JPH10310859A - Method for treating surface of hard inorganic material - Google Patents

Method for treating surface of hard inorganic material

Info

Publication number
JPH10310859A
JPH10310859A JP9134546A JP13454697A JPH10310859A JP H10310859 A JPH10310859 A JP H10310859A JP 9134546 A JP9134546 A JP 9134546A JP 13454697 A JP13454697 A JP 13454697A JP H10310859 A JPH10310859 A JP H10310859A
Authority
JP
Japan
Prior art keywords
inorganic material
hard inorganic
coating
surface layer
roughening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9134546A
Other languages
Japanese (ja)
Inventor
Kazuyuki Miho
和之 三保
Keiki Tsuzuki
圭紀 都築
Tsutomu Fujiwara
力 藤原
Takahiro Sekikawa
貴洋 関川
Hiroshi Notomi
啓 納富
Yasuyuki Takeda
恭之 武田
Tatsuo Morimoto
立男 森本
Ken Ogura
謙 小椋
Masayuki Kondo
雅之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Original Assignee
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Heavy Industries Ltd filed Critical National Space Development Agency of Japan
Priority to JP9134546A priority Critical patent/JPH10310859A/en
Publication of JPH10310859A publication Critical patent/JPH10310859A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00982Uses not provided for elsewhere in C04B2111/00 as construction elements for space vehicles or aeroplanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute efficient and uniform roughening free from deterioration in the characteristics of the material to be applied with coating by executing roughening treatment using a laser beam to the surface of a hard inorganic material as a surface layer, particularly, on the surface of a material with a crystal structure having covalent bondability to form coating by a thermal spraying method. SOLUTION: Prior to the formation of coating on a surface layer composed of a hard inorganic material, the surface of the material to be subjected to coating (hard inorganic material) is subjected to roughening treatment. In accordance with the degree of the objective roughening, the spot diameter, focal distance, pulse frequency or the like of a laser beam 5 are regulated, which is applied to the surface layer 2 of the material to be subjected to coating, and boring or grooving is executed. Substantially, it is applied to the one in which a surface layer composed of a hard inorganic material such as Sic, TiC, TiN, HfC or the like is formed on a material composed of a hard inorganic material such as Sic, TiC, HfC or the like, or a WC/C composite material or a base material such as graphite or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は宇宙往還機、エンジ
ン等の耐熱あるいは耐酸化性が要求される構造体の構成
材料として使用されるコーティング被膜を形成させた硬
質無機材料を製作する際の、コーティング被膜形成のた
めの前処理である硬質無機材料の表面処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hard inorganic material having a coating film used as a constituent material of a structure requiring heat resistance or oxidation resistance, such as a spacecraft and an engine. The present invention relates to a surface treatment method for a hard inorganic material, which is a pretreatment for forming a coating film.

【0002】[0002]

【従来の技術】宇宙往還機用ノーズキャップあるいはエ
ンジン用燃焼器などの材料として炭素繊維強化炭素材
(C/C複合材)などの基材の表面に化学蒸着法(CV
D)によるSiC等の硬質無機材料の表面層を形成させ
た材料が使用されているが、さらに耐酸化性を向上させ
る目的で溶射法等によって酸化物系の無機材料等のコー
ティング被膜を形成させた材料も知られている。前記の
ような硬質無機材料の表面層の上にコーティング被膜を
形成させる場合、被コーティング材料とコーティング被
膜との機械的結合性を高めるため、予め被コーティング
材料の表面に粗面化処理を施しておく方法が行われてい
る。従来、この被コーティング材料表面の粗面化処理方
法としては以下に示す2つの方法が行われている。 図2に示すようにC/C複合材などの基材1の表面に
形成されたSiCなどの表面層2の表面に溶融塩3を用
いて化学的エッチング処理を施す方法。 図3に示すようにC/C複合材などの基材1の表面に
形成されたSiCなどの表面層2の表面に金属又は無機
材料のグリッド4を用いてブラスト処理を施す方法。
2. Description of the Related Art Chemical vapor deposition (CV) is applied to the surface of a base material such as a carbon fiber reinforced carbon material (C / C composite) as a material for a nose cap for a spacecraft or a combustor for an engine.
A material having a surface layer of a hard inorganic material such as SiC according to D) is used, but a coating film of an oxide-based inorganic material or the like is formed by thermal spraying or the like for the purpose of further improving oxidation resistance. Materials are also known. When forming a coating film on the surface layer of the hard inorganic material as described above, in order to enhance the mechanical bonding between the material to be coated and the coating film, the surface of the material to be coated is subjected to a roughening treatment in advance. A way to put it has been done. Conventionally, the following two methods have been performed as a method for roughening the surface of the material to be coated. As shown in FIG. 2, a method in which a surface of a surface layer 2 such as SiC formed on a surface of a substrate 1 such as a C / C composite material is subjected to a chemical etching treatment using a molten salt 3. As shown in FIG. 3, a method of blasting a surface of a surface layer 2 such as SiC formed on a surface of a substrate 1 such as a C / C composite material using a grid 4 of a metal or an inorganic material.

【0003】[0003]

【発明が解決しようとする課題】これらの従来のコーテ
ィング前処理方法(エッチング処理、ブラスト処理)は
被コーティング材料の機械的あるいは化学的に劣る欠陥
領域を優先的に浸食、破壊していく処理であるため、被
コーティング材料の表面の粗面化が不均一となったり、
被コーティング材料の特性劣化を招く危険があり、これ
ら欠点を克服する効率的かつ確実な前処理方法の確立が
必要となっている。本発明は従来の粗面化前処理方法の
もつ問題点を解消し、被コーティング材料(特に耐熱、
耐酸化特性がシビアに要求される硬質無機材料)の本来
の特性を劣化させることなく、効率的に均一な表面粗面
化を達成でき、良好な品質のコーティング被膜を形成す
ることのできる硬質無機材料の表面処理方法を提供する
ことを目的とする。
These conventional coating pretreatment methods (etching and blasting) are processes for preferentially eroding and destroying mechanically or chemically inferior defect areas of the material to be coated. Because of this, the surface roughness of the material to be coated becomes uneven,
There is a risk that the properties of the material to be coated may be degraded, and it is necessary to establish an efficient and reliable pretreatment method to overcome these disadvantages. The present invention solves the problems of the conventional roughening pretreatment method, and solves the problem of the material to be coated (particularly heat resistance,
A hard inorganic material that can efficiently achieve uniform surface roughening and form a good quality coating film without deteriorating the original characteristics of hard inorganic materials whose oxidation resistance is severely required. An object of the present invention is to provide a method for surface treatment of a material.

【0004】[0004]

【課題を解決するための手段】本発明は少なくとも表面
層が硬質無機材料で形成された材料の表面にコーティン
グ被膜を形成させる際の前処理方法であって、表面層の
硬質無機材料の表面にレーザビームを用いて粗面化処理
を施すことを特徴とする硬質無機材料の表面処理方法で
ある。
SUMMARY OF THE INVENTION The present invention relates to a pretreatment method for forming a coating film on a surface of a material having at least a surface layer formed of a hard inorganic material. A surface treatment method for a hard inorganic material, wherein a surface roughening treatment is performed using a laser beam.

【0005】本発明の表面処理方法は、表面層の硬質無
機材料が化学蒸着法(CVD)によるSiCなどの共有
結合性の高い結晶構造の材料で構成されており、コーテ
ィング被膜が溶射法による耐酸化特性に優れる酸化物系
無機材料(例えばY2 3 −SiO2 複合酸化物)等の
コーティング被膜を形成させる場合に特に好適である。
[0005] In the surface treatment method of the present invention, the hard inorganic material of the surface layer is composed of a material having a crystal structure having a high covalent bond such as SiC by chemical vapor deposition (CVD), and the coating film is formed of an acid resistant material by thermal spraying. It is particularly suitable when forming a coating film of an oxide-based inorganic material (for example, Y 2 O 3 —SiO 2 composite oxide) having excellent oxidation characteristics.

【0006】本発明の方法を適用する少なくとも表面層
が硬質無機材料で形成された材料の例としては実質的に
SiC、TiC、TiN又はHfCなどの硬質無機材料
のみからなる材料又はC/C複合材又は黒鉛などの基材
に、SiC、TiC、TiN又はHfCなどの硬質無機
材料からなる表面層を形成させたものが挙げられる。特
にC/C複合材の表面にCVD−SiC層を形成させた
材料が宇宙往還機用ノーズキャップ又はエンジン用燃焼
器などの材料として注目されているが、SiCの結晶構
造は共有結合性が高く、他の材料系と化学結合性を持た
せることは困難で、コーティングを行うためには表面を
粗面化し、機械的な結合性を持たせることが必要であ
る。
Examples of the material to which the method of the present invention is applied, in which at least the surface layer is formed of a hard inorganic material, include a material substantially consisting only of a hard inorganic material such as SiC, TiC, TiN or HfC, or a C / C composite. And a base material such as graphite or a material formed with a surface layer made of a hard inorganic material such as SiC, TiC, TiN or HfC. In particular, a material in which a CVD-SiC layer is formed on the surface of a C / C composite material has attracted attention as a material for a nose cap for a spacecraft or a combustor for an engine, but the crystal structure of SiC has a high covalent bond. However, it is difficult to provide chemical bonding with other material systems, and it is necessary to roughen the surface and provide mechanical bonding in order to perform coating.

【0007】前記硬質無機材料からなる表面層上に形成
させるコーティング被膜の材料としては耐酸化性、耐熱
性を付与するためにIr等の高融点金属又はY2 3
SiO2 複合酸化物等の酸化物系無機材料などが使用さ
れる。また、被膜の形成方法としては溶射法のほか化学
的蒸着法(CVD)、物理的蒸着法(PVD)などの方
法が適用できる。これらの被膜の厚みは基材の形状やコ
ーティング材料の材質等によって異なるが30〜150
μmの範囲が好ましい。30μm未満では被膜形成の効
果が不十分であり、150μmを超えると被膜の割れ、
剥離等が生じるおそれがある。
As a material of a coating film formed on the surface layer made of the hard inorganic material, a high melting point metal such as Ir or Y 2 O 3- is used to impart oxidation resistance and heat resistance.
An oxide-based inorganic material such as a SiO 2 composite oxide is used. In addition, as a method for forming a coating film, a method such as a chemical vapor deposition method (CVD) and a physical vapor deposition method (PVD) can be applied in addition to a thermal spraying method. The thickness of these films varies depending on the shape of the base material, the material of the coating material and the like, but is 30 to 150.
The range of μm is preferred. If it is less than 30 μm, the effect of film formation is insufficient, and if it exceeds 150 μm, cracking of the film,
Peeling or the like may occur.

【0008】本発明の表面処理方法は前記硬質無機材料
からなる表面層上にコーティング被膜を形成するに先立
ち、被コーティング材料(硬質無機材料)とコーティン
グ被膜との機械的結合性を高めるための粗面化処理方法
であり、表面層の硬質無機材料の表面にレーザビームを
用いて粗面化処理を施すことを特徴とする。すなわち、
目的とする粗面化の程度に応じてレーザビームのスポッ
ト径、焦点距離、パルス周波数等を適当に調整し、被コ
ーティング材料の表面に照射して穴開け加工又は溝堀り
加工を行うことにより、被コーティング材料の特性劣化
のない、効率的かつ均一な粗面化が可能となる。適用す
るレーザビームとしてはCO2 (炭酸ガス)、YAG
(Yttorium Aluminum Garne
t)、Excimer(エキシマ)等が挙げられるが、
要求される粗面化パターンや加工時間等に応じて適当な
レーザを選定する必要がある。
In the surface treatment method of the present invention, prior to forming a coating film on the surface layer made of the hard inorganic material, a rough coating for improving the mechanical bonding between the material to be coated (the hard inorganic material) and the coating film. A surface treatment method, wherein a surface of a hard inorganic material of a surface layer is subjected to a surface roughening treatment using a laser beam. That is,
By appropriately adjusting the spot diameter, focal length, pulse frequency, etc. of the laser beam according to the desired degree of surface roughening, irradiating the surface of the material to be coated and performing drilling or grooving Thus, efficient and uniform surface roughening without deterioration of the properties of the material to be coated can be achieved. The applicable laser beam is CO 2 (carbon dioxide), YAG
(Yttorium Aluminum Garne
t), Excimer and the like,
It is necessary to select an appropriate laser according to the required roughening pattern, processing time, and the like.

【0009】CVD−SiC等の硬質無機材料に対して
加工用レーザで高出力の得られるCO2 、YAG、エキ
シマレーザ等を用い表面改質(ミクロンオーダーから数
十ミクロンのオーダーの深さの穴開け又は溝堀りにより
粗面化)することにより、被コーティング材料の特性劣
化のない効率的かつ均一な粗面化が可能となり、コーテ
ィング層との機械的結合性の向上を図ることができる。
Surface modification of a hard inorganic material such as CVD-SiC using a CO 2 , YAG, excimer laser or the like which can provide high output with a processing laser (a hole having a depth on the order of microns to tens of microns) Roughening by opening or grooving) enables efficient and uniform roughening without deteriorating the characteristics of the material to be coated, and improves mechanical bonding with the coating layer.

【0010】[0010]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。本発明の1実施例について図1、4、5
を参照しながら説明する。図1は本発明に係るレーザビ
ームによる表面処理方法の概念図である。本発明の表面
処理を施す材料として図1に示すようにC/C複合材又
は黒鉛からなる基材1の表面に厚さ100μmのCVD
によるSiCの表面層2を形成させたものを使用した。
この材料について次の3種類の方法により表面の粗面化
処理を行った。図1中の矢印はレーザビームの移動方向
を示す。 (a)エキシマレーザを使用し、深さ20μm、幅10
0μmの溝を500μmの間隔で格子状に形成させる溝
堀り加工を行った。 (b)YAGレーザを使用し、レーザビーム5のスポッ
ト径、焦点距離、パルス周波数を適当に制御し穴径:1
00〜150μm、深さ:30〜60μmの穴が100
μmの間隔で形成される程度に調整し、加工速度:36
00mm/minでレーザ銃を移動させながら連続スポ
ット穴開け加工を行うことにより粗面化処理を行った。 (c)CO2 レーザを使用し、穴の間隔が250μmと
なるように調整したほかは(b)と同様にして穴開け加
工を行った。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. 1, 4 and 5 for one embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 is a conceptual diagram of a surface treatment method using a laser beam according to the present invention. As a material to be subjected to the surface treatment of the present invention, as shown in FIG. 1, a 100 μm thick CVD is applied to the surface of a substrate 1 made of a C / C composite material or graphite.
Having the surface layer 2 of SiC formed thereon.
This material was subjected to a surface roughening treatment by the following three methods. The arrow in FIG. 1 indicates the moving direction of the laser beam. (A) Using an excimer laser, depth 20 μm, width 10
Grooving was performed to form 0 μm grooves in a grid at intervals of 500 μm. (B) Using a YAG laser and appropriately controlling the spot diameter, focal length, and pulse frequency of the laser beam 5, and controlling the hole diameter to 1
100 to 150 μm, depth: 100 holes of 30 to 60 μm
Adjusted to the extent formed at intervals of μm, processing speed: 36
Roughening treatment was performed by performing continuous spot drilling while moving the laser gun at 00 mm / min. (C) Drilling was performed in the same manner as in (b), except that a CO 2 laser was used and the distance between the holes was adjusted to 250 μm.

【0011】図4は前記(a)、(b)又は(c)の各
条件により表面処理を行った試料の表面状態を示す顕微
鏡写真である。図5は図4のYAGレーザにより表面処
理を行った試料の表面に、溶射法により厚さ約100μ
mのY2 3 −SiO2 複合酸化物のコーティング被膜
を形成させた試料について、断面の組織状態を示す顕微
鏡写真である。
FIG. 4 is a photomicrograph showing the surface condition of a sample which has been subjected to a surface treatment under the conditions (a), (b) or (c). FIG. 5 shows that the surface of the sample subjected to the surface treatment by the YAG laser of FIG.
3 is a photomicrograph showing the microstructure of a cross section of a sample on which a m 2 Y 2 O 3 —SiO 2 composite oxide coating film was formed.

【0012】図4及び図5から、本発明の方法により硬
質無機材料の表面に均一な穴開け又は溝堀り加工を行う
ことができ、本発明の方法はコーティングの前処理とし
ての粗面化に有効であることがわかる。
4 and 5, the method of the present invention enables uniform drilling or grooving on the surface of a hard inorganic material, and the method of the present invention provides roughening as a pretreatment for coating. It is found to be effective.

【0013】[0013]

【発明の効果】本発明の方法によれば、少なくとも表面
層が硬質無機材料からなる被コーティング材料に対し、
粗面化の程度に応じてレーザビームのスポット径、焦点
距離、パルス周波数等の条件を適当に調整し、穴開け又
は溝堀り加工を行うことにより、被コーティング材料の
特性劣化のない、効率的かつ均一な粗面化が可能とな
り、コーティング層との機械的結合性の向上を図ること
ができる。
According to the method of the present invention, at least the surface layer is made of a hard inorganic material,
The laser beam spot diameter, focal length, pulse frequency, and other conditions are appropriately adjusted according to the degree of surface roughening, and drilling or grooving is performed. It is possible to achieve a rough surface uniformly and uniformly, and to improve the mechanical bonding with the coating layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るレーザビームによる表面処理方法
の概念図。
FIG. 1 is a conceptual diagram of a surface treatment method using a laser beam according to the present invention.

【図2】従来の表面処理方法である化学的エッチング処
理の概念図。
FIG. 2 is a conceptual diagram of a chemical etching process which is a conventional surface treatment method.

【図3】従来の表面処理方法であるグリッドを用いたブ
ラスト処理の概念図。
FIG. 3 is a conceptual diagram of a blast process using a grid, which is a conventional surface treatment method.

【図4】本発明の実施例に係る表面処理を行ったSiC
の表面状態を示す顕微鏡写真。
FIG. 4 shows a surface-treated SiC according to an embodiment of the present invention.
5 is a micrograph showing the surface state of the sample.

【図5】本発明の実施例に係る表面処理を行ったSiC
の面上に形成させたコーティング層の断面の組織状態を
示す顕微鏡写真。
FIG. 5 shows a surface-treated SiC according to an embodiment of the present invention.
5 is a micrograph showing the structure of the cross section of the coating layer formed on the surface of FIG.

フロントページの続き (72)発明者 都築 圭紀 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 (72)発明者 藤原 力 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 (72)発明者 関川 貴洋 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 (72)発明者 納富 啓 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 武田 恭之 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 森本 立男 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 小椋 謙 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 近藤 雅之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内Continued on the front page (72) Inventor Keiki Tsuzuki 10 Oecho, Minato-ku, Nagoya, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems Works (72) Inventor Riki Fujiwara 10 Oecho, Minato-ku, Nagoya-shi, Aichi Mitsubishi Nagoya Aerospace Systems Works, Heavy Industries, Ltd. (72) Inventor Takahiro Sekikawa 10 Oemachi, Minato-ku, Nagoya, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems Works, (72) Inventor Kei Satomi Fukahori, Nagasaki, Nagasaki 5-717-1, Machi, Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Yasuyuki Takeda 5-717-1, Fukahoricho, Nagasaki, Nagasaki Prefecture, Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Tatsuo Morimoto, Inventor 1-8-1 Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture, Mitsubishi Heavy Industries, Ltd.Basic Technology Research Laboratory (72) Inventor Ken Ogura 1-8-1, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture, Mitsubishi Heavy Industries, Ltd.Basic Technology Research Laboratory (72) Departure Who Masayuki Kondo Kanagawa Prefecture Kanazawa-ku, Yokohama Sachiura chome address 8 1 Mitsubishi Heavy Industries, Ltd. based technology within the Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面層が硬質無機材料で形成
された材料の表面にコーティング被膜を形成させる際の
前処理方法であって、表面層の硬質無機材料の表面にレ
ーザビームを用いて粗面化処理を施すことを特徴とする
硬質無機材料の表面処理方法。
1. A pretreatment method for forming a coating film on a surface of a material having at least a surface layer formed of a hard inorganic material, wherein a rough surface is formed on a surface of the hard inorganic material of the surface layer by using a laser beam. A surface treatment method for a hard inorganic material, wherein the surface treatment is performed.
【請求項2】 表面層の硬質無機材料が共有結合性の高
い結晶構造の材料で構成されており、コーティング被膜
が溶射法によるコーティング被膜であることを特徴とす
る請求項1に記載の硬質無機材料の表面処理方法。
2. The hard inorganic material according to claim 1, wherein the hard inorganic material of the surface layer is made of a material having a crystal structure with high covalent bonding, and the coating film is a coating film formed by a thermal spraying method. Material surface treatment method.
JP9134546A 1997-05-09 1997-05-09 Method for treating surface of hard inorganic material Pending JPH10310859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9134546A JPH10310859A (en) 1997-05-09 1997-05-09 Method for treating surface of hard inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9134546A JPH10310859A (en) 1997-05-09 1997-05-09 Method for treating surface of hard inorganic material

Publications (1)

Publication Number Publication Date
JPH10310859A true JPH10310859A (en) 1998-11-24

Family

ID=15130853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9134546A Pending JPH10310859A (en) 1997-05-09 1997-05-09 Method for treating surface of hard inorganic material

Country Status (1)

Country Link
JP (1) JPH10310859A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241846A1 (en) * 2002-09-09 2004-03-25 Volkswagen Ag Process for coating the contact surface of internal combustion engine pistons comprises forming sealed recesses in piston surface so that capillary effect is adjusted with respect to properties of the coating in the flowable state
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
JP2007169791A (en) * 2005-12-24 2007-07-05 Leoni Ag Method of applying material on component, and component
FR2915493A1 (en) * 2007-04-30 2008-10-31 Snecma Sa METHOD FOR REALIZING A DEPOSITION ON A SUBSTRATE COVERED WITH SIC
JP2010129709A (en) * 2008-11-27 2010-06-10 Kyocera Corp Sample supporter, and heating device
JP2015163456A (en) * 2014-01-28 2015-09-10 株式会社秋田研磨工業 Nib of fountain pen
WO2016006275A1 (en) * 2014-07-07 2016-01-14 株式会社秋田研磨工業 Fountain pen nib
JP2016044337A (en) * 2014-08-25 2016-04-04 ダイセルポリマー株式会社 Method of manufacturing composite molding
KR20170139084A (en) 2015-04-21 2017-12-18 도카로 가부시키가이샤 A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material
WO2020067493A1 (en) * 2018-09-28 2020-04-02 新和工業株式会社 Method of treating ceramics and ceramic member
WO2020260192A1 (en) * 2019-06-24 2020-12-30 Atlas Copco Airpower, Naamloze Vennootschap Method for manufacturing machine parts, such as, but not limited to compressor, expander or vacuum pump parts and machine part manufactured by said method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10241846B4 (en) * 2002-09-09 2011-06-09 Volkswagen Ag Coating method and a piston produced by the coating method
DE10241846A1 (en) * 2002-09-09 2004-03-25 Volkswagen Ag Process for coating the contact surface of internal combustion engine pistons comprises forming sealed recesses in piston surface so that capillary effect is adjusted with respect to properties of the coating in the flowable state
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
JP2007169791A (en) * 2005-12-24 2007-07-05 Leoni Ag Method of applying material on component, and component
FR2915493A1 (en) * 2007-04-30 2008-10-31 Snecma Sa METHOD FOR REALIZING A DEPOSITION ON A SUBSTRATE COVERED WITH SIC
JP2008275617A (en) * 2007-04-30 2008-11-13 Snecma METHOD OF DEPOSITION ONTO SiC-COVERED SUBSTRATE
US7950139B2 (en) 2007-04-30 2011-05-31 Snecma Method of making a deposit on an SiC-covered substrate
EP1990632A3 (en) * 2007-04-30 2013-04-03 Snecma Device for measuring deformations and process for producing the same
JP2010129709A (en) * 2008-11-27 2010-06-10 Kyocera Corp Sample supporter, and heating device
JP2016130028A (en) * 2014-01-28 2016-07-21 株式会社秋田研磨工業 Nib of fountain pen
JP2015163456A (en) * 2014-01-28 2015-09-10 株式会社秋田研磨工業 Nib of fountain pen
WO2016006275A1 (en) * 2014-07-07 2016-01-14 株式会社秋田研磨工業 Fountain pen nib
US9815316B2 (en) 2014-07-07 2017-11-14 Akita Grind Industry Co., Ltd. Fountain pen nib
JP2016044337A (en) * 2014-08-25 2016-04-04 ダイセルポリマー株式会社 Method of manufacturing composite molding
KR20170139084A (en) 2015-04-21 2017-12-18 도카로 가부시키가이샤 A roughening method of a base material, a surface treatment method of a base material, a method of producing a thermal spray coating material and a thermal spray coating material
US11131014B2 (en) 2015-04-21 2021-09-28 Tocalo Co., Ltd. Method for roughening surface of substrate, method for treating surface of substrate, method for producing thermal spray-coated member, and thermal spray-coated member
WO2020067493A1 (en) * 2018-09-28 2020-04-02 新和工業株式会社 Method of treating ceramics and ceramic member
JP6745424B1 (en) * 2018-09-28 2020-08-26 新和工業株式会社 Ceramic processing method and ceramic member
CN112739667A (en) * 2018-09-28 2021-04-30 新和工业株式会社 Method for treating ceramic and ceramic member
CN112739667B (en) * 2018-09-28 2023-02-17 新和工业株式会社 Method for treating ceramic and ceramic member
WO2020260192A1 (en) * 2019-06-24 2020-12-30 Atlas Copco Airpower, Naamloze Vennootschap Method for manufacturing machine parts, such as, but not limited to compressor, expander or vacuum pump parts and machine part manufactured by said method
BE1027351B1 (en) * 2019-06-24 2021-10-14 Atlas Copco Airpower Nv Method of manufacturing machine parts such as, but not limited to compressors, expanders, or vacuum pump parts and machine parts manufactured by the method
CN114025909A (en) * 2019-06-24 2022-02-08 阿特拉斯·科普柯空气动力股份有限公司 Method for manufacturing a machine part, such as but not limited to a compressor, expander or vacuum pump part and machine part manufactured by said method

Similar Documents

Publication Publication Date Title
JP5237124B2 (en) Coating using carbon nitride and products coated with carbon nitride
KR101463089B1 (en) A thermal spraying material, a thermally sprayed coating, a thermal spraying method and also a thermally coated workpiece
Lailatul et al. Surface modification of duplex stainless steel with SiC preplacement using TIG torch cladding
JPH10310859A (en) Method for treating surface of hard inorganic material
JP2009527645A5 (en)
JP2009527646A5 (en)
JP2007105721A (en) Method and apparatus for the application of twin wire arc spray coating
KR20080028498A (en) Structural member coated with spray coating film excellent in thermal emission properties and the like, and method for production thereof
JP2023554533A (en) Plated steel plate for exterior panels and its manufacturing method
US20230256544A1 (en) Method to produce high corrosion and wear resistant cast iron components by using laser cladding
RU2467850C2 (en) Carbon nitride coat and article with such coat
JPS61113755A (en) Manufacture of metallic material with thermal sprayed ceramic film having high corrosion and heat resistance
CN115233144A (en) Mechanical laser interactive polishing strengthening method for spraying-state ceramic coating
CN112739667B (en) Method for treating ceramic and ceramic member
JPS6059300B2 (en) Wear-resistant and fracture-resistant multilayer coating material
Orishich et al. Creation of heterogeneous metal-ceramic structures based on Ti, Ni and WC, B4C by the combined method of laser cladding and cold gas-dynamic spraying
Lawrence et al. A laser-based technique for the coating of mild steel with a vitreous enamel
JP2567137B2 (en) Composite film coated member having excellent wear resistance and molten metal resistance and method for producing the same
JP3035209B2 (en) Corrosion resistant material and method for producing the same
JPH11302819A (en) Formation of wear resistant film and forming method
RU2106429C1 (en) Method for application of multilayer wear-resistant coating to articles from iron and titanium alloys
KR100801910B1 (en) Y2o3 spray-coated member and production method thereof
JPH11350107A (en) Method for forming high-temperature wear-resistant film
RU46010U1 (en) MULTI-LAYER-CUTTING TOOL
JP2001123277A (en) Method for surface treating die for diecasting and same die

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206