JPH10317032A - Smelting and reduction method of chromium ore - Google Patents

Smelting and reduction method of chromium ore

Info

Publication number
JPH10317032A
JPH10317032A JP6654398A JP6654398A JPH10317032A JP H10317032 A JPH10317032 A JP H10317032A JP 6654398 A JP6654398 A JP 6654398A JP 6654398 A JP6654398 A JP 6654398A JP H10317032 A JPH10317032 A JP H10317032A
Authority
JP
Japan
Prior art keywords
carbon
slag
containing substance
specific gravity
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6654398A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
秀次 竹内
Kimiharu Aida
公治 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6654398A priority Critical patent/JPH10317032A/en
Publication of JPH10317032A publication Critical patent/JPH10317032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a smelting reduction method of chromium ores to improve the yield of the chromium reduction and the yield of the carboneous material using a converter type smelting reduction furnace with the top-blown function. SOLUTION: In smelting the molten metal containing chromium by adding chromium ores in a converter type smelting reduction furnace with the top-blown function together with the carbon-containing substance, and feeding oxygen through top-blow, the bulk specific gravity of the in-furnace slag is regulated to be smaller than the true specific gravity of the carbon-containing substance to be added. The carbon-containing substance to be added is preferably >=3 mm in grain size and/or heat-collapsible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クロム鉱石に炭素
含有物質を添加してクロム鉱石を溶融還元するクロム鉱
石の溶融還元方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting and reducing chromium ore by adding a carbon-containing substance to chromium ore and smelting and reducing chromium ore.

【0002】[0002]

【従来の技術】従来、ステンレス鋼の溶製はクロム鉱石
等を電気炉にて炭素還元して製造したフェロクロムを用
いて行われているが、高価な電力を使用するためフェロ
クロムのコストが高く、その結果、ステンレス鋼の製造
コストが高いものとなっている。この問題を解決するた
めに、クロム鉱石を予備還元した半還元クロムペレット
を上底吹き転炉を用いて、電力を使わずに炭素還元して
クロム含有溶湯を溶製する方法が従来から知られてい
る。またそれをさらに進めてクロム鉱石を直接還元して
クロム含有溶湯を得る方法も提案されている。(特開昭
58-9959 号公報、特開昭55-91913号公報参照) また、特開平7-41872 号公報には、熱崩壊性のある炭材
を用いて、炭材にメタル粒が付着することを防止するこ
とによりメタルロスを低減するとともに、還元反応速度
を増大させる方法が開示されている。
2. Description of the Related Art Conventionally, smelting of stainless steel has been performed using ferrochrome produced by reducing chromium ore or the like in an electric furnace with carbon. However, since expensive electric power is used, the cost of ferrochrome is high. As a result, the production cost of stainless steel is high. In order to solve this problem, there has been known a method of melting a chromium-containing molten metal by reducing carbon in a pre-reduced semi-reduced chromium pellet using a top-bottom blowing converter without using electric power. ing. In addition, a method has been proposed in which the chromium ore is directly reduced to obtain a chromium-containing molten metal. (JP
JP-A-58-9959 and JP-A-55-91913) Also, JP-A-7-41872 discloses the use of a heat-degradable carbon material to prevent metal particles from adhering to the carbon material. Thus, a method for reducing the metal loss and increasing the reduction reaction rate has been disclosed.

【0003】また、特開平1-195212号公報には、鉄浴式
溶融還元炉において、1mm以下の炭材をスラグ内に吹き
込む際に、スラグの嵩比重を0.5 〜1.5 に維持する方法
が示されている。
[0003] Japanese Patent Application Laid-Open No. 1-195212 discloses a method for maintaining the bulk specific gravity of slag at 0.5 to 1.5 when a carbon material of 1 mm or less is blown into slag in an iron bath type smelting reduction furnace. Have been.

【0004】[0004]

【発明が解決しようとする課題】半還元クロムペレット
の溶融還元法は、クロムペレット製造のための設備が必
要となり、直接クロム鉱石を溶融還元する方法に比べて
コストが高くなるという問題があった。一方、クロム鉱
石の溶融還元法は、半還元クロムペレットを用いた従来
法に比べて、同一クロム量当たりの酸化物(Cr2O3, Fe
O)の投入速度が大きくなるため、単位時間当たりのク
ロム還元量を従来法と同一にするためには還元反応速度
を大きくしなければならないという問題がある。これに
対しては、主たる還元反応界面である炭素含有物質表面
積を増やすことが効果的であるが、従来と同一の炭素含
有物質を用いた場合には炭素含有物質添加量の増加が必
要となる。この炭素含有物質添加量の増加は、添加量の
増加自体がコストアップの要因となるばかりでなく、処
理後のスラグ中に炭素含有物質が残留することとなり、
スラグの再利用に悪影響を及ぼす点からも有害で、クロ
ム鉱石の溶融還元法のメリットを大きく減殺する。
The smelting reduction method of semi-reduced chromium pellets requires equipment for producing chromium pellets, and has a problem that the cost is higher than the method of smelting reduction of chromium ore directly. . On the other hand, in the smelting reduction method of chromium ore, the oxide (Cr 2 O 3 , Fe
Since the charging rate of O) increases, there is a problem that the reduction reaction rate must be increased in order to make the amount of chromium reduction per unit time the same as in the conventional method. For this purpose, it is effective to increase the surface area of the carbon-containing substance, which is the main reduction reaction interface, but when the same carbon-containing substance as in the past is used, it is necessary to increase the amount of the carbon-containing substance added. . This increase in the amount of the carbon-containing material added causes not only the increase in the amount of addition itself to increase the cost, but also the carbon-containing material remaining in the treated slag.
It is also harmful because it has an adverse effect on slag reuse, and greatly reduces the benefits of the smelting reduction method of chromium ore.

【0005】本発明は、上記した問題を有利に解決し、
高い炭材歩留が得られるクロム鉱石の溶融還元方法を提
案することを目的とする。上記の目的は粒径の微細な炭
材の使用により解決可能ではあるが、この種の微細な炭
材の使用に当たってはその添加歩留りが低く、ダスト発
生量が増大するという問題があった。これに対して特開
平7-41872 号公報では、炭材表面温度が800 ℃以下の状
態で、スラグあるいはメタルに到達するように投入方法
を調整することにより、炭材の熱崩壊前にスラグ中ある
いはメタル中に巻き込ませる方法が開示されている。
[0005] The present invention advantageously solves the above-mentioned problems,
An object of the present invention is to propose a smelting reduction method of chromium ore that can obtain a high carbon material yield. Although the above object can be solved by using a carbonaceous material having a fine particle size, the use of such a fine carbonaceous material has a problem that the addition yield is low and the amount of dust generated increases. On the other hand, in Japanese Patent Application Laid-Open No. 7-41872, in the state where the carbon material surface temperature is 800 ° C. or less, the charging method is adjusted so as to reach the slag or the metal, so that the slag before the thermal collapse of the carbon material is heated. Alternatively, a method of being involved in metal is disclosed.

【0006】しかし、本発明者らが炭材投入高さを変化
させて実験を行ったところ、表面温度800 ℃以下を保て
る条件の下でも炭材の歩留りには変化がなく、単に排ガ
ス流量の増加に合わせて炭材歩留りが低下する傾向が見
られた。また、実験中の炉口付近には炉内圧力の脈動に
伴って炭材粉の吹き出しが認められ、また、実験後の炉
内の観察およびスラグのサンプリング結果からはスラグ
上部に多量の炭材の存在が認められた。
However, when the present inventors conducted experiments by changing the carbon material input height, the yield of the carbon material did not change even under the condition that the surface temperature could be kept at 800 ° C. or less, and the exhaust gas flow rate was not changed. There was a tendency for the carbonaceous material yield to decrease with the increase. In the vicinity of the furnace port during the experiment, blowing of carbonaceous material powder was observed along with the pulsation of the furnace pressure, and a large amount of carbonaceous material was observed above the slag based on observations inside the furnace and sampling results of the slag after the experiment. Was observed.

【0007】これらの結果から、炉内に投入された炭材
の一部はスラグおよびメタル中に巻き込まれるものの、
その大部分はスラグ上に浮いているかあるいは炉内の空
間に懸濁しているものと推定された。このため、投入途
中に熱崩壊をさせないような処置を行った場合にも炭材
の飛散が減少しないものと考えられる。このように、熱
崩壊する炭材を添加する方法には添加歩留りが低いとい
う問題がある。
[0007] From these results, although a part of the carbon material charged into the furnace is caught in the slag and metal,
Most of them were presumed to be floating on the slag or suspended in the furnace space. For this reason, it is considered that the scattering of the carbonaceous material does not decrease even when a treatment for preventing the thermal collapse during the charging is performed. As described above, the method of adding the thermally collapsed carbon material has a problem that the addition yield is low.

【0008】一方、特開平1-195212号公報に示された方
法は、粒径が1mm以下の微粉炭を溶融還元炉の製錬に利
用するため、泡立たせたスラグ中に微粉炭を直接吹込む
方法である。スラグ中に微粉炭を直接吹込むには、同公
報に明記されているように炉体の側面にノズルを設ける
必要がある。しかし、炉体の側面にノズルを設置するこ
とは、炉内内張り耐火物への負担を大きくし炉寿命を著
しく低下させる。さらに、製錬中には、炉内の溶融鉄と
溶融スラグが激しく揺動しているため、炉体側面に設置
したノズルの出口圧力は大きく脈動し、安定した吹込み
が継続できない。また、炉内の溶融鉄と溶融スラッグの
揺動が極端な場合には、ノズル先端がスラグから露出
し、吹き込まれた微粉炭が炉内空間に吹き抜けてしまう
という問題があった。
On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 1-195212, pulverized coal having a particle size of 1 mm or less is directly blown into foamed slag because it is used for smelting in a smelting reduction furnace. It is a way to put it. In order to blow pulverized coal directly into the slag, it is necessary to provide a nozzle on the side of the furnace body as specified in the publication. However, installing a nozzle on the side of the furnace body increases the load on the refractory lining of the furnace and significantly reduces the life of the furnace. Further, during the smelting, the molten iron and the molten slag in the furnace vibrate violently, so that the outlet pressure of the nozzle installed on the side of the furnace pulsates greatly, and stable blowing cannot be continued. Further, when the molten iron and the molten slag in the furnace swing extremely, there is a problem that the tip of the nozzle is exposed from the slag and the pulverized coal blown into the furnace space.

【0009】[0009]

【課題を解決するための手段】本発明者らは、転炉を用
いた溶融還元工程におけるクロム還元歩留と炭材歩留の
向上を目的に、鋭意検討した結果、炭材飛散率はスラグ
の見掛け比重に大きく影響され、スラグの見掛け比重を
ある値以下に制御することにより炭材歩留が飛躍的に向
上することを知見した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to improve the chromium reduction yield and the carbon material yield in the smelting reduction process using a converter. It has been found that the carbon material yield is greatly improved by controlling the apparent specific gravity of the slag to a certain value or less, greatly affected by the apparent specific gravity of the slag.

【0010】まず、本発明の基礎となった実験について
説明する。本発明者らは、5ton 試験転炉で、転炉にク
ロム鉱石と、炉に投入時細粒化する熱崩壊性の炭素含有
物質とを添加し、上底吹きで酸素を供給してクロム鉱石
の溶融還元処理を行った。なお、添加した炭素含有物質
は、比重の異なる3種類とし、炭素含有物質の比重の影
響について検討した。
First, an experiment on which the present invention is based will be described. The present inventors, in a 5 ton test converter, add chromium ore to the converter and a thermo-disintegrable carbon-containing substance that is refined when charged into the furnace, and supply oxygen by top and bottom blow to supply chromium ore. Melt reduction treatment was performed. In addition, the added carbon-containing substance was made into three kinds from which specific gravity differs, and the influence of the specific gravity of the carbon-containing substance was examined.

【0011】まず、この処理の際、転炉から飛散したダ
ストを分析し、その1例を表1に示す。
First, dust scattered from the converter during this process was analyzed, and one example is shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】ダストは、主として炭素含有物質起因の炭
素(T.C) とメタル起因の鉄(T.Fe 、M.Fe) 、鉱石起因の
クロム(T.Cr)により構成されており、スラグ起因のCaO
、SiO2の比率は極めて少ない。このことから、スラグ
の飛散がほとんど生じないことを示している。また、炭
素含有物質は、一旦スラグに巻き込まれれば飛散しない
か、スラグに巻き込まれたものはスラグと分離したのち
飛散するものと推定できる。
Dust is mainly composed of carbon (TC) originating from a carbon-containing substance, iron (T.Fe, M.Fe) originating from metal, chromium (T.Cr) originating from ore, and CaO originating from slag.
, SiO 2 ratio is extremely small. This indicates that slag is hardly scattered. Further, it can be estimated that the carbon-containing substance does not scatter once in the slag, or that the carbon-containing substance scatters after being separated from the slag.

【0014】さらに、添加した炭素含有物質の飛散率を
調査したところ、図1に示すように、添加した炭素含有
物質の飛散率はスラグの見掛け比重と強い相関のあるこ
とを知見した。すなわち、スラグの見掛け比重が炭材の
真比重と等しい点を境としてスラグの見掛け比重が大き
くなると飛散率が増加する。また、投入時の粒径が炉口
排ガス流速によって逸散する臨界粒径より大きい場合に
は、炭素含有物質の粒径分布は、炭素含有物質の飛散率
には大きく影響しないことを知見した。さらに、スラグ
の濡れ性も、炭素含有物質の飛散率には大きくは影響し
ないという知見も得た。
Further, when the scattering rate of the added carbon-containing substance was examined, it was found that the scattering rate of the added carbon-containing substance had a strong correlation with the apparent specific gravity of the slag, as shown in FIG. That is, the scattering rate increases as the apparent specific gravity of the slag increases at the point where the apparent specific gravity of the slag is equal to the true specific gravity of the carbonaceous material. In addition, it was found that when the particle size at the time of injection was larger than the critical particle size that escaped due to the flow rate of the exhaust gas from the furnace port, the particle size distribution of the carbon-containing material did not significantly affect the scattering rate of the carbon-containing material. Furthermore, it was found that the wettability of the slag did not significantly affect the scattering rate of the carbon-containing substance.

【0015】本発明は、上記した知見をもとに構成され
たものである。すなわち、本発明は、上底吹き機能を有
する転炉型溶融還元炉にクロム鉱石を炭素含有物質とと
もに添加し、上底吹きで酸素を供給することによりクロ
ム含有溶湯を溶製するクロム鉱石の溶融還元方法におい
て、前記転炉型溶融還元炉内に存在するスラグの見掛け
比重を前記炭素含有物質の真比重より小さく調整して溶
融還元することを特徴とするクロム鉱石の溶融還元方法
である。
The present invention has been made based on the above findings. That is, the present invention relates to a smelting reduction of chromium ore in which a chromium ore is melted by adding chromium ore together with a carbon-containing substance to a converter type smelting reduction furnace having an upper and lower blowing function and supplying oxygen by upper and lower blowing. In the method, the slag present in the converter type smelting reduction furnace is smelted and reduced by adjusting the apparent specific gravity of the slag to be smaller than the true specific gravity of the carbon-containing material.

【0016】また、本発明では、前記炭素含有物質とし
て粒径3mm以上のものを使用するのが好ましく、また、
前記炭素含有物質として熱崩壊性のものを使用するのが
好ましい。
In the present invention, it is preferable to use a carbon-containing substance having a particle diameter of 3 mm or more.
It is preferable to use a thermally decayable carbon-containing substance.

【0017】[0017]

【発明の実施の形態】本発明では、上底吹き機能を有す
る転炉型溶融還元炉を用いる。転炉にクロム鉱石を炭素
含有物質とともに添加し、上底吹きで酸素を供給するこ
とにより炭素含有物質を燃焼し、その燃焼熱でクロム鉱
石の溶融と還元を行い、クロム含有溶湯を溶製する。こ
こで、炭素含有物質は炉上から添加する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a converter type smelting reduction furnace having a top-bottom blowing function is used. The chromium ore is added to the converter together with the carbon-containing material, and the carbon-containing material is burned by supplying oxygen by top and bottom blowing, and the heat of combustion melts and reduces the chromium ore to melt the chromium-containing molten metal. Here, the carbon-containing substance is added from the furnace.

【0018】上底吹き転炉の使用は、上底の両方から大
量の酸素ガスを供給し高生産性の溶融還元を可能にし、
また、底吹きガスによる強力な攪拌によりスラグ中の金
属酸化物の還元反応速度を高める意味からも有効であ
る。本発明では、炭素含有物質は、炉上から添加する。
これにより、炉側壁にノズルを設ける等の特別な吹込み
設備の設置を必要とせず、炉内耐火物の負荷も少なく、
また吹込みの不安定や、吹き抜けなどの問題もなく、安
定して炭素含有物質を吹込める。
The use of the top and bottom blown converter enables a high productivity smelting reduction by supplying a large amount of oxygen gas from both the top and bottom,
It is also effective from the viewpoint of increasing the reduction reaction rate of the metal oxide in the slag by vigorous stirring by the bottom blow gas. In the present invention, the carbon-containing substance is added from the furnace.
This eliminates the need for special blowing equipment such as providing nozzles on the furnace side wall, and reduces the load on the refractory inside the furnace,
In addition, the carbon-containing substance can be stably blown without problems such as unstable blowing and blow-through.

【0019】本発明では、転炉型溶融還元炉内に存在す
るスラグの見掛け比重を、添加する炭素含有物質の真比
重より小さく調整して溶融還元処理を行う。スラグの見
掛け比重の調整は、ランス高さを調節して、スラグフォ
ーミングを調節する方法や、残留炭材量の調節、スラグ
成分の調節等が好適である。スラグの見掛け比重が添加
する炭素含有物質の真比重より大きい場合には、スラグ
中に炭素含有物質が巻き込まれにくく、炭素含有物資の
飛散率が増大するという不都合がある。このため、スラ
グの見掛け比重は、添加する炭素含有物質の真比重より
小さく調整する。
In the present invention, the smelting reduction treatment is performed by adjusting the apparent specific gravity of the slag present in the converter type smelting reduction furnace to be smaller than the true specific gravity of the carbon-containing substance to be added. The adjustment of the apparent specific gravity of the slag is preferably performed by adjusting the lance height to adjust the slag forming, adjusting the amount of residual carbon material, adjusting the slag component, and the like. When the apparent specific gravity of the slag is larger than the true specific gravity of the carbon-containing substance to be added, there is a disadvantage that the carbon-containing substance is hardly caught in the slag, and the scattering rate of the carbon-containing substance increases. For this reason, the apparent specific gravity of the slag is adjusted to be smaller than the true specific gravity of the carbon-containing substance to be added.

【0020】本発明では、添加する炭素含有物質とし
て、粒径3mm以上のものを使用するのが好ましい。吹込
む炭素含有物質の粒径が3mm未満では、添加した炭素含
有物質の終末速度が炉口における排ガスの流速より小さ
い場合には、添加した炭素含有物質が排ガスとともに炉
外に散逸する。吹込む炭素含有物質の粒径が3mm以上で
あれば、通常の操業条件では、添加した炭素含有物質の
終未速度は炉口における排ガスの流速より大きくなり、
炭素含有物質の炉外への散逸を防止できる。
In the present invention, it is preferable to use a carbon-containing substance having a particle diameter of 3 mm or more. When the particle diameter of the carbon-containing substance to be blown is less than 3 mm, if the terminal velocity of the added carbon-containing substance is lower than the flow rate of the exhaust gas at the furnace port, the added carbon-containing substance dissipates outside the furnace together with the exhaust gas. If the particle size of the carbon-containing substance to be blown is 3 mm or more, under normal operating conditions, the final velocity of the added carbon-containing substance becomes larger than the flow rate of the exhaust gas at the furnace port,
Dissipation of the carbon-containing material outside the furnace can be prevented.

【0021】一方、炭素含有物質として、粒径の大きな
ものを使用すると、スラグとの反応界面積が小さくなり
クロム鉱石の還元不良が懸念されるため、本発明では、
炭素含有物質として熱崩壊性のものを使用するのが好ま
しい。熱崩壊性を有する炭素含有物質とすることによ
り、スラグに侵入した炭素含有物質はスラグ中で熱崩壊
し粒径の小さい粒子へと分解する。これにより、スラグ
と炭素含有物質との反応界面積が増加し、クロム鉱石の
還元不良が防止できる。本発明では、スラグの見掛け比
重を添加する炭素含有物質の真比重より小さく調整して
おり、これにより、熱崩壊して小さな粒子となった炭素
含有物質も、飛散することなくスラグ中に残留すること
ができるようになる。
On the other hand, when a carbon-containing substance having a large particle size is used, the area of the reaction interface with the slag becomes small, and there is a concern that the reduction of chromium ore may be insufficient.
It is preferable to use a thermally decayable carbon-containing substance. By using a carbon-containing substance having thermal disintegration properties, the carbon-containing substance that has entered the slag is thermally disintegrated in the slag and decomposed into particles having a small particle size. As a result, the area of the reaction interface between the slag and the carbon-containing substance increases, and poor reduction of chromium ore can be prevented. In the present invention, the apparent specific gravity of the slag is adjusted to be smaller than the true specific gravity of the carbon-containing substance to be added, whereby the carbon-containing substance that has been thermally collapsed into small particles also remains in the slag without being scattered. Will be able to do it.

【0022】[0022]

【実施例】5ton 規模の上底吹き機能を有する転炉型溶
融還元炉を用いてクロム鉱石の溶融還元を行った。粒径
5〜25mmで真比重1.60の熱崩壊性を有する炭素含有物質
を用いた。操業は底吹き酸素流量3Nm3/min 、上吹き酸
素流量17Nm3/min として上底吹きすることにより行っ
た。なお、操業中は、ランス高さの調節により、スラグ
のフォーミングを制御し、スラグの見掛け比重を1.20±
0.05の範囲に調整し、実施例とした。また、スラグの見
掛け比重を1.80±0.10の範囲に調整し、比較例とした。
添加した炭素含有物質量の添加歩留(炭材歩留)を表2
に示す。
EXAMPLE A chromium ore was smelted and reduced using a converter type smelting reduction furnace having a 5-ton scale top-bottom blowing function. A carbon-containing substance having a particle diameter of 5 to 25 mm and a true specific gravity of 1.60 and having thermal degradability was used. The operation was carried out by blowing the top and bottom at a bottom blown oxygen flow rate of 3 Nm 3 / min and a top blown oxygen flow rate of 17 Nm 3 / min. During the operation, the slag forming was controlled by adjusting the lance height, and the apparent specific gravity of the slag was 1.20 ±
It was adjusted to a range of 0.05 and used as an example. In addition, the apparent specific gravity of the slag was adjusted to a range of 1.80 ± 0.10, which was used as a comparative example.
Table 2 shows the addition yield (carbon material yield) of the added amount of carbon-containing substance.
Shown in

【0023】[0023]

【表2】 [Table 2]

【0024】炭素含有物質の熱崩壊性については、吹錬
中にスラグのサンプルを採取し、残留炭材の粒度分布を
測定して確認した。なお、スラグ中の残留炭材の粒度分
布を図2に示す。真比重1.6 の炭材の終末速度および炉
内の排ガス流速からは、粒径3mm以下の炭材が飛散可能
となるが、試験No.1(実施例)では、残留炭材の約90%
はこの範囲に含まれている。一方、比較例(試験No.2)
では、炭素含有物質が熱崩壊して微細化しているが、全
体として試験No.1(実施例)に比較して大径側にずれて
いる。これは、スラグへの巻き込みが十分に進行せず、
小径の炭材が飛散したためと考えられる。
The thermal decay property of the carbon-containing substance was confirmed by taking a sample of slag during blowing and measuring the particle size distribution of the residual carbon material. FIG. 2 shows the particle size distribution of the residual carbon material in the slag. From the terminal velocity of the carbon material with a true specific gravity of 1.6 and the exhaust gas flow velocity in the furnace, carbon material with a particle size of 3 mm or less can be scattered, but in Test No. 1 (Example), approximately 90% of the residual carbon material
Is included in this range. On the other hand, Comparative Example (Test No. 2)
In the figure, the carbon-containing material was thermally collapsed and became finer, but as a whole, shifted to the larger diameter side as compared with Test No. 1 (Example). This is because the entrainment in the slag does not progress enough,
It is considered that small-diameter carbon material was scattered.

【0025】表2から、本発明の範囲内で操業した実施
例(試験No.1)では、炭素含有物質の添加歩留は99%と
高いのに対し、本発明の範囲を外れた比較例(試験No.
2)では、炭素含有物質の添加歩留は88%と著しく低い
値となっている。このように、炉内のスラグの見掛け比
重を添加炭素含有物質の真比重より小さく調整すること
により、炭素含有物質のスラグへの巻き込みが促進さ
れ、高い炭材歩留りが達成できる。
From Table 2, it can be seen that in Examples (Test No. 1) operated within the scope of the present invention, the addition yield of the carbon-containing substance was as high as 99%, whereas Comparative Examples outside the scope of the present invention were obtained. (Test No.
In 2), the addition yield of the carbon-containing substance is extremely low at 88%. Thus, by adjusting the apparent specific gravity of the slag in the furnace to be smaller than the true specific gravity of the added carbon-containing material, entrainment of the carbon-containing material into the slag is promoted, and a high carbon material yield can be achieved.

【0026】[0026]

【発明の効果】本発明によれば、炭素含有物質の高い添
加歩留が得られ、産業上多大の効果を奏する。本発明で
は、炉内に存在するスラグの見掛け比重を炭素含有物質
の真比重よりも小さくすることにより、炭素含有物質の
高添加歩留を得るもので、実際の操業への適用にあたっ
ては、炭素含有物質の種類は予め決まっており、スラグ
の比重をその炭素含有物質の比重に合わせて調節するこ
とが必要になるが、この比重調節法としては、ランス高
さの調節、残留炭材量の調節、スラグ成分の調節等が考
えられる。
According to the present invention, a high addition yield of the carbon-containing substance can be obtained, and a great industrial effect can be obtained. In the present invention, the apparent specific gravity of the slag present in the furnace is made smaller than the true specific gravity of the carbon-containing material to obtain a high addition yield of the carbon-containing material. The type of the contained material is predetermined, and it is necessary to adjust the specific gravity of the slag in accordance with the specific gravity of the carbon-containing material. Adjustment, adjustment of slag components, and the like are conceivable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭材飛散率とスラグの見掛け比重との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a carbon material scattering rate and an apparent specific gravity of slag.

【図2】スラグ中残留炭材の粒径分布を示すグラフであ
る。
FIG. 2 is a graph showing a particle size distribution of a residual carbon material in slag.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き機能を有する転炉型溶融還元炉
にクロム鉱石を炭素含有物質とともに添加し、上底吹き
で酸素を供給することによりクロム含有溶湯を溶製する
クロム鉱石の溶融還元方法において、前記転炉型溶融還
元炉内に存在するスラグの見掛け比重を前記炭素含有物
質の真比重より小さく調整して溶融還元することを特徴
とするクロム鉱石の溶融還元方法。
1. A method for smelting and reducing chromium ore by adding chromium ore and a carbon-containing substance to a converter type smelting reduction furnace having a top and bottom blowing function, and supplying oxygen by top and bottom blowing to melt a chromium ore. In the method of smelting reduction of chromium ore, the apparent specific gravity of the slag present in the converter type smelting reduction furnace is adjusted to be smaller than the true specific gravity of the carbon-containing material.
【請求項2】 前記炭素含有物質として粒径3mm以上の
ものを使用することを特徴とする請求項1に記載のクロ
ム鉱石の溶融還元方法。
2. The method for smelting and reducing chromium ore according to claim 1, wherein the carbon-containing substance having a particle size of 3 mm or more is used.
【請求項3】 前記炭素含有物質として熱崩壊性のもの
を使用することを特徴とする請求項1または2に記載の
クロム鉱石の溶融還元方法。
3. The method for smelting reduction of chromium ore according to claim 1, wherein a thermally decayable carbon-containing material is used.
JP6654398A 1997-03-19 1998-03-17 Smelting and reduction method of chromium ore Pending JPH10317032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6654398A JPH10317032A (en) 1997-03-19 1998-03-17 Smelting and reduction method of chromium ore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-65659 1997-03-19
JP6565997 1997-03-19
JP6654398A JPH10317032A (en) 1997-03-19 1998-03-17 Smelting and reduction method of chromium ore

Publications (1)

Publication Number Publication Date
JPH10317032A true JPH10317032A (en) 1998-12-02

Family

ID=26406802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6654398A Pending JPH10317032A (en) 1997-03-19 1998-03-17 Smelting and reduction method of chromium ore

Country Status (1)

Country Link
JP (1) JPH10317032A (en)

Similar Documents

Publication Publication Date Title
JP5522320B1 (en) Steelmaking slag reduction treatment method
JP2001518557A (en) Direct smelting method for producing metal from metal oxide
EP2210959B1 (en) Process for producing molten iron
JP5877838B2 (en) Direct smelting process
JP2018119693A (en) Hollow electrode for electric furnace and electric furnace
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JPH10317032A (en) Smelting and reduction method of chromium ore
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP3718945B2 (en) Method for smelting reduction of chromium ore
JP2983087B2 (en) Operation method of smelting reduction
JP3444046B2 (en) Chromium ore powder charging method in smelting reduction furnace
US4131451A (en) Method for removing zinc from zinc-containing slags
JP3580059B2 (en) Smelting reduction method of chromium ore
JPH06145761A (en) Structure for arranging tuyere in electric furnace
JP2770305B2 (en) Feeding method for smelting reduction of iron ore
JPH10176211A (en) Method for preventing dispersion of duct at the time of refining metal
JPH10317041A (en) Smelting reduction refining method of chromium ore developing little dust
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH01247516A (en) Method for supplying raw material in smelting reduction
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
JPH03232919A (en) Production of molten ferrous alloy
JPH03277710A (en) Iron-making method with smelting reduction
JPH04314806A (en) Device for charging raw material in smelting reduction furnace
JPS6227514A (en) Melt-reduction refining method for oxide
JPH01195209A (en) Operation of iron bath type melting and reducing furnace