JPH0814849A - Three-dimensional shape detection method for solder - Google Patents

Three-dimensional shape detection method for solder

Info

Publication number
JPH0814849A
JPH0814849A JP6165858A JP16585894A JPH0814849A JP H0814849 A JPH0814849 A JP H0814849A JP 6165858 A JP6165858 A JP 6165858A JP 16585894 A JP16585894 A JP 16585894A JP H0814849 A JPH0814849 A JP H0814849A
Authority
JP
Japan
Prior art keywords
solder
inclination angle
point
light source
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6165858A
Other languages
Japanese (ja)
Inventor
Masayuki Nakagawa
雅之 中川
Munetoshi Numata
宗敏 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippei Toyama Corp
Panasonic Electric Works Co Ltd
Original Assignee
Nippei Toyama Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippei Toyama Corp, Matsushita Electric Works Ltd filed Critical Nippei Toyama Corp
Priority to JP6165858A priority Critical patent/JPH0814849A/en
Publication of JPH0814849A publication Critical patent/JPH0814849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect a three-dimensional solder shape from a single sheet of image information by irradiating solder as a measurement object with illumination light from a light source of multi-stage annular type, and photographing the solder with a camera. CONSTITUTION:A light source 2 is provided in a multi-stage, for example, in four stages, so as to have concentric arrangement and give different irradiation angles along the altazimuth line of a virtual hemisphere about solder 6 as a measurement object. The light source 2 is formed to be annular as a whole. The light source 2 is turned on to irradiate the solder 6, thereby forming circular fringe calescence point images on the surface of the solder 6 under reflected light. A radial density measurement scanning line is determined on the image of calescence points photographed with a camera 4. Furthermore, the inclination angle of a reflection point as a measurement point on the surface of the solder 6 is obtained by establishing correspondence to a density distribution value on the scanning line as well as the graph of preliminarily measured inclination angle-reflection intensity. Thereafter, a distance from the center of the solder 6 to the measurement point and the height thereof are found, on the basis of the inclination angle, thereby detecting the surface contour of the solder 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品のハンダ付け
後に、そのハンダの立体形状を画像処理技術によって検
出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a three-dimensional shape of a solder after soldering an electronic component by an image processing technique.

【0002】[0002]

【従来の技術】画像処理技術で、ハンダの形状を観測す
る場合、従来の方法では、照明条件の異なる照明を何度
か切り替え、その都度、ハンダ面の画像を取込み、各画
像での輝点の位置から形状を近似するものであった。上
記従来方法では、画像を取り込むとき、NTSC方式で
1/30秒必要とし、取り込む画像数が多いほど、測定
の信頼性は向上するが、その反面、時間がかかり、画像
数が少ないと、不正確な形状しか得られない。
2. Description of the Related Art When observing the shape of a solder with image processing technology, the conventional method is to switch the illumination under different illumination conditions several times, capture the image of the solder surface each time, and use the bright spots in each image. The shape was approximated from the position. In the above-mentioned conventional method, when capturing an image, 1/30 seconds are required in the NTSC system, and the reliability of measurement is improved as the number of captured images increases, but on the other hand, it takes time and the number of images is small. Only accurate shape can be obtained.

【0003】[0003]

【発明の目的】したがって、本発明の目的は、1枚の画
像情報からハンダの立体形状を正確に検出できるように
することである。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to accurately detect the three-dimensional shape of solder from one piece of image information.

【0004】[0004]

【発明の解決手段】上記目的の下に、本発明は、多段環
状の光源の点灯下で、観測対象のハンダを照射すること
によって、ハンダ表面に反射光による円縞状の輝点像を
形成し、この輝点像の撮影画像上で、放射方向の濃度測
定用の走査線を定め、この走査線上の濃度分布値および
あらかじめ測定してあった傾斜角−反射強度のグラフと
の対応付けによりハンダ表面の観測点としての反射点の
傾斜角を求め、この傾斜角にもとづいてハンダ中心から
観測点までの距離および観測点の高さを求めて、ハンダ
表面の立体形状を検出するようにしている。
To achieve the above object, the present invention irradiates a solder to be observed with a multi-stage annular light source turned on to form a circular stripe-shaped bright spot image on the surface of the solder by reflected light. Then, on the captured image of this bright spot image, a scanning line for density measurement in the radial direction is determined, and by associating with the density distribution value on this scanning line and the previously measured inclination angle-reflection intensity graph. Obtain the inclination angle of the reflection point as the observation point on the solder surface, and calculate the distance from the center of the solder to the observation point and the height of the observation point based on this inclination angle to detect the three-dimensional shape of the solder surface. There is.

【0005】この検出方法によると、1枚の画像からハ
ンダの立体形状が推測できるため、光源の点滅制御や、
ハンダの撮影回数が少なくてすみ、また画像処理に必要
な時間も短縮化でき、検出方法の高速化が可能となる。
According to this detection method, the three-dimensional shape of the solder can be inferred from one image, so that the blinking control of the light source,
It is possible to reduce the number of times the solder is photographed, the time required for image processing can be shortened, and the detection method can be speeded up.

【0006】[0006]

【実施例】図1は、本発明のハンダ立体形状検出方法に
用いる撮像装置1を示している。この撮像装置1は、照
明用の光源2、光源2からの光を拡散するためのシヤッ
タ3およびプリント基板18上のリード5の回りに付着
している観測対象のハンダ6の表面を撮影するためのカ
メラ4などによって組み立てられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an image pickup apparatus 1 used in the solder solid shape detecting method of the present invention. This imaging device 1 is for photographing the surface of the observation target solder 6 attached around the light source 2 for illumination, the shutter 3 for diffusing the light from the light source 2 and the lead 5 on the printed circuit board 18. It is assembled by the camera 4 and the like.

【0007】上記光源2は、例えば高指向性の発光ダイ
オードで、観測対象のハンダ6の設置位置を中心とする
仮想半球面の経緯線に沿って同心円状で異なる照射角度
となるように多段例えば4段階に配置されており、全体
として環状となっている。また、光拡散用のシヤッタ3
は、これらの光源2の内側に配置されており、液晶によ
って構成され、電気的に制御可能な状態となっている。
The light source 2 is, for example, a highly directional light emitting diode, and is arranged in multiple stages such as concentric circles and different irradiation angles along the longitude and latitude lines of the virtual hemisphere centered on the installation position of the solder 6 to be observed. It is arranged in four stages, and has a ring shape as a whole. Also, a shutter 3 for light diffusion
Are arranged inside these light sources 2, are made of liquid crystal, and are in an electrically controllable state.

【0008】なお、このシヤッタ3の頂点位置すなわち
リード5の軸線方向の延長上に、撮影窓7があり、その
上方にカメラ4およびビームスプリッター8が配置され
ている。このビームスプリッター8は、リード5および
ハンダ6を真上から照明するためのものであり、側方の
液晶式のシヤッタ9および落射照明用の光源10と対応
している。
A photographing window 7 is located at the apex position of the shutter 3, that is, an extension of the lead 5 in the axial direction, and a camera 4 and a beam splitter 8 are arranged above the photographing window 7. The beam splitter 8 is for illuminating the leads 5 and the solder 6 from directly above, and corresponds to the side liquid crystal type shutter 9 and the light source 10 for epi-illumination.

【0009】次に、図2は、カメラ4、画像処理装置1
1、制御用コンピュータ12およびこれによって制御さ
れる各部分の接続関係を示している。カメラ4は、画像
処理装置11の内部のメモリ13に接続されており、C
PU14と連動するようになっている。またCPU14
は、制御用コンピュータ12から検査指令などを受け
て、プリンタ15、モニタ16のほか、インターフェイ
ス17を介して前記光源2、10およびシヤッタ3、9
を制御する。なお、シヤッタ3、9は、通常、ハンダ6
の不良品検査時には、光源2および光源10の光を拡散
光に変換する様に設定され、またハンダ立体形状の測定
のときに、透明の状態となり、より指向性の高い光をハ
ンダ6に到達させる。
Next, FIG. 2 shows the camera 4 and the image processing apparatus 1.
1, the connection relationship between the control computer 12 and each part controlled by the control computer 12 is shown. The camera 4 is connected to the internal memory 13 of the image processing apparatus 11, and C
It is designed to work with the PU 14. Also, the CPU 14
Receives an inspection command or the like from the control computer 12, the printer 15, the monitor 16, and the light sources 2 and 10 and the shutters 3 and 9 via the interface 17.
Control. Note that the shutters 3 and 9 are normally solder 6
Is set to convert the light from the light source 2 and the light source 10 into diffused light when inspecting defective products, and becomes transparent when measuring the three-dimensional shape of the solder, and the light with higher directivity reaches the solder 6. Let

【0010】図3に示すように、ある光源2または光源
10からの照射光19がプリント基板18の上面に対し
て平行な面となす照射角度φでハンダ6の表面に照射
し、ハンダ面で反射してカメラ4に向かうとき、反射光
の光路は1本であり、ハンダ面での反射点Pはただ1つ
定まる。したがって、反射点Pでのハンダ面の傾斜角θ
は、式θ=(90°−φ)/2によって求められる。
As shown in FIG. 3, irradiation light 19 from a certain light source 2 or light source 10 irradiates the surface of the solder 6 at an irradiation angle φ formed by a surface parallel to the upper surface of the printed circuit board 18, and the surface of the solder 6 is exposed. When reflected and heading for the camera 4, there is only one optical path of the reflected light, and only one reflection point P on the solder surface is determined. Therefore, the inclination angle θ of the solder surface at the reflection point P
Is calculated by the equation θ = (90 ° −φ) / 2.

【0011】図4に示すように、横軸にハンダ面の反射
点Pでの傾斜角をとり、縦軸に光の反射強度をとると、
反射点Pでの反射強度のグラフは、正規分布的な曲線と
して現れる。これは、ハンダ面での反射が完全な反射で
なく、ある程度乱反射成分を含んでいるためである。
As shown in FIG. 4, the horizontal axis represents the tilt angle at the reflection point P of the solder surface, and the vertical axis represents the light reflection intensity.
The graph of the reflection intensity at the reflection point P appears as a normally distributed curve. This is because the reflection on the solder surface is not a perfect reflection but includes a diffuse reflection component to some extent.

【0012】図1で示したように光源2は、仮想半球面
に沿って多段状に配置されており、照射角度φを異にし
た環状の照明であるので、すべての反射点Pに対する反
射強度のグラフを合成すると、すべての光源2および光
源10を点灯したときの反射強度I−傾斜角θのグラフ
となり、それは、I=f(θ)の関係から図5のように
なる。このグラフに見られるように、光源2および光源
10の照射角度φ=90°、70°、50°、30°、
10°とすれば、すべての光源2および光源10を点灯
したとき、そのグラフは、傾斜角θ=0°、10°、2
0°、30°、40°にピークをもつものとなる。
As shown in FIG. 1, the light sources 2 are arranged in multiple stages along the virtual hemispherical surface and are annular illuminations with different irradiation angles φ. When the graphs of (1) and (2) are combined, a graph of reflection intensity I-tilt angle θ when all the light sources 2 and 10 are turned on is shown in FIG. 5 from the relation of I = f (θ). As seen in this graph, the irradiation angles φ of the light source 2 and the light source 10 are 90 °, 70 °, 50 °, 30 °,
Assuming that the angle is 10 °, when all the light sources 2 and 10 are turned on, the graph shows that the inclination angles θ = 0 °, 10 °, 2
It has peaks at 0 °, 30 ° and 40 °.

【0013】上記グラフで、極小点は各ピークの中間点
すなわち5°、15°、25°、35°となる。ピーク
点と極小点との間は、ハンダ面の反射点Pの傾きに対応
し、反射強度Iによって与えられる。ここで、θn =n
×5°(n=0〜8)とすれば、θ=θn の時の点
(θ,f(θ))は極大値または極小値をとる。
In the above graph, the minimum points are the midpoints of each peak, that is, 5 °, 15 °, 25 ° and 35 °. The portion between the peak point and the minimum point corresponds to the inclination of the reflection point P on the solder surface and is given by the reflection intensity I. Where θ n = n
If x5 ° (n = 0 to 8), the point (θ, f (θ)) when θ = θ n has a maximum value or a minimum value.

【0014】カメラ4でハンダ6の表面を撮像すると、
図6に示すように、環状の光源2および光源10の多段
配置に対応し、輝点つまり反射点P群の集合として複数
の円縞状の輝点像が得られる。ハンダ立体形状の検出
は、像上で、ハンダ6の中心すなわちリード5を通る半
径方向の線分ABの走査線に沿って濃度分布を測定する
ことにより実行される。
When the surface of the solder 6 is imaged by the camera 4,
As shown in FIG. 6, a plurality of circular stripe-shaped bright spot images are obtained as a set of bright spots, that is, a group of reflection spots P, corresponding to the multi-stage arrangement of the annular light sources 2 and the light sources 10. The three-dimensional shape of the solder is detected by measuring the density distribution on the image along the scanning line of the line segment AB in the radial direction passing through the center of the solder 6, that is, the lead 5.

【0015】図7は、走査線(線分AB)に沿った距離
x−濃度vのグラフを示しており、図中の極大点および
極小点は、図5の極大点および極小点に対応するため、
それぞれ図で示す角度に対応している。この図7で、任
意の点の濃度値をv(x)とし、その座標を(x,v
(x))とする。
FIG. 7 shows a graph of the distance x-density v along the scanning line (line segment AB). The maximum and minimum points in the figure correspond to the maximum and minimum points in FIG. For,
Each corresponds to the angle shown in the figure. In FIG. 7, the density value of an arbitrary point is v (x), and its coordinates are (x, v
(X)).

【0016】この極大点および極小点のx座標を右から
順にx0 ,x1 ,・・・,x8 とする。点(xn ,v
(xn ));n=0〜8においては、その点に対応する
角度の反射強度f(θn )は判明している。
The x-coordinates of the maximum point and the minimum point are defined as x 0 , x 1 , ..., X 8 in order from the right. Point (x n , v
(X n )); When n = 0 to 8, the reflection intensity f (θ n ) at the angle corresponding to the point is known.

【0017】さて、任意の点(x,v(x))において
は、図7のグラフ上における位置を図5のグラフ上にお
ける位置に対応付ければ、その点における反射強度Iが
判明することになる。xn ≦x<xn+1 なる点に対し、
下記の1次変換式によって対応付けを行う。
Now, at an arbitrary point (x, v (x)), by associating the position on the graph of FIG. 7 with the position on the graph of FIG. 5, the reflection intensity I at that point becomes clear. Become. For the point x n ≤ x <x n + 1 ,
The association is performed by the following primary conversion formula.

【0018】{v(x)−v(xn )}/{v
(xn+1 )−v(xn )}={f(θ)−f(θn )}
/{f(θn+1 )−f(θn )}
{V (x) -v (x n )} / {v
(X n + 1) -v ( x n)} = {f (θ) -f (θ n)}
/ {F (θ n + 1 ) −f (θ n )}

【0019】上記式により、v(x)の位置(頂点Aか
ら距離x)が決まれば、濃度vが定まり、上記式によっ
てf(θ)が求まり、さらに、図5からI=f(θ)よ
り、θ=f-1(I)として傾斜角θが求められる。 た
だし、40°<θで、上記式は使えない。
If the position of v (x) (distance x from the apex A) is determined by the above equation, the density v is determined, f (θ) is obtained by the above equation, and I = f (θ) from FIG. Thus, the inclination angle θ is obtained with θ = f −1 (I). However, when 40 ° <θ, the above formula cannot be used.

【0020】このようにして、傾斜角θが求められる
と、その反射点Pでの高さhは、式h=ΣΔx・tan
θにより求められる。ただし、計算は点Bから点Aに向
かって画素ずつ順次行うものとする。
When the inclination angle θ is obtained in this manner, the height h at the reflection point P is calculated by the equation h = ΣΔx · tan.
Calculated by θ. However, the calculation is sequentially performed pixel by pixel from point B to point A.

【0021】実際の測定では、下記の順序によって行わ
れる。なお、傾斜角−反射強度のグラフおよびグラフ上
の極大点および極小点(θn ,f(θn )は、あらかじ
めわかっているものとする。
The actual measurement is performed in the following order. It is assumed that the inclination angle-reflection intensity graph and the maximum and minimum points (θ n , f (θ n ) on the graph are known in advance.

【0022】(1)光源2および光源10の全てを点灯
状態とする。 (2)全点灯状態で、カメラ4によってハンダ6の表面
を撮像し、画像処理によって、リード5の中心を検出す
る。 (3)撮影画像から濃度分布を測定する走査線(線分A
B)を円周に対して等角度で配分し、探索方向を決め
る。 (4)走査線上の観測点としての反射点Pの濃度値の分
布を求め、極大点、極小点(xn ,v(xn ))を抽出
する。 (5)任意の反射点Pの距離xにおける濃度の分布値v
(x)と前記式とにより、I=f(θ)が求まり、これ
によりθ=f-1(I)が求められる。 (6)得られた傾斜角度θおよび距離xから観測点(反
射点P)での高さhを前記式により点Bから点Aに向か
って順次求める。 (7)これらの高さh、距離xおよび傾斜角θから観測
対象のハンダ6の立体形状を走査線上に画像処理により
復元する。
(1) All the light sources 2 and 10 are turned on. (2) In the fully lit state, the camera 4 images the surface of the solder 6, and the center of the lead 5 is detected by image processing. (3) Scanning line (line segment A for measuring density distribution from captured image)
B) is distributed at equal angles with respect to the circumference, and the search direction is determined. (4) Obtain the distribution of the density values of the reflection points P as the observation points on the scanning line, and extract the maximum points and the minimum points (x n , v (x n )). (5) Distribution value v of density at a distance x of an arbitrary reflection point P
I = f (θ) is obtained from (x) and the above equation, and θ = f −1 (I) is obtained from this. (6) From the obtained tilt angle θ and the distance x, the height h at the observation point (reflection point P) is sequentially obtained from the point B to the point A by the above formula. (7) From the height h, the distance x, and the inclination angle θ, the three-dimensional shape of the solder 6 to be observed is restored on the scanning line by image processing.

【0023】[0023]

【発明の効果】本発明では、1枚の画像からハンダの立
体形状が推測できるため、光源の点滅制御や、ハンダの
撮影回数が少なくてすみ、また画像処理に必要な時間も
短縮化でき、検出方法の高速化が可能となる。
According to the present invention, since the three-dimensional shape of the solder can be inferred from one image, it is possible to control the blinking of the light source, the number of times the solder is shot, and the time required for image processing can be shortened. It is possible to speed up the detection method.

【図面の簡単な説明】[Brief description of drawings]

【図1】撮像装置の側面図である。FIG. 1 is a side view of an imaging device.

【図2】カメラ、画像処理装置、制御用コンピュータな
どの接続部分のブロック線図である。
FIG. 2 is a block diagram of a connection part of a camera, an image processing device, a control computer, and the like.

【図3】照射光と傾斜角の関係を示す説明図である。FIG. 3 is an explanatory diagram showing a relationship between irradiation light and a tilt angle.

【図4】傾斜角−反射強度のグラフである。FIG. 4 is a graph of tilt angle-reflection intensity.

【図5】傾斜角−反射強度のグラフである。FIG. 5 is a graph of tilt angle-reflection intensity.

【図6】撮影画像(輝点像)の説明図である。FIG. 6 is an explanatory diagram of a captured image (bright spot image).

【図7】距離−濃度のグラフである。FIG. 7 is a distance-density graph.

【図8】傾斜角度の等角度線図である。FIG. 8 is an isometric view of a tilt angle.

【符号の説明】[Explanation of symbols]

1 撮像装置 2 光源 3 シヤッタ 4 カメラ 5 リード 6 ハンダ 7 撮影窓 8 ビームスプリッター 9 シヤッタ 10 光源 11 画像処理装置 12 制御用コンピュータ 13 メモリ 14 CPU 15 プリンタ 16 モニタ 17 インターフェイス 18 プリント基板 19 照射光 P 反射点 φ 照明角度 θ 傾斜角 I 反射強度 1 Imaging Device 2 Light Source 3 Shutter 4 Camera 5 Lead 6 Solder 7 Shooting Window 8 Beam Splitter 9 Shatter 10 Light Source 11 Image Processing Device 12 Control Computer 13 Memory 14 CPU 15 Printer 16 Monitor 17 Interface 18 Printed Circuit Board 19 Irradiation Light P Reflection Point φ Illumination angle θ Inclination angle I Reflection intensity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同心円状に配置され照射角度の異なる多
段環状の光源をすべて点灯し、これらの光源からのすべ
ての照射光により、観測対象のハンダを照射し、ハンダ
表面に反射点により円縞状の輝点像を形成し、その輝点
像をカメラにより撮影して画像信号に変換した後、撮影
画像上で反射点の輝点像を円周に対して配分して、濃度
測定用の走査線を定め、この走査線上の濃度分布値およ
びあらかじめ測定してあった傾斜角−反射強度のグラフ
との対応付けによりハンダ表面の観測点としての反射点
の傾斜角θを求め、各走査線により得られた傾斜角θに
対応するハンダ中心から観測点までの距離xを計算し、
式h=ΣΔx・tanθから輝点像の観測点の傾斜角
θ、高さhおよび距離xを求めてハンダの立体形状を得
ることを特徴とするハンダ立体形状検出方法。
1. Multi-stage annular light sources arranged concentrically and having different irradiation angles are all turned on, all the irradiation light from these light sources irradiates the solder to be observed, and the solder surface has circular stripes at reflection points. -Shaped bright spot image is formed, the bright spot image is photographed by a camera and converted into an image signal, and then the bright spot image of the reflection spot is distributed over the circumference on the photographed image to measure the density. A scanning line is determined, and the inclination angle θ of the reflection point as the observation point on the solder surface is obtained by associating the density distribution value on this scanning line with the previously measured inclination angle-reflection intensity graph, and each scanning line The distance x from the solder center to the observation point corresponding to the inclination angle θ obtained by
A three-dimensional shape detecting method for a solder, which obtains a three-dimensional shape of a solder by obtaining an inclination angle θ, a height h and a distance x of an observation point of a bright spot image from an expression h = ΣΔx · tan θ.
JP6165858A 1994-06-27 1994-06-27 Three-dimensional shape detection method for solder Pending JPH0814849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6165858A JPH0814849A (en) 1994-06-27 1994-06-27 Three-dimensional shape detection method for solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6165858A JPH0814849A (en) 1994-06-27 1994-06-27 Three-dimensional shape detection method for solder

Publications (1)

Publication Number Publication Date
JPH0814849A true JPH0814849A (en) 1996-01-19

Family

ID=15820339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6165858A Pending JPH0814849A (en) 1994-06-27 1994-06-27 Three-dimensional shape detection method for solder

Country Status (1)

Country Link
JP (1) JPH0814849A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139440A (en) * 2000-11-06 2002-05-17 Ibiden Co Ltd Illuminator for pattern inspection
JP2009168582A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Appearance inspecting equipment
EP2381215A1 (en) 2010-04-26 2011-10-26 Omron Corporation Shape measurement apparatus and calibration method
JP2018189420A (en) * 2017-04-28 2018-11-29 株式会社イマジオム Color pattern discrimination probe, and color patten discrimination device
CN110006364A (en) * 2019-03-18 2019-07-12 南京师范大学 The real-time microscopic measuring method of three-dimensional based on round bar line radial space carrier phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139440A (en) * 2000-11-06 2002-05-17 Ibiden Co Ltd Illuminator for pattern inspection
JP2009168582A (en) * 2008-01-15 2009-07-30 Saki Corp:Kk Appearance inspecting equipment
EP2381215A1 (en) 2010-04-26 2011-10-26 Omron Corporation Shape measurement apparatus and calibration method
JP2011232087A (en) * 2010-04-26 2011-11-17 Omron Corp Shape measurement device and calibration method
US8363929B2 (en) 2010-04-26 2013-01-29 Omron Corporation Shape measurement apparatus and calibration method
JP2018189420A (en) * 2017-04-28 2018-11-29 株式会社イマジオム Color pattern discrimination probe, and color patten discrimination device
CN110006364A (en) * 2019-03-18 2019-07-12 南京师范大学 The real-time microscopic measuring method of three-dimensional based on round bar line radial space carrier phase

Similar Documents

Publication Publication Date Title
CN110441323B (en) Product surface polishing method and system
KR101129349B1 (en) Parts mount board inspection apparatus
JPH04115108A (en) Three-dimensional scanner
JP3767161B2 (en) Height measuring device, height measuring method and observation device
JPH0875429A (en) Bonding wire inspection method
JP2947513B1 (en) Pattern inspection equipment
JP5272784B2 (en) Optical inspection method and optical inspection apparatus
JP2000009655A (en) Visual inspection device
JPH0814849A (en) Three-dimensional shape detection method for solder
JPH08247736A (en) Mounted substrate inspecting device
JPH10288508A (en) External appearance inspection device
JPH02216408A (en) Substrate inspection device
JP2000232242A (en) Light-emitting element measuring device
JP3341739B2 (en) Bump apex detection method and bump height measurement method and apparatus using the same
JPS63229311A (en) Detection of cross-sectional shape
JP2006003168A (en) Measurement method for surface shape and device therefor
KR102204449B1 (en) Confomal coating thickness measurement apparatus using light interference method
KR20020015081A (en) Automatized defect inspection system and defect inspection method
JPH07208917A (en) Automatic focusing method and device
JPH05152401A (en) Inspection apparatus of bump shape
JPH06147845A (en) Edge detector and depth measuring equipment for tapered hole
JPH03154854A (en) Detecting device for extremely small defect of thin wire
JPH10307011A (en) Method and apparatus for surface inspection
JPS63275937A (en) Optical shape inspecting apparatus
JP2003161604A (en) Height measuring method and device thereof