JPH10318719A - Method and apparatus for detection of plate width and meandering - Google Patents

Method and apparatus for detection of plate width and meandering

Info

Publication number
JPH10318719A
JPH10318719A JP9125137A JP12513797A JPH10318719A JP H10318719 A JPH10318719 A JP H10318719A JP 9125137 A JP9125137 A JP 9125137A JP 12513797 A JP12513797 A JP 12513797A JP H10318719 A JPH10318719 A JP H10318719A
Authority
JP
Japan
Prior art keywords
light
strip steel
width
meandering
rolled material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9125137A
Other languages
Japanese (ja)
Other versions
JP3322606B2 (en
Inventor
Takashi Okai
隆 岡井
Koichi Kurita
耕一 栗田
Kazuo Ideue
和夫 井出上
Yoji Teramoto
洋二 寺本
Sumiharu Tazaki
澄晴 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12513797A priority Critical patent/JP3322606B2/en
Publication of JPH10318719A publication Critical patent/JPH10318719A/en
Application granted granted Critical
Publication of JP3322606B2 publication Critical patent/JP3322606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus in which the end part (the edge part) of even a nonradiant steel sheet belt can be detected with high accuracy and by a low-cost and extremely simple technique. SOLUTION: The position of incidence or the angle of incidence of optical fiber cables 30, 31 which transmit light to glass rods 34, 35 at illumination heads 32, 32 is adjusted. A grade is given to the intensity of irradiation light radiated from the illumination heads 32, 33. The distribution of the intensity of beams of reflected light from end parts 22, 23 of a rolled material 21 is made nearly uniform irrespective of distances from the illumination heads 32, 33. The plate width and the meandering amount of the rolled material 21 being rolled are detected. The detecting accuracy of the end parts 22, 23 of the rolled material 21 is enhanced sharply. The end parts 22, 23 can be detected with extremely high accuracy even with reference to the rolled material 21 which does not generate a radiation and whose temperature is low. As a result, the performance of hot rolling apparatus is enhanced remarkably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延設備にお
ける鋼板の板幅及び蛇行を検出する板幅・蛇行検出方法
及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting the width and meandering of a steel sheet in a hot rolling facility.

【0002】[0002]

【従来の技術】熱間圧延設備において、帯板鋼の板幅や
蛇行量を正確に検出する技術は、熱間圧延装置の性能を
維持する上で必要不可欠な技術である。
2. Description of the Related Art In hot rolling equipment, a technique for accurately detecting the width and meandering amount of strip steel is an indispensable technique for maintaining the performance of a hot rolling apparatus.

【0003】従来の帯板鋼の板幅及び蛇行を検出する装
置は、図6に示すように、帯板鋼(圧延材)1の板幅方
向のエッジ部(端部)2,3を撮影するため、端部2,
3の位置にそれぞれ2台のカメラ4,5及びカメラ6,
7を設置し、高温の圧延材1からの可視及び赤外領域の
輻射をこれらのカメラ4,5及びカメラ6,7で検出し
ている。カメラ4,5及びカメラ6,7で撮影された画
像はアナログ画像信号に変換され、ケーブル9〜12に
より画像信号入力部13に伝送される。
As shown in FIG. 6, a conventional apparatus for detecting the width and meandering of a strip steel photographes edges (ends) 2 and 3 in the strip width direction of a strip steel (rolled material) 1. End 2
Two cameras 4, 5 and 6,
7, the visible and infrared radiations from the hot rolled material 1 are detected by the cameras 4, 5 and the cameras 6, 7. Images captured by the cameras 4 and 5 and the cameras 6 and 7 are converted into analog image signals, and transmitted to the image signal input unit 13 via the cables 9 to 12.

【0004】画像信号入力部13ではデジタル信号に変
換されて記憶され、記憶された画像信号の中から、エッ
ジ検出処理部14で画像輝度のしきい値処理等の画像処
理により、圧延材1の端部2,3の位置を検出する。求
められた圧延材1の端部2,3とカメラ4,5及びカメ
ラ6,7の設定位置とから、圧延材1の蛇行量や板幅を
蛇行量・板幅演算処理部15で演算処理により求め、モ
ニタ部16に検出量として与える。
The image signal input unit 13 converts the digital signal into a digital signal and stores the digital signal. From the stored image signal, the edge detection processing unit 14 performs image processing such as threshold processing of the image luminance, and performs processing of the rolled material 1. The positions of the ends 2 and 3 are detected. The meandering amount and the sheet width of the rolled material 1 are calculated by the meandering amount / sheet width calculating unit 15 from the determined end portions 2 and 3 of the rolled material 1 and the set positions of the cameras 4 and 5 and the cameras 6 and 7. And gives it to the monitor 16 as a detection amount.

【0005】求める蛇行量Dは、圧延材1の板幅方向の
機械中心17と板幅中心18とのずれ量である。蛇行量
Dと板幅Wはカメラ4,5及びカメラ6,7の設定条件
であるカメラ4,5及びカメラ6,7の位置、傾き及び
カメラ位置を起点とする端部2,3の位置の直線y1,
y2,y3,y4から演算することができる。
[0005] The meandering amount D to be determined is the amount of deviation between the mechanical center 17 and the sheet width center 18 of the rolled material 1 in the sheet width direction. The meandering amount D and the plate width W are the setting conditions of the cameras 4, 5 and the cameras 6, 7, the positions and inclinations of the cameras 4, 5, and the cameras 6, 7, and the positions of the ends 2, 3 starting from the camera position. Straight line y1,
It can be calculated from y2, y3, y4.

【0006】上述した従来技術には、対象とする圧延材
1が加熱され可視及び赤外領域で自発光する輻射をカメ
ラ4,5及びカメラ6,7で検出する自発光方式と、圧
延材1の下側に蛍光灯19等を入れた防水構造の光源2
0を配置し、圧延材1での自発光を除去する光学フィル
タを通した画像から、光源20と圧延材1の境界で明暗
の変化する部分を端部として検出するバックライト方式
とがある。
[0006] The prior art described above includes a self-luminous system in which the target rolled material 1 is heated and detected by the cameras 4 and 5 and the cameras 6 and 7 to emit light that emits light in the visible and infrared regions. Light source 2 with fluorescent light 19 etc.
There is a backlight system in which 0 is arranged and a portion where the brightness changes at the boundary between the light source 20 and the rolled material 1 is detected as an end from an image passed through an optical filter for removing self-emission from the rolled material 1.

【0007】[0007]

【発明が解決しようとする課題】ところが、自発光方式
では圧延材1の温度が500 ℃以下に低下すると、発光す
る輻射の波長が長波長になり、カメラ4,5及びカメラ
6,7の検出波長域外になることから、カメラ4,5及
びカメラ6,7により端部2,3の検出が不可能とな
る。また、バックライト方式では、光源20が圧延材1
の下にあることから、光源20への水垢、汚物の付着に
よる光量の低下や、圧延材1のスケールの付着等により
誤検出が発生し、頻繁にメンテナンスする必要がある。
However, in the self-luminous method, when the temperature of the rolled material 1 falls to 500 ° C. or less, the wavelength of the emitted radiation becomes long, and the detection of the cameras 4 and 5 and the cameras 6 and 7 is performed. Since the wavelengths fall outside the wavelength range, the detection of the end portions 2 and 3 by the cameras 4 and 5 and the cameras 6 and 7 becomes impossible. Further, in the backlight system, the light source 20 is a rolled material 1
Erroneous detection occurs due to a decrease in the amount of light due to the adhesion of water scale and dirt to the light source 20 and the adhesion of the scale of the rolled material 1, and frequent maintenance is required.

【0008】上述したように、圧延材1の温度が低下し
可視及び赤外領域の輻射の波長がカメラ4,5及びカメ
ラ6,7の検出波長域にない圧延材1では、圧延材1の
端部2,3の検出精度が著しく低下する。このため、別
途光源を設け、光ファイバーケーブル等を用いて圧延材
1の上方から照明する手段が講じることが考えられる
が、単純に光ファイバーケーブル等で圧延材1を照射す
ると、光の強度分布の不均一が生じ、精度の高い端部
2,3の検出は困難となり、圧延装置全体の性能に著し
く悪い影響を与えている。
As described above, in the case of the rolled material 1 in which the temperature of the rolled material 1 is lowered and the wavelength of radiation in the visible and infrared regions is not within the detection wavelength range of the cameras 4 and 5 and the cameras 6 and 7, The detection accuracy of the ends 2 and 3 is significantly reduced. For this reason, it is conceivable to provide a separate light source and take measures to illuminate the rolled material 1 from above the rolled material 1 using an optical fiber cable or the like. Uniformity occurs, making it difficult to detect the ends 2 and 3 with high accuracy, which significantly affects the performance of the entire rolling mill.

【0009】本発明は上記状況に鑑みてなされたもの
で、低コストで極めて簡便な手法で、輻射を生じない帯
板鋼に対しても端部(エッジ部)の高精度な検出を可能
とした板幅・蛇行検出方法及び装置を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and enables highly accurate detection of an end portion (edge portion) even for a strip steel that does not generate radiation by a low cost and extremely simple method. It is an object of the present invention to provide a method and an apparatus for detecting a plate width and meandering.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明の板幅・蛇行検出方法は、圧延中の帯板鋼を照
明して得られる撮像状態から前記帯板鋼の板幅と蛇行量
を検出する鋼板の熱間圧延設備における板幅及び蛇行検
出方法であって、照明ヘッドのガラスロッド部に光を伝
える光ファイバーケーブルの入射位置または入射角度を
調整して前記照明ヘッドから出る照射光強度に勾配を与
え、前記照明ヘッドからの距離に拘らず前記帯板鋼のエ
ッジ部からの反射光の強度分布を略均一にして圧延中の
前記帯板鋼の板幅及び蛇行量を検出することを特徴とす
る。
According to the present invention, there is provided a strip width / meander detecting method for achieving the above object, wherein a strip width of the strip steel is determined from an imaging state obtained by illuminating the strip steel during rolling. What is claimed is: 1. A sheet width and meandering detection method for a steel sheet hot rolling facility for detecting a meandering amount, the method comprising: adjusting an incident position or an incident angle of an optical fiber cable for transmitting light to a glass rod portion of an illumination head; A gradient is given to the light intensity, and the intensity distribution of the reflected light from the edge of the strip steel is made substantially uniform regardless of the distance from the illumination head, and the strip width and meandering amount of the strip steel during rolling are detected. It is characterized by doing.

【0011】また、上記目的を達成するための本発明の
板幅・蛇行検出装置は、圧延中の帯板鋼を照明して得ら
れる撮像状態から前記帯板鋼の板幅と蛇行量を検出する
鋼板の熱間圧延設備における板幅及び蛇行検出装置であ
って、レンズとガラスロッドで構成された照明ヘッド
と、前記照明ヘッドに光を供給するためのランプ及び集
光装置及び前記ガラスロッドへの入射状況が調整可能な
光ファイバーケーブルで構成された光源と、前記帯板鋼
に照射された光の反射光により前記帯板鋼のエッジ部を
撮像するため前記帯板鋼の両エッジ部近傍の上部にそれ
ぞれ2個一対で位相をずらして設置された撮像装置と、
前記撮像装置からの信号を演算処理する信号処理装置お
よびモニタ部とから構成され、前記ガラスロッド部に光
を伝える前記光ファイバーケーブルの入射位置または入
射角度を調整して前記照明ヘッドから出る照射光強度に
勾配を与え、前記帯板鋼のエッジ部からの反射光の強度
分布を前記照明ヘッドからの距離に拘らず略均一にして
圧延中の前記帯板鋼の板幅及び蛇行量を検出するように
したことを特徴とする。
According to another aspect of the present invention, there is provided a strip width and meandering detecting apparatus for detecting a strip width and a meandering amount of a strip steel from an imaging state obtained by illuminating the strip steel during rolling. A strip width and meandering detection device in a hot rolling facility for a steel sheet, comprising: an illumination head including a lens and a glass rod; a lamp for supplying light to the illumination head; a light condensing device; and the glass rod. A light source composed of an optical fiber cable whose incident state can be adjusted, and the vicinity of both edges of the strip steel for imaging the edges of the strip steel by reflected light of light applied to the strip steel. An imaging device installed on the upper part with two pairs each being shifted in phase,
A signal processing device that performs arithmetic processing on a signal from the imaging device and a monitor unit, and adjusts an incident position or an incident angle of the optical fiber cable that transmits light to the glass rod unit, and irradiates light intensity emitted from the illumination head. And the intensity distribution of the reflected light from the edge of the strip steel is made substantially uniform regardless of the distance from the illumination head to detect the width and meandering amount of the strip steel during rolling. It is characterized by the following.

【0012】[0012]

【発明の実施の形態】光ファイバーケーブルを用いた照
明では、照明の強度分布を均一にするため、透明のガラ
スロッドを光ファイバーケーブルの出口に配置し、ガラ
スロッドの内部での反射を利用して光強度の分布を略一
定にして複数のレンズで集光して対象物に照射する。通
常は、ガラスロッドの中心と光ファイバーケーブルの中
心を一致させて使用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In illumination using an optical fiber cable, a transparent glass rod is disposed at the exit of the optical fiber cable in order to make the intensity distribution of the illumination uniform, and light is reflected by the reflection inside the glass rod. The intensity distribution is made substantially constant, and the light is condensed by a plurality of lenses and irradiated onto an object. Usually, the center of the glass rod and the center of the optical fiber cable are used in alignment.

【0013】しかしこの方法では、帯板鋼のエッジ部の
光強度は、帯板鋼が蛇行して照明ヘッドに近づいた時は
強く、離れると弱くなり、帯板鋼の幅方向の蛇行による
遠近で光強度が大きく変化して離れた場合の計測が困難
になる。このため、蛇行量の正確な把握が困難である。
However, in this method, the light intensity at the edge of the strip steel is strong when the strip steel is meandering and approaches the illumination head, becomes weaker when the strip steel is moved away, and is far and near due to the meandering in the width direction of the strip steel. In this case, it is difficult to measure when the light intensity is greatly changed and the light is separated. For this reason, it is difficult to accurately grasp the meandering amount.

【0014】ガラスロッドに対して光ファイバーケーブ
ルの中心位置をずらして偏心させたり、ガラスロッドと
光ファイバーケーブルの中心軸を傾ける手段を講じるこ
とにより、照明光の強度分布を変化させることができ
る。これにより、帯板鋼のエッジ部がどこにあってもエ
ッジ部の光強度分布が一定になるようにガラスロッドと
光ファイバーケーブルの相対位置を偏心させたり傾斜さ
せたりする手段が講じられる。
The intensity distribution of the illumination light can be changed by shifting the center position of the optical fiber cable with respect to the glass rod so as to be eccentric, or by taking measures to incline the central axis of the glass rod and the optical fiber cable. Accordingly, a means is provided for eccentrically or inclining the relative position between the glass rod and the optical fiber cable so that the light intensity distribution at the edge is constant regardless of where the edge of the strip steel is located.

【0015】[0015]

【実施例】図1には本発明の一実施例に係る板幅・蛇行
検出装置の全体構成、図2には照明ヘッドの発光分布、
図3には反射光の強度分布、図4には照明ヘッドの概略
構成、図5にはガラスロッド内の光路状況を示してあ
る。本実施例は、光ファイバーケーブルとガラスロッド
間の中心軸の偏心により、帯板鋼上での光強度分布を一
定とし、カメラによるエッジ検出の精度を向上させたも
のである。
FIG. 1 shows an overall configuration of a plate width / meandering detection device according to an embodiment of the present invention. FIG. 2 shows a light emission distribution of an illumination head.
FIG. 3 shows the intensity distribution of the reflected light, FIG. 4 shows the schematic configuration of the illumination head, and FIG. 5 shows the state of the optical path in the glass rod. In the present embodiment, the eccentricity of the central axis between the optical fiber cable and the glass rod makes the light intensity distribution on the strip steel constant, thereby improving the edge detection accuracy by the camera.

【0016】図1に示すように、例えば、板幅2000mmの
帯板鋼(圧延材)21の板幅方向のエッジ部(端部)2
2,23を視野に入れて撮影するため、端部22,23
の位置にそれぞれ2台の撮像装置としてのカメラ24,
25及びカメラ26,27(視野角24度)を設置して
いる。カメラ24,25及びカメラ26,27は、機械
中心側のカメラ24,26が板幅方向のみ角度θ1 (θ
1 =12度)で板面から高さ950mm に位置し、その外側
のカメラ25,27が板幅方向のみ角度θ2 (θ2 =2
1度)で板面からの高さ860mm に位置し、内側のカメラ
24,26と外側のカメラ25,27はそれぞれ板幅方
向の間隔130mm で圧延材21の同一部分を撮影してい
る。
As shown in FIG. 1, for example, an edge portion (end portion) 2 of a strip steel (rolled material) 21 having a width of 2000 mm in the width direction of the plate.
The end portions 22, 23 are used in order to take a picture with the field of view 2, 23 in view.
, Two cameras 24 as imaging devices,
25 and cameras 26 and 27 (viewing angle 24 degrees). The cameras 24, 25 and the cameras 26, 27 are arranged such that the cameras 24, 26 on the machine center side have an angle θ 1
1 = 12 degrees) and located at a height of 950 mm from the plate surface, and the cameras 25 and 27 outside thereof are positioned at angles θ 22 = 2) only in the plate width direction.
(1 degree) at a height of 860 mm from the plate surface, and the inner cameras 24 and 26 and the outer cameras 25 and 27 each photograph the same portion of the rolled material 21 at an interval of 130 mm in the plate width direction.

【0017】出力60ワットのメタルハライドランプ光
源(光源)28,29から、光ファイバーケーブル3
0,31で光を照明ヘッド32,33に導き、光を圧延
材21のカメラ撮影位置に照射する。照明ヘッド32,
33の位置は、板幅方向が内側のカメラ24,26と外
側のカメラ25,27の中間で、高さ960mm 、角度は板
幅方向に16度、ライン方向に20度で設置されてい
る。
From a metal halide lamp light source (light source) 28, 29 having an output of 60 watts, an optical fiber cable 3
At 0 and 31, light is guided to the illumination heads 32 and 33, and the light is irradiated to the camera shooting position of the rolled material 21. Lighting head 32,
The position 33 is located between the inner cameras 24 and 26 and the outer cameras 25 and 27 in the board width direction, is 960 mm in height, and has an angle of 16 degrees in the board width direction and 20 degrees in the line direction.

【0018】この際、照明ヘッド32,33の光ファイ
バーケーブル30,31とガラスロッド34,35の間
の中心軸の相対位置をずらして偏心させているため、照
明ヘッド32,33の出口では光強度分布36は一定で
はなく、圧延材21との距離が遠い機械中心側が明るく
なっている。この光を圧延材21に照射することによ
り、圧延材21上では光強度分布37は一定となり、カ
メラ24,25及びカメラ26,27で圧延材21の端
部22,23を検出することができる。
At this time, since the relative positions of the central axes between the optical fiber cables 30, 31 of the illumination heads 32, 33 and the glass rods 34, 35 are shifted and decentered, the light intensity at the exits of the illumination heads 32, 33 is increased. The distribution 36 is not constant, and the machine center side far from the rolled material 21 is bright. By irradiating the rolled material 21 with this light, the light intensity distribution 37 becomes constant on the rolled material 21, and the cameras 24 and 25 and the cameras 26 and 27 can detect the ends 22 and 23 of the rolled material 21. .

【0019】カメラ24,25及びカメラ26,27で
で撮影された画像信号は、ケーブル41〜44で画像信
号入力部45に入力され、更にエッジ検出処理部46に
入力される。そして、蛇行量・板幅演算処理部47で処
理された後、モニタ部48で表示されモニタリングされ
る。
Image signals photographed by the cameras 24 and 25 and the cameras 26 and 27 are input to an image signal input section 45 via cables 41 to 44 and further to an edge detection processing section 46. Then, after being processed by the meandering amount / board width calculation processing section 47, it is displayed on the monitor section 48 and monitored.

【0020】図4(a) に示すように、光ファイバーケー
ブル30(31)は直径8mmのバンドル型で、照明ヘッ
ド32(33)内のガラスロッド34(35)は幅26m
m、高さ8mm、長さ79mmで、レンズ51(52)は口径5
0mmで焦点距離120mm のものを3枚使用して照明してい
る。
As shown in FIG. 4A, the optical fiber cable 30 (31) is a bundle type having a diameter of 8 mm, and the glass rod 34 (35) in the illumination head 32 (33) has a width of 26 m.
m, height 8mm, length 79mm, lens 51 (52) has 5 aperture
Illumination is performed using three 0 mm focal lengths and 120 mm focal lengths.

【0021】光ファイバーケーブル30(31)を用い
た照明では、照明の強度分布を均一にするため、透明の
ガラスロッド34(35)を光ファイバーケーブル30
(31)の出口に配置し、ガラスロッド34(35)の
内部での反射を利用して光強度の分布を略一定にして3
枚のレンズ51(52)で集光して圧延材21に照射す
る。通常は、図4(a) に示すようにガラスロッド34
(35)の中心と光ファイバーケーブル30(31)の
中心を一致させて使用する。
In the illumination using the optical fiber cable 30 (31), a transparent glass rod 34 (35) is connected to the optical fiber cable 30 in order to make the illumination intensity distribution uniform.
It is arranged at the exit of (31) and makes the distribution of the light intensity substantially constant using the reflection inside the glass rod 34 (35).
The light is condensed by the lenses 51 (52) and irradiated onto the rolled material 21. Normally, as shown in FIG.
The center of (35) and the center of the optical fiber cable 30 (31) are used in alignment.

【0022】しかしこの方法では、圧延材21の端部2
2,23の光強度は、圧延材21が蛇行して照明ヘッド
32(33)に近づいた時は強く、離れると弱くなり、
圧延材21の幅方向の蛇行による遠近で光強度が大きく
変化して離れた場合の計測が困難になる。このため、蛇
行量の正確な把握が困難である。
However, in this method, the end 2 of the rolled material 21
The light intensities 2 and 23 are strong when the rolled material 21 meanders and approaches the illumination head 32 (33), and becomes weaker when the rolled material 21 separates.
The light intensity changes greatly at a distance due to the meandering of the rolled material 21 in the width direction, and it is difficult to measure when the rolled material 21 is separated. For this reason, it is difficult to accurately grasp the meandering amount.

【0023】図4(b) や図4(c) のようにガラスロッド
34(35)に対して光ファイバーケーブル30(3
1)の中心位置をずらして偏心させたり、ガラスロッド
34(35)と光ファイバーケーブル30(31)の中
心軸を傾ける手段を講じることにより、照明光の強度分
布を変化させることができる。図4(b) や図4(c) に示
した手段で、圧延材21の端部22,23がどこにあっ
ても端部22,23の光強度分布が一定になるようにガ
ラスロッド34(35)と光ファイバーケーブル30
(31)の相対位置を偏心させたり傾斜させたりする手
段が講じられる。
As shown in FIGS. 4B and 4C, the optical fiber cable 30 (3) is connected to the glass rod 34 (35).
The intensity distribution of the illumination light can be changed by shifting the center position of 1) to decenter, or by taking measures to incline the center axis of the glass rod 34 (35) and the optical fiber cable 30 (31). 4 (b) and FIG. 4 (c), the glass rod 34 (so that the light intensity distribution of the ends 22, 23 becomes constant no matter where the ends 22, 23 of the rolled material 21 are located. 35) and the optical fiber cable 30
Means for decentering or tilting the relative position of (31) is taken.

【0024】前述の照明ヘッド32の光強度分布を図2
に示す。図2で示した光強度分布は、照明ヘッド32の
前方1mの位置に半透明のスクリーンを置き、スクリー
ンの照明ヘッド32とは反対側からカメラで撮影し、光
の強度Iとガラスロッドの幅方向及び高さ方向の位置と
の関係を表したものである。
FIG. 2 shows the light intensity distribution of the illumination head 32 described above.
Shown in The light intensity distribution shown in FIG. 2 is obtained by placing a translucent screen at a position 1 m in front of the illumination head 32, taking an image with a camera from the opposite side of the screen from the illumination head 32, and examining the light intensity I and the width of the glass rod. It shows the relationship between the direction and the position in the height direction.

【0025】図2(a) は、光ファイバーケーブル30を
ガラスロッド34の中心に傾き無しで照明した場合のも
ので、圧延材21の表面の光軸に垂直な面にガラスロッ
ド34の幅方向Smm(約460mm )、ガラスロッド34の
高さ方向Rmm(約140mm )の範囲が略一様に照明されて
いる。
FIG. 2 (a) shows a case where the optical fiber cable 30 is illuminated at the center of the glass rod 34 without tilt, and the surface of the rolled material 21 perpendicular to the optical axis in the width direction Smm of the glass rod 34 is shown. (Approximately 460 mm), and a range in the height direction Rmm (approximately 140 mm) of the glass rod 34 is almost uniformly illuminated.

【0026】図2(b) は、光ファイバーケーブル30を
ガラスロッド34の中心より幅方向に4mm偏心させた場
合のもので(図4(b) 参照) 、図2(a) と同様の範囲を
照明し、ガラスロッド34の幅方向の左右で約2倍の明
るさの差をつけることが可能となっている。
FIG. 2 (b) shows a case where the optical fiber cable 30 is eccentric in the width direction by 4 mm from the center of the glass rod 34 (see FIG. 4 (b)). Illumination makes it possible to provide a brightness difference of about twice on the left and right in the width direction of the glass rod 34.

【0027】図2(c) は、光ファイバーケーブル30を
ガラスロッド34の中心に位置し、光ファイバーケーブ
ル30の幅方向の端部の一方を図4(c) に示すLが1mm
になるようにガラスロッド34より離して傾けた場合の
もので、図2(b) と同様に幅方向で明るさの差をつける
ことが可能となっている。
FIG. 2C shows that the optical fiber cable 30 is located at the center of the glass rod 34, and one of the ends of the optical fiber cable 30 in the width direction is L shown in FIG.
2 (b), and it is possible to make a difference in brightness in the width direction similarly to FIG. 2 (b).

【0028】光ファイバーケーブル31,32とガラス
ロッド34,35の相対的な位置関係を、光ファイバー
ケーブル31,32の中心軸とガラスロッド34,35
の中心軸を偏心させたり、中心軸間に傾斜をつけること
により、圧延材21上に照射される照明用の光の強度分
布は一定となる。この中心軸の偏心や中心軸間の傾斜が
ガラスロッド34,35中の光路にどのように作用する
かを図5を用いて説明する。
The relative positional relationship between the optical fiber cables 31 and 32 and the glass rods 34 and 35 is defined by the center axes of the optical fiber cables 31 and 32 and the glass rods 34 and 35.
By eccentricizing the central axis of, or by providing an inclination between the central axes, the intensity distribution of the illumination light irradiated onto the rolled material 21 becomes constant. How the eccentricity of the central axes and the inclination between the central axes act on the optical paths in the glass rods 34 and 35 will be described with reference to FIG.

【0029】図5(a) は、従来の配置であり、光ファイ
バーケーブル31,32とガラスロッド34,35の中
心が一致している配置である。ガラスロッド34,35
中の光路は中心軸に対して対称であり、ガラスロッド3
4,35を出た光強度の分布は一定になる。この光を照
明として圧延材21に斜めから照射すると、ガラスロッ
ド34,35の出口の光強度が図5(a) の真中の図で示
すように均一であるため、圧延材21からの反射光は図
5(a) の左の図に示すように、ガラスロッド34,35
からの距離xが近い場合は強く、離れると弱くなる。
FIG. 5A shows a conventional arrangement, in which the centers of the optical fiber cables 31 and 32 and the glass rods 34 and 35 coincide with each other. Glass rods 34, 35
The light path inside is symmetrical about the central axis,
The distribution of the light intensity exiting 4,35 is constant. When this light is illuminated obliquely onto the rolled material 21 as illumination, the light intensity at the exits of the glass rods 34 and 35 is uniform as shown in the middle diagram of FIG. Are the glass rods 34 and 35 as shown in the left diagram of FIG.
It is strong when the distance x from is short, and weak when the distance x is large.

【0030】図5(b) に示すように偏心型を採用する
と、ガラスロッド34,35内の反射光が一方(図では
下方)に偏り、ガラスロッド34,35の出口での光強
度が図5(b) の真中の図で示すように圧延材21の遠方
側を強く照射するようにできる。この結果、圧延材21
からの反射光を図5(b) の左の図に示すように、ガラス
ロッド34,35からの距離xに関係なく均一あるいは
均一に近い状態に調整することが可能になる。
When the eccentric type is adopted as shown in FIG. 5 (b), the reflected light in the glass rods 34, 35 is deflected to one side (downward in the figure), and the light intensity at the exits of the glass rods 34, 35 is reduced. As shown in the middle figure of 5 (b), the far side of the rolled material 21 can be strongly irradiated. As a result, the rolled material 21
As shown in the left diagram of FIG. 5 (b), it is possible to adjust the reflected light from the lens to be uniform or nearly uniform regardless of the distance x from the glass rods 34, 35.

【0031】図5(c) に示すように傾斜型を採用した場
合も、図5(b) と同様に、ガラスロッド34,35内の
反射光を一方(図では下方)に偏らせ、圧延材21から
の反射光を図5(c) の左の図に示すように、ガラスロッ
ド34,35からの距離xに関係なく均一あるいは均一
に近い状態に調整することが可能になる。
As shown in FIG. 5C, when the inclined type is employed, the reflected light in the glass rods 34 and 35 is deflected to one side (downward in FIG. The reflected light from the material 21 can be adjusted to be uniform or nearly uniform regardless of the distance x from the glass rods 34, 35 as shown in the left diagram of FIG.

【0032】従って、低コストで極めて簡便な手法で、
輻射を生じない圧延材21に対しても端部22,23を
高精度に検出することが可能となる。図3に示した結果
が、帯板鋼面での反射光の光強度分布である。
Therefore, in a very simple and low-cost manner,
The end portions 22, 23 can be detected with high accuracy even for the rolled material 21 that does not generate radiation. The result shown in FIG. 3 is the light intensity distribution of the reflected light on the steel strip.

【0033】尚、上記実施例では、実際に使用した機器
の使用を詳細に記載したが、本発明の効果取得には必ず
しもこれらの機器の仕様に制限されるものではなく、帯
板であればすべての板幅の圧延材に適用可能である。ま
た、カメラ24,25及びカメラ26,27は視野角2
4度に限定されるものではなく、その配置も端部22,
23毎に2台設置し、2台のカメラを互いにある位相差
を付けて設置すれば、帯板の幅及び位置演算は可能であ
る。
In the above embodiment, the use of the actually used devices has been described in detail. However, the effects of the present invention are not necessarily limited to the specifications of these devices. Applicable to rolled materials of all widths. The cameras 24 and 25 and the cameras 26 and 27 have a viewing angle of 2
The arrangement is not limited to 4 degrees, and the arrangement is not limited to the end 22,
If two cameras are installed every 23, and two cameras are installed with a certain phase difference from each other, the width and position of the strip can be calculated.

【0034】また、光源28,29、光ファイバーケー
ブル30,31、ガラスロッド34,35及びレンズ5
1,52の組み合わせも、設備スペースや環境等に勘案
して許される範囲で最大限に明るい状態にすることが可
能である。また、光ファイバーケーブル30,31のガ
ラスロッド34,35の中心に対する偏心及び傾きは、
カメラ24,25及びカメラ26,27の位置やガラス
ロッド34,35の位置により調整量は異なり、圧延材
21の端部22,23の反射光がカメラ24,25及び
カメラ26,27に到達する時にほぼ均一になるよう設
置時に調整されるようになっている。
Further, the light sources 28 and 29, the optical fiber cables 30 and 31, the glass rods 34 and 35, and the lens 5
The combination of 1, 52 can be made as bright as possible within the permissible range in consideration of the equipment space and environment. The eccentricity and inclination of the optical fiber cables 30, 31 with respect to the centers of the glass rods 34, 35 are as follows:
The adjustment amount differs depending on the positions of the cameras 24, 25 and the cameras 26, 27 and the positions of the glass rods 34, 35, and the reflected light from the ends 22, 23 of the rolled material 21 reaches the cameras 24, 25 and the cameras 26, 27. Sometimes it is adjusted at the time of installation so that it is almost uniform.

【0035】[0035]

【発明の効果】本発明の板幅・蛇行検出方法は、圧延中
の帯板鋼を照明して得られる撮像状態から前記帯板鋼の
板幅と蛇行量を検出する鋼板の熱間圧延設備における板
幅及び蛇行検出方法であって、照明ヘッドのガラスロッ
ド部に光を伝える光ファイバーケーブルの入射位置また
は入射角度を調整して前記照明ヘッドから出る照射光強
度に勾配を与え、前記照明ヘッドからの距離に拘らず前
記帯板鋼のエッジ部からの反射光の強度分布を略均一に
して圧延中の前記帯板鋼の板幅及び蛇行量を検出するよ
うにしたので、光ファイバーケーブルとガラスロッドの
間の相対的な位置関係を軸ずらしや傾斜をつけ変化させ
ることにより、被照射物での光強度分布を均一にするこ
とが可能となる。この結果、帯板鋼のエッジ部の検出精
度が格段に向上し、従来法では輻射を生じない低温の帯
板鋼に対しても、極めて高精度なエッジ検出が可能とな
り、熱間圧延装置の性能を著しく向上させることが可能
となる。
According to the present invention, there is provided a strip width / meander detection method for hot rolling a steel sheet which detects the width and meander amount of the strip steel from an imaging state obtained by illuminating the strip steel during rolling. In the plate width and meandering detection method, the incident position or the incident angle of the optical fiber cable that transmits light to the glass rod portion of the illumination head is adjusted to give a gradient to the intensity of irradiation light emitted from the illumination head, and from the illumination head. Irrespective of the distance, the intensity distribution of the reflected light from the edge portion of the strip steel is made substantially uniform to detect the width and meandering of the strip steel during rolling. By changing the relative positional relationship between them by shifting or tilting the axis, the light intensity distribution on the irradiation object can be made uniform. As a result, the detection accuracy of the edge portion of the strip steel is remarkably improved, and even for a low-temperature strip steel that does not generate radiation in the conventional method, extremely high-precision edge detection becomes possible. Performance can be significantly improved.

【0036】本発明の板幅・蛇行検出装置は、圧延中の
帯板鋼を照明して得られる撮像状態から前記帯板鋼の板
幅と蛇行量を検出する鋼板の熱間圧延設備における板幅
及び蛇行検出装置であって、レンズとガラスロッドで構
成された照明ヘッドと、前記照明ヘッドに光を供給する
ためのランプ及び集光装置及び前記ガラスロッドへの入
射状況が調整可能な光ファイバーケーブルで構成された
光源と、前記帯板鋼に照射された光の反射光により前記
帯板鋼のエッジ部を撮像するため前記帯板鋼の両エッジ
部近傍の上部にそれぞれ2個一対で位相をずらして設置
された撮像装置と、前記撮像装置からの信号を演算処理
する信号処理装置およびモニタ部とから構成され、前記
ガラスロッド部に光を伝える前記光ファイバーケーブル
の入射位置または入射角度を調整して前記照明ヘッドか
ら出る照射光強度に勾配を与え、前記帯板鋼のエッジ部
からの反射光の強度分布を前記照明ヘッドからの距離に
拘らず略均一にして圧延中の前記帯板鋼の板幅及び蛇行
量を検出するようにしたので、光ファイバーケーブルと
ガラスロッドの間の相対的な位置関係を軸ずらしや傾斜
をつけ変化させることにより、被照射物での光強度分布
を均一にすることが可能となる。この結果、帯板鋼のエ
ッジ部の検出精度が格段に向上し、従来法では輻射を生
じない低温の帯板鋼に対しても、極めて高精度なエッジ
検出が可能となり、熱間圧延装置の性能を著しく向上さ
せることが可能となる。
The strip width / meandering detection device of the present invention is a sheet steel hot rolling equipment for detecting the width and meandering of the strip steel from an imaged state obtained by illuminating the strip steel during rolling. An illumination head comprising a lens and a glass rod, a lamp and a condensing device for supplying light to the illumination head, and an optical fiber cable capable of adjusting the incident state on the glass rod. In order to image the edge portion of the strip steel by the reflected light of the light applied to the strip steel, the light source configured by the above, and a pair of two each at the upper portion near both edges of the strip steel. An imaging device that is staggered, a signal processing device that performs arithmetic processing on a signal from the imaging device, and a monitor unit, and the incident position of the optical fiber cable that transmits light to the glass rod unit or Adjusting the angle of incidence to give a gradient to the intensity of the illuminating light emitted from the illumination head, and making the intensity distribution of the reflected light from the edge of the strip steel substantially uniform regardless of the distance from the illumination head during rolling. Since the width and meandering amount of the strip steel are detected, the relative positional relationship between the optical fiber cable and the glass rod is shifted or tilted to change the light intensity at the irradiated object. It is possible to make the distribution uniform. As a result, the detection accuracy of the edge portion of the strip steel is remarkably improved, and even for a low-temperature strip steel that does not generate radiation in the conventional method, extremely high-precision edge detection becomes possible. Performance can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る板幅・蛇行検出装置の
全体構成図。
FIG. 1 is an overall configuration diagram of a plate width / meandering detection device according to an embodiment of the present invention.

【図2】照明ヘッドの発光分布図。FIG. 2 is a light emission distribution diagram of an illumination head.

【図3】反射光の強度分布図。FIG. 3 is an intensity distribution diagram of reflected light.

【図4】照明ヘッドの概略構成図。FIG. 4 is a schematic configuration diagram of an illumination head.

【図5】ガラスロッド内の光路状況説明図。FIG. 5 is an explanatory diagram of a light path state in a glass rod.

【図6】従来の板幅・蛇行検出装置の全体構成図。FIG. 6 is an overall configuration diagram of a conventional plate width / meandering detection device.

【符号の説明】[Explanation of symbols]

21 帯鋼板(圧延材) 22,23 エッジ部(端部) 24,25,26,27 カメラ 28,29 メタルハライドランプ光源(光源) 30,31 光ファイバーケーブル 32,33 照明ヘッド 34,35 ガラスロッド 36,37 光強度分布 41,42,43,44 ケーブル 45 画像信号入力部 46 エッジ検出処理部 47 蛇行量・板幅演算処理部 48 モニタ部 51,52 レンズ 21 Strip steel plate (rolled material) 22, 23 Edge part (end part) 24, 25, 26, 27 Camera 28, 29 Metal halide lamp light source (light source) 30, 31 Optical fiber cable 32, 33 Illumination head 34, 35 Glass rod 36, 37 Light intensity distribution 41, 42, 43, 44 Cable 45 Image signal input unit 46 Edge detection processing unit 47 Meandering / board width calculation processing unit 48 Monitor unit 51, 52 Lens

フロントページの続き (72)発明者 寺本 洋二 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 (72)発明者 田崎 澄晴 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内Continued on the front page. (72) Inventor Yoji Teramoto 4-6-22 Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Works (72) Inventor Sumiharu Tazaki 4-622 Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima No. Mitsubishi Heavy Industries, Ltd. Hiroshima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧延中の帯板鋼を照明して得られる撮像
状態から前記帯板鋼の板幅と蛇行量を検出する鋼板の熱
間圧延設備における板幅及び蛇行検出方法であって、照
明ヘッドのガラスロッド部に光を伝える光ファイバーケ
ーブルの入射位置または入射角度を調整して前記照明ヘ
ッドから出る照射光強度に勾配を与え、前記照明ヘッド
からの距離に拘らず前記帯板鋼のエッジ部からの反射光
の強度分布を略均一にして圧延中の前記帯板鋼の板幅及
び蛇行量を検出することを特徴とする板幅・蛇行検出方
法。
1. A sheet width and meandering detection method in a hot rolling equipment for steel sheet, wherein a sheet width and meandering amount of the band sheet steel are detected from an imaging state obtained by illuminating the strip steel during rolling. The incidence position or angle of the optical fiber cable transmitting light to the glass rod portion of the illumination head is adjusted to give a gradient to the intensity of the illumination light emitted from the illumination head, and the edge of the strip steel regardless of the distance from the illumination head. A sheet width and meandering amount detecting method for detecting the sheet width and meandering amount of the strip steel during rolling by making the intensity distribution of the reflected light from the part substantially uniform.
【請求項2】 圧延中の帯板鋼を照明して得られる撮像
状態から前記帯板鋼の板幅と蛇行量を検出する鋼板の熱
間圧延設備における板幅及び蛇行検出装置であって、レ
ンズとガラスロッドで構成された照明ヘッドと、前記照
明ヘッドに光を供給するためのランプ及び集光装置及び
前記ガラスロッドへの入射状況が調整可能な光ファイバ
ーケーブルで構成された光源と、前記帯板鋼に照射され
た光の反射光により前記帯板鋼のエッジ部を撮像するた
め前記帯板鋼の両エッジ部近傍の上部にそれぞれ2個一
対で位相をずらして設置された撮像装置と、前記撮像装
置からの信号を演算処理する信号処理装置およびモニタ
部とから構成され、前記ガラスロッド部に光を伝える前
記光ファイバーケーブルの入射位置または入射角度を調
整して前記照明ヘッドから出る照射光強度に勾配を与
え、前記帯板鋼のエッジ部からの反射光の強度分布を前
記照明ヘッドからの距離に拘らず略均一にして圧延中の
前記帯板鋼の板幅及び蛇行量を検出するようにしたこと
を特徴とする板幅・蛇行検出装置。
2. A strip width and meandering detection device in a hot rolling facility for steel sheets which detects a strip width and a meandering amount of the strip steel from an imaging state obtained by illuminating the strip steel during rolling, An illumination head composed of a lens and a glass rod; a lamp and a condenser for supplying light to the illumination head; and a light source composed of an optical fiber cable capable of adjusting the state of incidence on the glass rod; An imaging device installed in a pair at an upper portion near both edges of the strip steel so as to be imaged at the edges of the strip steel by reflected light of the light applied to the strip steel, two pairs of which are out of phase with each other; The illumination head comprises a signal processing device for arithmetically processing a signal from the imaging device and a monitor unit, and adjusts an incident position or an incident angle of the optical fiber cable for transmitting light to the glass rod unit. Giving a gradient to the intensity of the irradiating light coming out of the strip, and making the intensity distribution of the reflected light from the edge of the strip steel substantially uniform irrespective of the distance from the illumination head, the width and width of the strip steel during rolling. A sheet width and meandering detecting device, wherein a meandering amount is detected.
JP12513797A 1997-05-15 1997-05-15 Plate width and meandering detection method and device Expired - Fee Related JP3322606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12513797A JP3322606B2 (en) 1997-05-15 1997-05-15 Plate width and meandering detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12513797A JP3322606B2 (en) 1997-05-15 1997-05-15 Plate width and meandering detection method and device

Publications (2)

Publication Number Publication Date
JPH10318719A true JPH10318719A (en) 1998-12-04
JP3322606B2 JP3322606B2 (en) 2002-09-09

Family

ID=14902787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12513797A Expired - Fee Related JP3322606B2 (en) 1997-05-15 1997-05-15 Plate width and meandering detection method and device

Country Status (1)

Country Link
JP (1) JP3322606B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406390B1 (en) * 1998-12-02 2004-01-24 주식회사 포스코 Apparatus and method for measuring the slab width by using the mapping algorithm in two dimentinoal coordinates
KR100415923B1 (en) * 1998-12-26 2004-05-27 주식회사 포스코 Method for on-line measurement of width profile of steel strip
WO2018168700A1 (en) * 2017-03-14 2018-09-20 Jfeスチール株式会社 Method and device for measuring meandering amount of belt-like body, and method and device for detecting meandering abnormality of belt-like body
JP2021032779A (en) * 2019-08-27 2021-03-01 株式会社東芝 Length measuring device
JP2022000314A (en) * 2020-05-14 2022-01-04 Jfeスチール株式会社 Apparatus for measuring meandering amount of hot rolled steel strip and method for measuring meandering amount of hot rolled steel strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406390B1 (en) * 1998-12-02 2004-01-24 주식회사 포스코 Apparatus and method for measuring the slab width by using the mapping algorithm in two dimentinoal coordinates
KR100415923B1 (en) * 1998-12-26 2004-05-27 주식회사 포스코 Method for on-line measurement of width profile of steel strip
WO2018168700A1 (en) * 2017-03-14 2018-09-20 Jfeスチール株式会社 Method and device for measuring meandering amount of belt-like body, and method and device for detecting meandering abnormality of belt-like body
JPWO2018168700A1 (en) * 2017-03-14 2019-06-27 Jfeスチール株式会社 Method and apparatus for measuring meandering amount of band, and method and apparatus for detecting meandering abnormality of band
US11055858B2 (en) 2017-03-14 2021-07-06 Jfe Steel Corporation Method and apparatus for measuring meandering amount of strip, and method and apparatus for detecting abnormal meandering of strip
JP2021032779A (en) * 2019-08-27 2021-03-01 株式会社東芝 Length measuring device
JP2022000314A (en) * 2020-05-14 2022-01-04 Jfeスチール株式会社 Apparatus for measuring meandering amount of hot rolled steel strip and method for measuring meandering amount of hot rolled steel strip

Also Published As

Publication number Publication date
JP3322606B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
EP1027590B1 (en) Apparatus and method for viewing and inspecting a circumferential surface area of an object
JP4511978B2 (en) Surface flaw inspection device
US20010030744A1 (en) Method of simultaneously applying multiple illumination schemes for simultaneous image acquisition in an imaging system
EP0856728B1 (en) Optical method and apparatus for detecting defects
JP2004525583A (en) Infrared camera sensitive to infrared
US6291817B1 (en) Moire apparatus having projection optical system and observation optical system which have optical axes parallel to each other
WO1999051971A1 (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
TWI773032B (en) An arched illumination device, an imaging system with the same and a method for imaging
US10241057B2 (en) Optical inspecting apparatus with an optical screening device
JP3863221B2 (en) Bending rate measurement method of bent plate glass
JP2004012301A (en) Method and apparatus for detecting pattern defect
JP3514107B2 (en) Painting defect inspection equipment
JP3322606B2 (en) Plate width and meandering detection method and device
KR20010113515A (en) Device for detecting tilt angle of optical axis and image measuring apparatus equipped therewith
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2002512365A (en) System for measuring luminance characteristics of an object, particularly luminance characteristics of an object having direction-dependent luminance
JPH05149885A (en) In-pipe inspection device
JPH09305737A (en) Laser number counter
US5666204A (en) Method and apparatus for optical shape measurement of oblong objects
JP2002350359A (en) Defect inspection device
JPH09304287A (en) Apparatus for visual examination
JPH0814849A (en) Three-dimensional shape detection method for solder
JP2006003168A (en) Measurement method for surface shape and device therefor
JP3080750B2 (en) Shadow mask defect inspection equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees