagation velocity of the elastic wave, which is a shear wave, can be measured with high accuracy without any obstacle due to the P wave. The effect that the measurement can be accurately performed is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明にかかる地盤性状の判定方法を実施す
るせん断波発生システムを示す原理図、第2図はこの発
明で用いるせん断波発振器の正面図、第3図は同じく衝
撃トルク発生部の構成を示す斜視図、第4図は従来の地
盤性状の判定方法を実施する弾性波発生システムを示す
原理図である。 1……地盤、2……第1の立孔、3……第2の立孔、11
……せん断波発振器、12……受信器、13……せん断波。
FIG. 1 is a principle view showing a shear wave generation system for carrying out the method for determining the ground property according to the present invention, FIG. 2 is a front view of a shear wave oscillator used in the present invention, and FIG. FIG. 4 is a perspective view showing the configuration, and FIG. 4 is a principle diagram showing an elastic wave generation system for carrying out a conventional method for determining the ground property. 1 ... Ground, 2 ... First standing hole, 3 ... Second standing hole, 11
…… Shear wave oscillator, 12 …… Receiver, 13 …… Shear wave.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】地盤に第1の立孔および第2の立孔を設け
て、この第1の立孔内に圧着させたせん断波発振器が衝
撃トルクを受けて発生するせん断波を、上記第2の立孔
に設けた受信器により受信して、上記第1の立孔および
第2の立孔間の地盤の弾性波速度を測定する地盤性状の
判定方法。
1. A first standing hole and a second standing hole are provided in the ground, and a shear wave oscillator generated by receiving a shock torque by a shear wave oscillator crimped in the first standing hole generates A method for determining a ground property, which is received by a receiver provided in the second standing hole and measures an elastic wave velocity of the ground between the first standing hole and the second standing hole.
【請求項2】せん断波発振器は、衝撃トルクによって第
1の立孔周辺の地盤に瞬間的にねじり力を伝播するもの
であることを特徴とする請求項1記載の地盤性状の判定
方法。
2. The method for determining the ground property according to claim 1, wherein the shear wave oscillator instantaneously propagates a torsional force to the ground around the first upright hole by impact torque.
JP63328966A 1988-12-28 1988-12-28 Judgment method of ground properties Expired - Lifetime JP2559265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328966A JP2559265B2 (en) 1988-12-28 1988-12-28 Judgment method of ground properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328966A JP2559265B2 (en) 1988-12-28 1988-12-28 Judgment method of ground properties

Publications (2)

Publication Number Publication Date
JPH02176011A JPH02176011A (en) 1990-07-09
JP2559265B2 true JP2559265B2 (en) 1996-12-04

Family

ID=18216108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328966A Expired - Lifetime JP2559265B2 (en) 1988-12-28 1988-12-28 Judgment method of ground properties

Country Status (1)

Country Link
JP (1) JP2559265B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455315B1 (en) * 2001-06-08 2004-11-09 군산대학교산학협력단 Ground investigation method
JP4704848B2 (en) * 2005-08-12 2011-06-22 株式会社竹中工務店 Ground improvement evaluation device and ground improvement evaluation program
CN104635110A (en) * 2015-01-23 2015-05-20 昆明理工大学 Wave celerity checking method based on measured data
JP7025220B2 (en) * 2018-01-17 2022-02-24 道三 市原 Vibration device
CN110847142A (en) * 2019-11-27 2020-02-28 黑龙江工程学院 Exploration method for geotechnical engineering geophysical prospecting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640793A (en) * 1979-09-13 1981-04-17 Tokyo Shibaura Electric Co Fuel oneeside hanging judgment device

Also Published As

Publication number Publication date
JPH02176011A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
CN105974465B (en) Tunnel dimensionally seismic wave forward probe spatial observation System and method for
KR101547508B1 (en) Apparatus for predicting front geological features and the method thereof
JP2007231729A (en) Method and device for prior survey in tunnel construction
JP4449048B2 (en) Underground structure measuring device
JPH0988110A (en) Method of diagnosing defect of foundation pile
CN108802193A (en) A kind of detecting devices and detection method of Exploring Loose Rock Country in Tunnels
CN106703822B (en) Elastic wave reflection method device installed on shield tunneling machine and measurement method thereof
CN107505650A (en) The Security Evaluation System and method of dike among closely-spaced tunnel
JP3448065B2 (en) How to determine the position of a rock drill tool
CN103774701B (en) The method of Vertical spots integrality under virtual isolation single pile method detection existing structure thing
JP2559265B2 (en) Judgment method of ground properties
CN210917488U (en) Pile foundation quality monitoring system for construction process
JP2944515B2 (en) Shape diagnosis method for natural structures
JP5997521B2 (en) Face investigation method using shield machine
JPH10318996A (en) Method and equipment for measuring range of slack or crack in ground, bed rock, concrete structure, and the like
US4310066A (en) Torsional shear wave generator
JP3099042B2 (en) Judgment method for strength of ground improvement body
JP4260329B2 (en) Geological exploration method in front of tunnel face
CN207881832U (en) A kind of measurement device of the ground designated depth horizontal direction impedance,motional based on pulse excitation difference response analysis
JP3072621B2 (en) Ground survey method and device using S-wave generator and cone penetration device mounted on ground survey vehicle
KR100325373B1 (en) Device and Method to Measure Stress Waves inside a Core Hole of Tunnel Lining
JP3274341B2 (en) Damage inspection method for structural support piles
CN111158043B (en) System and method for detecting hidden danger at pile bottom of bored pile
JPH10183659A (en) Evaluation system and method for pile-foundation
JP2559265C (en)