JPH10313095A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH10313095A
JPH10313095A JP9122289A JP12228997A JPH10313095A JP H10313095 A JPH10313095 A JP H10313095A JP 9122289 A JP9122289 A JP 9122289A JP 12228997 A JP12228997 A JP 12228997A JP H10313095 A JPH10313095 A JP H10313095A
Authority
JP
Japan
Prior art keywords
oxide film
polycrystalline silicon
silicon oxide
wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9122289A
Other languages
Japanese (ja)
Inventor
Takuya Hirota
卓哉 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9122289A priority Critical patent/JPH10313095A/en
Publication of JPH10313095A publication Critical patent/JPH10313095A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a capacitive element of large capacity to be added inside a chip without occupying an additional space by a method wherein a first polycrystalline silicon layer is formed and connected under a bonding pad, and the capacitive element is formed by the use of a single crystal silicon substrate through the intermediary of a thin silicon oxide film. SOLUTION: A well 14 is built in a single crystal silicon substrate 1, a field oxide film (LOCOS) 2 is formed through thermal oxidation, and a silicon oxide film 3 is formed thereon through thermal oxidation. Furthermore, a first polycrystalline silicon wiring 4 is formed through a CVD method to serve as a counter substrate potential electrode. Thereafter, a diffusion layer 5 is formed through a self-aligned method, a silicon oxide film 6 is grown through thermal oxidation, and a contact hole 7 is bored in the silicon oxide film 6. Moreover, a first aluminum wiring layer 8 is formed thereon, and a second aluminum wiring layer 9 is formed through the intermediary of a contact hole 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に関
し、特に、ボンディングPAD直下の容量素子の構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a structure of a capacitive element immediately below a bonding pad.

【0002】[0002]

【従来の技術】以下に、ノイズに対する電源電位(VC
C)配線とGND配線の揺れを抑える為に用いられてい
る容量素子の従来例を示す。
2. Description of the Related Art A power supply potential (VC) for noise is described below.
C) A conventional example of a capacitive element used to suppress the fluctuation of the wiring and the GND wiring is shown.

【0003】図3において、1は単結晶シリコン基板、
14はウェル領域、2はセル領域を分離するフィールド
酸化膜(LOCOS)、3は(ゲート)シリコン酸化
膜、4は第1多結晶シリコンよりなるゲート電極、5は
拡散層、8は第1の金属(アルミ)配線層でありコンタ
クトホール7を通じて多結晶シリコン層4に接続されて
いる。さらに、その上部には、第2の金属(アルミ)配
線層9が存在し、コンタクトホール(スルーホール)1
1を通じて第1の金属(アルミ)配線層8に接続される
構造をもつ。この第2の金属(アルミ)配線層9が電源
電位(VCC)配線であり、多結晶シリコン配線層4と
P型シリコン基板1により容量素子が形成されている。
In FIG. 3, 1 is a single crystal silicon substrate,
14 is a well region, 2 is a field oxide film (LOCOS) for separating a cell region, 3 is a (gate) silicon oxide film, 4 is a gate electrode made of first polycrystalline silicon, 5 is a diffusion layer, and 8 is a first layer. It is a metal (aluminum) wiring layer and is connected to the polycrystalline silicon layer 4 through a contact hole 7. Further, a second metal (aluminum) wiring layer 9 is present on the upper portion, and a contact hole (through hole) 1 is formed.
1 has a structure connected to the first metal (aluminum) wiring layer 8. The second metal (aluminum) wiring layer 9 is a power supply potential (VCC) wiring, and a capacitance element is formed by the polysilicon wiring layer 4 and the P-type silicon substrate 1.

【0004】図4は、従来のボンディングPAD部の断
面図であり、第1または第2の金属配線層が存在しその
上部に金(アルミ)線がボンディングされている。また
第1または第2の金属配線層は、内部の電源配線に接続
されている。
FIG. 4 is a cross-sectional view of a conventional bonding PAD portion, in which a first or second metal wiring layer is present, and a gold (aluminum) wire is bonded thereon. The first or second metal wiring layer is connected to an internal power supply wiring.

【0005】この様に、従来のPADは、単に金(アル
ミ)線をボンディングする為だけの構造となっていた。
As described above, the conventional PAD has a structure merely for bonding a gold (aluminum) wire.

【0006】以上の様に、一般的な電源配線層に容量素
子を接続し、電源ノイズの揺れを抑えようとする構造は
存在したが、この構造では、チップサイズによる制限を
受けるため、チップ上に多く配置することができず、よ
り多くのオンチップ容量を得るのは困難であった。
As described above, there has been a structure in which a capacitance element is connected to a general power supply wiring layer to suppress fluctuations in power supply noise. However, this structure is limited by the chip size, so that the structure on the chip is limited. However, it was difficult to obtain more on-chip capacitance.

【0007】[0007]

【発明が解決しようとする課題】半導体装置は、今後、
微細化、小型化(チップサイズなど)が益々進み、メモ
リセル部および周辺部容量ブロックの静電容量が、小さ
くなりつつある。そのため、電源電圧の変動(ノイズ)
やα線粒子入射時の電位の変動に対し、十分な注意を払
う必要が生じる。
SUMMARY OF THE INVENTION Semiconductor devices will be
As miniaturization and miniaturization (such as chip size) have been further advanced, the capacitance of the memory cell section and the peripheral capacity block has been reduced. Therefore, fluctuation of power supply voltage (noise)
It is necessary to pay sufficient attention to the fluctuation of the potential at the time of incidence of α-ray particles.

【0008】このことに対処する為に、チップ内に、余
分な場所を取らずに大きな容量素子を付加する必要がで
てきた。
In order to cope with this, it is necessary to add a large capacitance element without taking extra space in the chip.

【0009】本発明はチップ内に、余分な場所を取らず
に大きな容量素子を付加することのできる半導体装置を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor device in which a large capacitance element can be added without taking extra space in a chip.

【0010】[0010]

【課題を解決するための手段】前記の目的は以下の手段
によって達成される。
The above object is achieved by the following means.

【0011】すなわち、本発明は、ボンディングPAD
直下に接続・形成されている第1の多結晶シリコン層
と、薄いシリコン酸化膜を介してその直下に存在する単
結晶シリコン基板によって形成した容量素子を持たせた
ことを特徴とする半導体装置を提案するものであり、前
記、第1の多結晶シリコン層が第2の多結晶シリコン層
に置き換わった構造とすることを含む。
That is, the present invention relates to a bonding PAD
A semiconductor device comprising: a first polycrystalline silicon layer connected and formed immediately below; and a capacitive element formed by a single crystal silicon substrate immediately below through a thin silicon oxide film. The present invention proposes a structure in which the first polycrystalline silicon layer is replaced with a second polycrystalline silicon layer.

【0012】また、本発明は、ボンディングPAD直下
に接続・形成されている第2の多結晶シリコン層と薄い
シリコン酸化膜を介してその直下に存在する第1の多結
晶シリコン層によって形成した容量素子を持たせたこと
を特徴とする半導体装置を提案するものであり、更に前
記、半導体装置に対し、第3、第4の多結晶シリコン層
を有し、それぞれが、上記の様な、容量構造を有するこ
とを特徴とする半導体装置を提案するものである。
Further, according to the present invention, there is provided a capacitor formed by a second polycrystalline silicon layer connected and formed immediately below a bonding PAD and a first polycrystalline silicon layer present immediately below via a thin silicon oxide film. The present invention proposes a semiconductor device characterized by having an element, and further has a third and fourth polycrystalline silicon layers with respect to the semiconductor device, each of which has a capacitance as described above. A semiconductor device having a structure is proposed.

【0013】[0013]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。 (実施例1)図1(A)は、実施例1の電源またはGN
D用PAD部断面図であり、図1(B)は、実施例1の
PAD平面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1A shows the power supply or GN of Embodiment 1.
FIG. 1B is a cross-sectional view of a PAD portion for D, and FIG.

【0014】図1(A)、ここでは、まず、単結晶シリ
コン基板1にウェル14を作り込み、熱酸化によりLO
COS2を形成し、その上に、シリコン酸化膜3(厚さ
約12nm)を熱酸化により形成する。さらに、CVD
法により第1多結晶シリコン配線4(厚さ約200n
m)を形成する。これは、容量素子の対基板電位電極と
して用いられるものである。この後、イオン注入法によ
って拡散層5をセルフアラインで形成する。そして、熱
酸化によりシリコン酸化膜6を100nm程度成長させ
る。
FIG. 1A, here, first, a well 14 is formed in a single-crystal silicon substrate 1, and the LO 14 is formed by thermal oxidation.
COS 2 is formed, and a silicon oxide film 3 (about 12 nm thick) is formed thereon by thermal oxidation. Further, CVD
The first polysilicon wiring 4 (having a thickness of about 200 n
m). This is used as a potential electrode with respect to the substrate of the capacitor. Thereafter, the diffusion layer 5 is formed in a self-aligned manner by an ion implantation method. Then, a silicon oxide film 6 is grown to about 100 nm by thermal oxidation.

【0015】さらに、上記、第1多結晶シリコン配線4
上部のシリコン酸化膜6にコンタクトホール7を形成す
る。そして、その上に、第1のアルミ(金属)配線層8
を形成する。もし、その半導体装置が第2のアルミ(金
属)配線層9を有していない場合、この第1のアルミ
(金属)配線層8がPADボンディング接続表面部とし
て用いられる。
Further, the first polysilicon wiring 4
A contact hole 7 is formed in the upper silicon oxide film 6. Then, a first aluminum (metal) wiring layer 8 is formed thereon.
To form If the semiconductor device does not have the second aluminum (metal) wiring layer 9, the first aluminum (metal) wiring layer 8 is used as a PAD bonding connection surface.

【0016】その半導体装置が第2のアルミ(金属)配
線層9を有している場合、第1のアルミ(金属)配線層
8の上部に、BPSG層間膜10(約300nm)を形
成させた後、その上部にコンタクトホール(スルーホー
ル)11を形成し、PADボンディング接続表面部とな
る第2のアルミ(金属)配線層9を形成する。
When the semiconductor device has the second aluminum (metal) wiring layer 9, a BPSG interlayer film 10 (about 300 nm) is formed on the first aluminum (metal) wiring layer 8. Thereafter, a contact hole (through hole) 11 is formed thereon, and a second aluminum (metal) wiring layer 9 serving as a PAD bonding connection surface is formed.

【0017】以上の様な構造を有し、このボンディング
PADが電源(Vcc)用である場合、ウェル14をG
ND電位に設定し、第1多結晶シリコン配線4に対して
容量をもち、もし、このボンディングPADがGND電
位用である場合、単結晶シリコン基板1をVcc電位に
設定し、第1多結晶シリコン配線4に対して容量をもた
せる。
When the bonding PAD has the above-described structure and is used for a power supply (Vcc), the well 14 is
ND potential, and has a capacity for the first polycrystalline silicon wiring 4. If this bonding PAD is for GND potential, the single crystal silicon substrate 1 is set to the Vcc potential, The wiring 4 has a capacitance.

【0018】これにより、PAD部の面積を約100×
100μmとすると、1PADあたり約50pF、1つ
のCHIPに電源PADを20個持っているとすると、
約1000pFの容量が得られる。
As a result, the area of the PAD portion is reduced to about 100 ×
Assuming 100 μm, if one PAD has about 50 pF and one CHIP has 20 power supply PADs,
A capacity of about 1000 pF is obtained.

【0019】このように、実施例1では、一般的な半導
体集積回路を形成する上で必要な通常プロセスのみを用
いることにより、電源・GND用ボンディングPAD部
直下に、容量素子を形成することができる。これにより
チップ全体として、より多くのオンチップコンデンサー
容量値を得ることができ、電源−GND間におけるノイ
ズ等の揺れを防ぐことができる。 (実施例2)次に、上記実施例1において、ボンディン
グ時の衝撃を考慮した実施例2を以下に説明する。(図
2(A)参照) まず、上記実施例1と同様に、単結晶シリコン基板1に
ウェル14を作り込み、熱酸化によりLOCOS2を形
成し、その上に、シリコン酸化膜3(厚さ約12nm)
を熱酸化により形成する。さらに、CVD法により第1
多結晶シリコン配線4(厚さ約200nm)を形成す
る。この後、イオン注入法によって拡散層5をセルフア
ラインで形成する。そして、熱酸化によりシリコン酸化
膜6を100nm程度成長させる。
As described above, in the first embodiment, by using only the normal process necessary for forming a general semiconductor integrated circuit, it is possible to form a capacitive element immediately below the power supply / GND bonding PAD portion. it can. As a result, a larger capacitance value of the on-chip capacitor can be obtained for the entire chip, and fluctuation of noise or the like between the power supply and GND can be prevented. (Embodiment 2) Next, Embodiment 2 will be described below in which the impact at the time of bonding in Embodiment 1 is taken into consideration. (See FIG. 2A.) First, similarly to the first embodiment, a well 14 is formed in a single-crystal silicon substrate 1, a LOCOS 2 is formed by thermal oxidation, and a silicon oxide film 3 (having a thickness of about 12 nm)
Is formed by thermal oxidation. Further, the first method is performed by the CVD method.
A polycrystalline silicon wiring 4 (about 200 nm thick) is formed. Thereafter, the diffusion layer 5 is formed in a self-aligned manner by an ion implantation method. Then, a silicon oxide film 6 is grown to about 100 nm by thermal oxidation.

【0020】ここより、実施例1とは異なり、上記、シ
リコン酸化膜6上に第2多結晶シリコン層12(厚さ約
100nm)を形成し、さらに、熱酸化によりシリコン
酸化膜13を100nm程度成長させる。
From the above, unlike the first embodiment, a second polycrystalline silicon layer 12 (about 100 nm thick) is formed on the silicon oxide film 6 and the silicon oxide film 13 is formed to a thickness of about 100 nm by thermal oxidation. Let it grow.

【0021】その後は、実施例1と同様に、上記、第2
多結晶シリコン配線12上部のシリコン酸化膜13にコ
ンタクトホール7を形成する。そして、その上に、第1
のアルミ(金属)配線層8を形成する。もし、その半導
体装置が第2のアルミ(金属)配線層9を有していない
場合、この第1のアルミ(金属)配線層8がPADボン
ディング接続表面部として用いられる。
Thereafter, as in the first embodiment, the second
A contact hole 7 is formed in a silicon oxide film 13 above the polycrystalline silicon wiring 12. And on top of that,
The aluminum (metal) wiring layer 8 is formed. If the semiconductor device does not have the second aluminum (metal) wiring layer 9, the first aluminum (metal) wiring layer 8 is used as a PAD bonding connection surface.

【0022】その半導体装置が第2のアルミ(金属)配
線層9を有している場合、第1のアルミ(金属)配線層
8の上部に、BPSG層間膜10(約300nm)を形
成させた後、その上部にコンタクトホール(スルーホー
ル)11を形成し、PADボンディング接続表面部とな
る第2のアルミ(金属)配線層9を形成する。
When the semiconductor device has the second aluminum (metal) wiring layer 9, a BPSG interlayer film 10 (about 300 nm) is formed on the first aluminum (metal) wiring layer 8. Thereafter, a contact hole (through hole) 11 is formed thereon, and a second aluminum (metal) wiring layer 9 serving as a PAD bonding connection surface is formed.

【0023】以上の様な構造を有し、このボンディング
PADが電源(Vcc)用である場合、ウェル14を電
源(Vcc)電位に、第1多結晶シリコン配線4をGN
D電位に設定することにより、ウェル14が第1多結晶
シリコン配線4に対し容量をもち、第1多結晶シリコン
配線4が第2多結晶シリコン配線12に対して容量をも
つ。(第1多結晶シリコン配線4(GND電位)がウェ
ル14と第2多結晶シリコン配線12(Vcc電位)に
よって挟み込まれる容量構造となる。)もし、このボン
ディングPADがGND電位用である場合、ウェル14
をGND電位に、第1多結晶シリコン配線4を電源(V
cc)電位に設定することにより、ウェル14が第1多
結晶シリコン配線4に対し容量をもち、第1多結晶シリ
コン配線4が第2多結晶シリコン配線12に対して容量
をもつ。(第1多結晶シリコン配線4(Vcc電位)が
ウェル14と第2多結晶シリコン配線12(GND電
位)によって挟み込まれる容量構造となる。) これにより、PAD部の面積を約100×100μmと
すると、1PADあたり約60pF、1つのCHIPに
電源PADを20個持っているとすると、約1200p
Fの容量が得られる。
When the bonding PAD has the above structure and is used for a power supply (Vcc), the well 14 is set to the power supply (Vcc) potential, and the first polysilicon wiring 4 is set to GN.
By setting the potential to D, the well 14 has a capacity with respect to the first polysilicon wiring 4, and the first polysilicon wiring 4 has a capacity with respect to the second polysilicon wiring 12. (The first polysilicon wire 4 (GND potential) has a capacitance structure sandwiched between the well 14 and the second polysilicon wire 12 (Vcc potential).) If this bonding PAD is for the GND potential, 14
To the GND potential and the first polysilicon wiring 4 to the power supply (V
By setting the potential to cc), the well 14 has a capacity with respect to the first polysilicon wiring 4, and the first polysilicon wiring 4 has a capacity with respect to the second polysilicon wiring 12. (The first polysilicon wire 4 (Vcc potential) has a capacitance structure sandwiched between the well 14 and the second polysilicon wire 12 (GND potential).) As a result, if the area of the PAD portion is about 100 × 100 μm Approximately 60pF per PAD. If one CHIP has 20 power supply PADs, about 1200pF
The capacity of F is obtained.

【0024】このように、実施例2においても、一般的
な半導体集積回路を形成する上で必要な通常プロセスの
みを用いることにより、電源またはGND用ボンディン
グPAD部直下に、容量素子を形成することができる。
また、実施例1を実施例2の様に改良することにより、
ボンディング時の衝撃に強く、さらに、大きな容量値を
得る事ができる。
As described above, also in the second embodiment, by using only a normal process necessary for forming a general semiconductor integrated circuit, a capacitor can be formed immediately below a power supply or a bonding PAD portion for GND. Can be.
Further, by improving the first embodiment as in the second embodiment,
It is resistant to the shock at the time of bonding and can obtain a large capacitance value.

【0025】[0025]

【発明の効果】以上、説明したように、本発明は、一般
的な半導体集積回路を形成する上で必要な通常工程のみ
で実現可能であり、電源またはGND用ボンディングP
AD(AL層)の直下にコンタクトホールを形成するこ
とにより第1の多結晶シリコン層と接続し、薄いシリコ
ン酸化膜を介して単結晶シリコン基板との間に容量素子
を形成することが可能となる。
As described above, the present invention can be realized only by ordinary steps necessary for forming a general semiconductor integrated circuit, and can be realized by a power supply or a GND bonding P.
By forming a contact hole directly under AD (AL layer), it is possible to connect to the first polycrystalline silicon layer and form a capacitive element between the polycrystalline silicon layer and the single crystal silicon substrate via a thin silicon oxide film. Become.

【0026】近年、チップ面積の縮小化に伴い、電源配
線の揺れを抑えるためのオンチップコンデンサーが縮小
されているが、本発明では、容量素子を例えば電源用P
ADの直下に形成する為、チップ面積による制約を受け
ることはない。さらに、最近の半導体集積装置において
は、多くの電源・GND用PADを装備している為、多
くの容量素子を形成することが可能である。
In recent years, with the reduction in chip area, on-chip capacitors for suppressing fluctuations in power supply wiring have been reduced.
Since it is formed immediately below AD, there is no restriction due to the chip area. Further, in recent semiconductor integrated devices, since many power supply / GND PADs are provided, it is possible to form many capacitance elements.

【0027】さらに、上記、半導体装置に対し、第3、
第4の多結晶シリコン層をもち、それぞれ(第1から第
4までの多結晶シリコン配線層)が、上記の様に重なり
合い、容量構造を形成し、より大きな容量値をもつ容量
素子を形成することも可能である。
Further, in the semiconductor device, the third,
It has a fourth polycrystalline silicon layer, and the respective (first to fourth polycrystalline silicon wiring layers) overlap as described above to form a capacitance structure and form a capacitance element having a larger capacitance value. It is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明の実施例1のボンディング
PAD部チップの断面図であり、図1(b)は実施例1
のボンディングPAD部の平面図である。
FIG. 1A is a cross-sectional view of a bonding PAD unit chip according to a first embodiment of the present invention, and FIG.
3 is a plan view of a bonding PAD section of FIG.

【図2】図2(a)は本発明の実施例2のボンディング
PAD部チップの断面図であり、図2(b)は実施例2
のボンディングPAD部の平面図である。
FIG. 2A is a cross-sectional view of a bonding PAD unit chip according to a second embodiment of the present invention, and FIG.
3 is a plan view of a bonding PAD section of FIG.

【図3】従来例の容量素子部の断面図である。FIG. 3 is a cross-sectional view of a conventional capacitive element.

【図4】従来例のボンディングPAD部の断面図であ
る。
FIG. 4 is a cross-sectional view of a conventional bonding PAD portion.

【符号の説明】[Explanation of symbols]

1 単結晶シリコン基板 2 LOCOS 14 ウェル領域 3、6、10、13 シリコン酸化膜 4 第1多結晶シリコン配線 12 第2多結晶シリコン配線 5 拡散層 7、11 コンタクトホール 8 第1金属(アルミ)配線 9 第2金属(アルミ)配線 Reference Signs List 1 single-crystal silicon substrate 2 LOCOS 14 well region 3, 6, 10, 13 silicon oxide film 4 first polycrystalline silicon wiring 12 second polycrystalline silicon wiring 5 diffusion layer 7, 11 contact hole 8 first metal (aluminum) wiring 9 Second metal (aluminum) wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ボンディングPAD直下に接続・形成さ
れている第1の多結晶シリコン層と、薄いシリコン酸化
膜を介してその直下に存在する単結晶シリコン基板によ
って形成した容量素子を持たせたことを特徴とする半導
体装置。
A capacitor element formed by a first polycrystalline silicon layer connected and formed directly below a bonding pad and a single crystal silicon substrate immediately below the first polycrystalline silicon layer via a thin silicon oxide film. A semiconductor device characterized by the above-mentioned.
【請求項2】 前記、第1の多結晶シリコン層が第2の
多結晶シリコン層に置き換わった構造とする請求項1記
載の半導体装置。
2. The semiconductor device according to claim 1, wherein said first polycrystalline silicon layer is replaced with a second polycrystalline silicon layer.
【請求項3】 ボンディングPAD直下に接続・形成さ
れている第2の多結晶シリコン層と薄いシリコン酸化膜
を介してその直下に存在する第1の多結晶シリコン層に
よって形成した容量素子を持たせたことを特徴とする半
導体装置。
3. A capacitor formed by a second polycrystalline silicon layer connected and formed immediately below a bonding PAD and a first polycrystalline silicon layer immediately below the second polycrystalline silicon layer via a thin silicon oxide film. A semiconductor device characterized by the above-mentioned.
【請求項4】 前記、半導体装置に対し、第3、第4の
多結晶シリコン層を有し、それぞれが、上記の様な、容
量構造を有することを特徴とする半導体装置。
4. The semiconductor device according to claim 1, further comprising third and fourth polycrystalline silicon layers, each of which has the above-described capacitance structure.
JP9122289A 1997-05-13 1997-05-13 Semiconductor device Pending JPH10313095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9122289A JPH10313095A (en) 1997-05-13 1997-05-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9122289A JPH10313095A (en) 1997-05-13 1997-05-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH10313095A true JPH10313095A (en) 1998-11-24

Family

ID=14832276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9122289A Pending JPH10313095A (en) 1997-05-13 1997-05-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH10313095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781238B2 (en) 2000-04-03 2004-08-24 Nec Corporation Semiconductor device and method of fabricating the same
JP2008021847A (en) * 2006-07-13 2008-01-31 Toshiba Corp Esd protection circuit for semiconductor device
US8283753B2 (en) 2006-03-15 2012-10-09 Renesas Electronics Corporation Semiconductor device
DE102012003545A1 (en) * 2011-11-18 2013-05-23 Cambridge Silicon Radio Ltd. UNDER-HÖCKER PASSIVE STRUCTURES AT WAFER LEVEL PACKAGING

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781238B2 (en) 2000-04-03 2004-08-24 Nec Corporation Semiconductor device and method of fabricating the same
US8283753B2 (en) 2006-03-15 2012-10-09 Renesas Electronics Corporation Semiconductor device
US8575721B2 (en) 2006-03-15 2013-11-05 Renesas Electronics Corporation Semiconductor device
JP2008021847A (en) * 2006-07-13 2008-01-31 Toshiba Corp Esd protection circuit for semiconductor device
DE102012003545A1 (en) * 2011-11-18 2013-05-23 Cambridge Silicon Radio Ltd. UNDER-HÖCKER PASSIVE STRUCTURES AT WAFER LEVEL PACKAGING
US8710658B2 (en) 2011-11-18 2014-04-29 Cambridge Silicon Radio Limited Under bump passive components in wafer level packaging
DE102012003545B4 (en) * 2011-11-18 2016-05-25 Qualcomm Technologies International, Ltd. A method of fabricating a bottom bump structure with a capacitor in wafer level packaging and a bottom bump structure with a capacitor

Similar Documents

Publication Publication Date Title
JP3251778B2 (en) Semiconductor storage device and method of manufacturing the same
JP3535615B2 (en) Semiconductor integrated circuit device
JP2001015703A (en) Mixed lsi semiconductor device
JPH0260163A (en) Semiconductor memory and manufacture thereof
JPH1197645A (en) Semiconductor storage device
US20020130342A1 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0799255A (en) Semiconductor integrated circuit device
US6198153B1 (en) Capacitors with silicized polysilicon shielding in digital CMOS process
JP2570100B2 (en) Semiconductor storage device
JPH10313095A (en) Semiconductor device
US5936289A (en) Semiconductor device
JP2749241B2 (en) Semiconductor integrated circuit
JPS6173367A (en) Semiconductor device
JPH05198742A (en) Semiconductor integrated circuit device
JP2004165558A (en) Semiconductor integrated circuit
JPH0845935A (en) Forming method of multilayer interconnection
JP3019038B2 (en) Semiconductor device
JPH06252362A (en) Semiconductor integrated circuit
JP2004140133A (en) Semiconductor integrated circuit and its manufacturing method
JPH02216862A (en) Semiconductor device
JPH03108338A (en) Semiconductor integrated circuit device
JPH04107964A (en) Semiconductor ic device
JP3426935B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JPH07312415A (en) Semiconductor integrated circuit
JPH05175519A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000425